Surface NMR processing and inversion GUI
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

harmonic.py 6.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. import numpy as np
  2. from scipy.optimize import least_squares
  3. from scipy.optimize import minimize
  4. from scipy.linalg import lstsq as sclstsq
  5. import scipy.linalg as lin
  6. def harmonicEuler ( sN, fs, t, f0, k1, kN, ks ):
  7. """
  8. Performs inverse calculation of harmonics contaminating a signal.
  9. Args:
  10. sN = signal containing noise
  11. fs = sampling frequency
  12. t = time samples
  13. f0 = base frequency of the sinusoidal noise
  14. nK = number of harmonics to calculate
  15. """
  16. KK = np.arange(k1, kN+1, 1/ks )
  17. nK = len(KK)
  18. A = np.exp(1j* np.tile(KK,(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(1, len(t)+1, 1),(nK,1)).T)
  19. v = np.linalg.lstsq(A, sN, rcond=None)
  20. alpha = np.real(v[0])
  21. beta = np.imag(v[0])
  22. amp = np.abs(v[0])
  23. phase = np.angle(v[0])
  24. h = np.zeros(len(t))
  25. for ik, k in enumerate(KK):
  26. h += 2*amp[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase[ik] )
  27. return sN-h
  28. def harmonicNorm (f0, sN, fs, t, k1, kN, ks):
  29. #return np.linalg.norm( harmonicEuler(sN, fs, t, f0, k1, kN, ks))
  30. ii = sN < (3.* np.std(sN))
  31. return np.linalg.norm( harmonicEuler(sN, fs, t, f0, k1, kN, ks)[ii] )
  32. def minHarmonic(sN, fs, t, f0, k1, kN, ks, Bounds, Nsearch):
  33. kNs = kN
  34. if Nsearch != False:
  35. kNs = k1+Nsearch
  36. if Bounds == 0:
  37. # CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr
  38. res = minimize(harmonicNorm, np.array((f0)), args=(sN, fs, t, k1, kNs, ks), jac='2-point', method='BFGS') # hess=None, bounds=None )
  39. print("UNbounded search from ", k1, " to ", kNs, res.x[0]) # for f0 with fN=10 in search", f0)
  40. else:
  41. bnds = ( (f0-Bounds, f0+Bounds), )
  42. res = minimize(harmonicNorm, (f0,), args=(sN, fs, t, k1, kNs, ks), jac='2-point', method='L-BFGS-B', bounds=bnds ) # hess=None, bounds=None )
  43. print("bounded ( +-", Bounds, ") search from ", k1, "to", kNs, res.x[0]) # for f0 with fN=10 in search", f0)
  44. return harmonicEuler(sN, fs, t, res.x[0], k1, kN, ks), res.x[0]#[0]
  45. def harmonicEuler2 ( sN, fs, t, f0, f0k1, f0kN, f0ks, f1, f1k1, f1kN, f1ks ):
  46. """
  47. Performs inverse calculation of harmonics contaminating a signal.
  48. Args:
  49. sN = signal containing noise
  50. fs = sampling frequency
  51. t = time samples
  52. f0 = first base frequency of the sinusoidal noise
  53. f0k1 = First harmonic to calula11te for f0
  54. f0kN = Last base harmonic to calulate for f0
  55. f0ks = subharmonics to calculate
  56. f1 = second base frequency of the sinusoidal noise
  57. f1k1 = First harmonic to calulate for f1
  58. f1kN = Last base harmonic to calulate for f1
  59. f1ks = subharmonics to calculate at f1 base frequency
  60. """
  61. KK0 = np.arange(f0k1, f0kN+1, 1/f0ks)
  62. nK0 = len(KK0)
  63. A0 = np.exp(1j* np.tile(KK0,(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile( np.arange(1, len(t)+1, 1), (nK0,1)).T)
  64. KK1 = np.arange(f1k1, f1kN+1, 1/f1ks)
  65. nK1 = len(KK1)
  66. A1 = np.exp(1j* np.tile(KK1,(len(t), 1)) * 2*np.pi* (f1/fs) * np.tile( np.arange(1, len(t)+1, 1),(nK1,1)).T)
  67. A = np.concatenate((A0, A1), axis=1)
  68. v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8)
  69. amp0 = np.abs(v[0][0:nK0])
  70. phase0 = np.angle(v[0][0:nK0])
  71. amp1 = np.abs(v[0][nK0::])
