123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- import numpy as np
- from scipy.optimize import least_squares
- from scipy.optimize import minimize
- from scipy.linalg import lstsq as sclstsq
- import scipy.linalg as lin
-
- def harmonicEuler ( sN, fs, t, f0, k1, kN, ks ):
- """
- Performs inverse calculation of harmonics contaminating a signal.
- Args:
- sN = signal containing noise
- fs = sampling frequency
- t = time samples
- f0 = base frequency of the sinusoidal noise
- nK = number of harmonics to calculate
-
- """
- KK = np.arange(k1, kN+1, 1/ks )
- nK = len(KK)
- A = np.exp(1j* np.tile(KK,(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(1, len(t)+1, 1),(nK,1)).T)
-
- v = np.linalg.lstsq(A, sN, rcond=None)
- alpha = np.real(v[0])
- beta = np.imag(v[0])
-
- amp = np.abs(v[0])
- phase = np.angle(v[0])
-
- h = np.zeros(len(t))
- for ik, k in enumerate(KK):
- h += 2*amp[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase[ik] )
-
- return sN-h
-
- def harmonicNorm (f0, sN, fs, t, k1, kN, ks):
- #return np.linalg.norm( harmonicEuler(sN, fs, t, f0, k1, kN, ks))
- ii = sN < (3.* np.std(sN))
- return np.linalg.norm( harmonicEuler(sN, fs, t, f0, k1, kN, ks)[ii] )
-
- def minHarmonic(sN, fs, t, f0, k1, kN, ks, Bounds, Nsearch):
-
- kNs = kN
- if Nsearch != False:
- kNs = k1+Nsearch
- if Bounds == 0:
- # CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr
- res = minimize(harmonicNorm, np.array((f0)), args=(sN, fs, t, k1, kNs, ks), jac='2-point', method='BFGS') # hess=None, bounds=None )
- print("UNbounded search from ", k1, " to ", kNs, res.x[0]) # for f0 with fN=10 in search", f0)
-
- else:
- bnds = ( (f0-Bounds, f0+Bounds), )
- res = minimize(harmonicNorm, (f0,), args=(sN, fs, t, k1, kNs, ks), jac='2-point', method='L-BFGS-B', bounds=bnds ) # hess=None, bounds=None )
- print("bounded ( +-", Bounds, ") search from ", k1, "to", kNs, res.x[0]) # for f0 with fN=10 in search", f0)
-
- return harmonicEuler(sN, fs, t, res.x[0], k1, kN, ks), res.x[0]#[0]
-
- def harmonicEuler2 ( sN, fs, t, f0, f0k1, f0kN, f0ks, f1, f1k1, f1kN, f1ks ):
- """
- Performs inverse calculation of harmonics contaminating a signal.
- Args:
- sN = signal containing noise
- fs = sampling frequency
- t = time samples
- f0 = first base frequency of the sinusoidal noise
- f0k1 = First harmonic to calula11te for f0
- f0kN = Last base harmonic to calulate for f0
- f0ks = subharmonics to calculate
- f1 = second base frequency of the sinusoidal noise
- f1k1 = First harmonic to calulate for f1
- f1kN = Last base harmonic to calulate for f1
- f1ks = subharmonics to calculate at f1 base frequency
- """
- KK0 = np.arange(f0k1, f0kN+1, 1/f0ks)
- nK0 = len(KK0)
- A0 = np.exp(1j* np.tile(KK0,(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile( np.arange(1, len(t)+1, 1), (nK0,1)).T)
-
- KK1 = np.arange(f1k1, f1kN+1, 1/f1ks)
- nK1 = len(KK1)
- A1 = np.exp(1j* np.tile(KK1,(len(t), 1)) * 2*np.pi* (f1/fs) * np.tile( np.arange(1, len(t)+1, 1),(nK1,1)).T)
-
- A = np.concatenate((A0, A1), axis=1)
-
- v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8)
-
- amp0 = np.abs(v[0][0:nK0])
- phase0 = np.angle(v[0][0:nK0])
- amp1 = np.abs(v[0][nK0::])