  72. phase1 = np.angle(v[0][nK0::])
  73. h = np.zeros(len(t))
  74. for ik, k in enumerate(KK0):
  75. h += 2*amp0[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase0[ik] )
  76. for ik, k in enumerate(KK1):
  77. h += 2*amp1[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase1[ik] )
  78. return sN-h
  79. def harmonic2Norm (f0, sN, fs, t, f0k1, f0kN, f0ks, f1k1, f1kN, f1ks):
  80. #return np.linalg.norm(harmonicEuler2(f0[0], f0[1], sN, fs, nK, t))
  81. ii = sN < (3.* np.std(sN))
  82. return np.linalg.norm( harmonicEuler2(sN, fs, t, f0[0], f0k1, f0kN, f0ks, f0[1], f1k1, f1kN, f1ks)[ii] )
  83. def minHarmonic2(sN, fs, t, f0, f0k1, f0kN, f0ks, f1, f1k1, f1kN, f1ks, Bounds, Nsearch):
  84. kNs0 = f0kN
  85. kNs1 = f1kN
  86. if Nsearch != False:
  87. kNs0 = f0k1+Nsearch
  88. kNs1 = f1k1+Nsearch
  89. if Bounds == 0:
  90. # CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr
  91. print("2 UNbounded ( +-", Bounds,") search length ", kNs0, kNs1 ,"for f0", f0, f1)
  92. res = minimize(harmonic2Norm, np.array((f0, f1)), args=(sN, fs, t, f0k1, kNs0, f0ks, f1k1, kNs1, f1ks), jac='2-point', method='BFGS') # hess=None, bounds=None )
  93. else:
  94. # Bounded
  95. bnds = ( (f0-Bounds, f0+Bounds),(f1-Bounds, f1+Bounds) )
  96. print("2 bounded ( +-", Bounds,") search length ", kNs0, kNs1 ,"for f0", f0, f1)
  97. # L-BFGS-B hess=None, bounds=None )
  98. res = minimize(harmonic2Norm, ((f0,f1)), args=(sN, fs, t, f0k1, kNs0, f0ks, f1k1, kNs1, f1ks), jac='2-point', method='L-BFGS-B', bounds=bnds )
  99. return harmonicEuler2(sN, fs, t, res.x[0], f0k1, f0kN, f0ks, res.x[1], f1k1, f1kN, f1ks), res.x[0], res.x[1]#[0]
  100. def guessf0( sN, fs ):
  101. S = np.fft.fft(sN)
  102. w = np.fft.fftfreq( len(sN), 1/fs )
  103. imax = np.argmax( np.abs(S) )
  104. #np.save( "sN.npy", S )
  105. #np.save( "w.npy", w )
  106. #exit()
  107. #plt.plot( w, np.abs(S) )
  108. #plt.show()
  109. #print(w)
  110. #print ( w[imax], w[imax+1] )esta bien in english
  111. return abs(w[imax])
  112. if __name__ == "__main__":
  113. import matplotlib.pyplot as plt
  114. f0 = 60 # Hz
  115. f1 = 60 # Hz
  116. delta = np.random.rand() - .5
  117. delta2 = np.random.rand() - .5
  118. print("delta", delta)
  119. print("delta2", delta2)
  120. fs = 10000 # GMR
  121. t = np.arange(0, 1, 1/fs)
  122. phi = 2.*np.pi*np.random.rand() - np.pi
  123. phi2 = 2.*np.pi*np.random.rand() - np.pi
  124. print("phi", phi, phi2)
  125. A = 1.0
  126. A2 = 0.0
  127. A3 = 1.0
  128. nK = 10
  129. T2 = .200
  130. sN = A *np.sin( ( 1*(delta +f0))*2*np.pi*t + phi ) + \
  131. A2*np.sin( ( 1*(delta2 +f1))*2*np.pi*t + phi2 ) + \
  132. np.random.normal(0,.1,len(t)) + \
  133. + A3*np.exp( -t/T2 )
  134. sNc = A *np.sin( (1*(delta +f0))*2*np.pi*t + phi ) + \
  135. A2*np.sin( (1*(delta2+f1))*2*np.pi*t + phi2 ) + \
  136. + A3*np.exp( -t/T2 )
  137. guessf0(sN, fs)
  138. # single freq
  139. #h = harmonicEuler( f0, sN, fs, nK, t)
  140. h = minHarmonic( f0, sN, fs, nK, t)
  141. # two freqs
  142. #h = minHarmonic2( f0+1e-2, f1-1e-2, sN, fs, nK, t)
  143. #h = harmonicEuler2( f0, f1, sN, fs, nK, t)
  144. plt.figure()
  145. plt.plot(t, sN, label="sN")
  146. #plt.plot(t, sN-h, label="sN-h")
  147. plt.plot(t, h, label='h')
  148. plt.title("harmonic")
  149. plt.legend()
  150. plt.figure()
  151. plt.plot(t, sN-sNc, label='true noise')
  152. plt.plot(t, h, label='harmonic removal')
  153. plt.plot(t, np.exp(-t/T2), label="nmr")
  154. plt.legend()
  155. plt.title("true noise")
  156. plt.show()