- phase1 = np.angle(v[0][nK0::])
-
- h = np.zeros(len(t))
- for ik, k in enumerate(KK0):
- h += 2*amp0[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase0[ik] )
- for ik, k in enumerate(KK1):
- h += 2*amp1[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase1[ik] )
-
- return sN-h
-
- def harmonic2Norm (f0, sN, fs, t, f0k1, f0kN, f0ks, f1k1, f1kN, f1ks):
- #return np.linalg.norm(harmonicEuler2(f0[0], f0[1], sN, fs, nK, t))
- ii = sN < (3.* np.std(sN))
- return np.linalg.norm( harmonicEuler2(sN, fs, t, f0[0], f0k1, f0kN, f0ks, f0[1], f1k1, f1kN, f1ks)[ii] )
-
- def minHarmonic2(sN, fs, t, f0, f0k1, f0kN, f0ks, f1, f1k1, f1kN, f1ks, Bounds, Nsearch):
-
- kNs0 = f0kN
- kNs1 = f1kN
- if Nsearch != False:
- kNs0 = f0k1+Nsearch
- kNs1 = f1k1+Nsearch
-
- if Bounds == 0:
-
- # CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr
- print("2 UNbounded ( +-", Bounds,") search length ", kNs0, kNs1 ,"for f0", f0, f1)
- res = minimize(harmonic2Norm, np.array((f0, f1)), args=(sN, fs, t, f0k1, kNs0, f0ks, f1k1, kNs1, f1ks), jac='2-point', method='BFGS') # hess=None, bounds=None )
- else:
- # Bounded
- bnds = ( (f0-Bounds, f0+Bounds),(f1-Bounds, f1+Bounds) )
- print("2 bounded ( +-", Bounds,") search length ", kNs0, kNs1 ,"for f0", f0, f1)
- # L-BFGS-B hess=None, bounds=None )
- res = minimize(harmonic2Norm, ((f0,f1)), args=(sN, fs, t, f0k1, kNs0, f0ks, f1k1, kNs1, f1ks), jac='2-point', method='L-BFGS-B', bounds=bnds )
-
- return harmonicEuler2(sN, fs, t, res.x[0], f0k1, f0kN, f0ks, res.x[1], f1k1, f1kN, f1ks), res.x[0], res.x[1]#[0]
-
- def guessf0( sN, fs ):
- S = np.fft.fft(sN)
- w = np.fft.fftfreq( len(sN), 1/fs )
- imax = np.argmax( np.abs(S) )
-
- #np.save( "sN.npy", S )
- #np.save( "w.npy", w )
- #exit()
- #plt.plot( w, np.abs(S) )
- #plt.show()
- #print(w)
- #print ( w[imax], w[imax+1] )esta bien in english
- return abs(w[imax])
-
- if __name__ == "__main__":
-
- import matplotlib.pyplot as plt
-
- f0 = 60 # Hz
- f1 = 60 # Hz
- delta = np.random.rand() - .5
- delta2 = np.random.rand() - .5
- print("delta", delta)
- print("delta2", delta2)
- fs = 10000 # GMR
- t = np.arange(0, 1, 1/fs)
- phi = 2.*np.pi*np.random.rand() - np.pi
- phi2 = 2.*np.pi*np.random.rand() - np.pi
- print("phi", phi, phi2)
- A = 1.0
- A2 = 0.0
- A3 = 1.0
- nK = 10
- T2 = .200
- sN = A *np.sin( ( 1*(delta +f0))*2*np.pi*t + phi ) + \
- A2*np.sin( ( 1*(delta2 +f1))*2*np.pi*t + phi2 ) + \
- np.random.normal(0,.1,len(t)) + \
- + A3*np.exp( -t/T2 )
-
- sNc = A *np.sin( (1*(delta +f0))*2*np.pi*t + phi ) + \
- A2*np.sin( (1*(delta2+f1))*2*np.pi*t + phi2 ) + \
- + A3*np.exp( -t/T2 )
-
-
- guessf0(sN, fs)
-
- # single freq
- #h = harmonicEuler( f0, sN, fs, nK, t)
- h = minHarmonic( f0, sN, fs, nK, t)
-
- # two freqs
- #h = minHarmonic2( f0+1e-2, f1-1e-2, sN, fs, nK, t)
- #h = harmonicEuler2( f0, f1, sN, fs, nK, t)
-
- plt.figure()
- plt.plot(t, sN, label="sN")
- #plt.plot(t, sN-h, label="sN-h")
- plt.plot(t, h, label='h')
- plt.title("harmonic")
- plt.legend()
-
- plt.figure()
- plt.plot(t, sN-sNc, label='true noise')
- plt.plot(t, h, label='harmonic removal')
- plt.plot(t, np.exp(-t/T2), label="nmr")
- plt.legend()
- plt.title("true noise")
-
- plt.show()
|