123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- # #################################################################################
- # # GJI final pub specs #
- # import matplotlib #
- # from matplotlib import rc #
- # matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{timet,amsmath}"] #
- # rc('font',**{'family':'serif','serif':['timet']}) #
- # rc('font',**{'size':8}) #
- # rc('text', usetex=True) #
- # # converts pc that GJI is defined in to inches #
- # # In GJI \textwidth = 42pc #
- # # \columnwidth = 20pc #
- # def pc2in(pc): #
- # return pc*12/72.27 #
- # #################################################################################
-
- #from GJIPlot import *
-
- import numpy as np
- import matplotlib.pyplot as plt
- #from invertColours import *
- from akvo.tressel.decay import *
- from scipy import signal
-
- def quadrature(T, vL, wL, dt, xn, DT, t):
- # decimate
- # blind decimation
- # 1 instead of T
- irsamp = int(T) * int( (1./vL) / dt) # real
- iisamp = int( ((1./vL)/ dt) * ( .5*np.pi / (2.*np.pi) ) ) # imaginary
-
-
- dsamp = int( DT / dt) # real
-
- iisamp += dsamp
-
- ############################################################
- # simple quadrature-detection via sampling
- xr = xn[dsamp::irsamp]
- xi = xn[iisamp::irsamp]
- phase = np.angle( xr + 1j*xi )
- abse = np.abs( xr + 1j*xi )
-
- # times
- #ta = np.arange(0, TT, dt)
- #te = np.arange(DT, TT, TT/len(abse))
-
- #############################################################
- # hilbert transform
- ht = signal.hilbert(xn) #, 100))
- he = np.abs(ht) #, 100))
- hp = ((np.angle(ht[dsamp::irsamp])))
-
- #############################################################
- # Resample ht
- #htd = signal.decimate(he, 100, ftype='fir')
- #td = signal.decimate(t, 100, ftype='fir')
- #[htd, td] = signal.resample(he, 21, t)
- #toss first, and use every third
- #htd = htd[1::3]
- #td = td[1::3]
-
- #############################################################
- # Pre-envelope
- #gplus = xn + 1j*ht
-
- #############################################################
- # Complex envelope
- #gc = gplus / np.exp(1j*wL*t)
-
- #############################################################
- ## Design a low-pass filter
- FS = 1./dt # sampling rate
- FC = 10.05/(0.5*FS) # cutoff frequency at 0.05 Hz
- N = 11 # number of filter taps
- a = [1] # filter denominator
- b = signal.firwin(N, cutoff=FC, window='hamming') # filter numerator
-
- #############################################################
- ## In-phase
- #2*np.cos(wL*t)
- dw = 0 # -2.*np.pi*2
- Q = signal.filtfilt(b, a, xn*2*np.cos((wL+dw)*t)) # X
- I = signal.filtfilt(b, a, xn*2*np.sin((wL+dw)*t)) # Y
-
- ###############################################
- # Plots
- #plt.plot(ht.real)
- #plt.plot(ht.imag)
- #plt.plot(np.abs(ht))
- #plt.plot(gc.real)
- #plt.plot(gc.imag)
-
- #plt.plot(xn)
- #plt.plot(xn)
- #plt.plot(ta, xn)
- #plt.plot(te, abse, '-.', linewidth=2, markersize=10)
- #plt.plot(ta, he, '.', markersize=10 )
- #plt.plot(td, htd, color='green', linewidth=2)
- # Phase Plots
- #ax2 = plt.twinx()
- #ax2.plot(te, hp, '.', markersize=10, color='green' )
- #ax2.plot(te, phase, '-.', linewidth=2, markersize=10, color='green')
-
-
- return Q[N:-N], I[N:-N], t[N:-N]
-
- # #####################################################################
- # # regress raw signal
- #
- # #[peaks, times, ind] = peakPicker(xn, wL, dt)
- # #[a0,b0,rt20] = regressCurve(peaks, times) #,sigma2=1,intercept=True):
- #
- # dsamp = int( DT / dt) # real
- # # regress analytic signal
- # [a0,b0,rt20] = regressCurve(he[dsamp::], t[dsamp::], intercept=True) #,sigma2=1,intercept=True):
- # #[b0,rt20] = regressCurve(he[dsamp::], t[dsamp::], intercept=False) #,sigma2=1,intercept=True):
- # #[a0,b0,rt20] = regressCurve(he, t) #,sigma2=1,intercept=True):
- #
- # # regress downsampled
- # [a,b,rt2] = regressCurve(abse, t[dsamp::irsamp], intercept=True) #,sigma2=1,intercept=True):
- # #[b,rt2] = regressCurve(htd, td, intercept=False) #,sigma2=1,intercept=True):
- #
- # return irsamp, iisamp, htd, b0, rt20, ta, b, rt2, phase, td, he, dsamp
- # #return irsamp, iisamp, abse, a0, b0, rt20, times, a, b, rt2, phase
-
- def RotateAmplitude(X, Y, zeta, df, t):
- V = X + 1j*Y
- return np.abs(V) * np.exp( 1j * ( np.angle(V) - zeta - 2.*np.pi*df*t ) )
- #return np.abs(V) * np.exp( 1j * ( np.angle(V) - zeta - df*t ) )
-
- def bootstrapWindows(N, nboot, isum, adapt=False):
- """ Bootstraps noise as a function of gate width
- N = input noise signal
- nboot = number of boostrap windows to perform
- isum = length of windows (L_i)
- adapt = reduce nboot as window size increases
- """
- nc = np.shape(N)[0]
- Means = {}
-
- if adapt:
- Means = -9999*np.ones((len(isum), nboot//isum[0])) # dummy value
- for ii, nwin in enumerate(isum):
- for iboot in range(nboot//isum[ii]):
- cs = np.random.randint(0,nc-nwin)
- Means[ii,iboot] = np.mean( N[cs:cs+nwin] )
- Means = np.ma.masked_less(Means, -9995)
-
- else:
- Means = np.zeros((len(isum), nboot))
- for ii, nwin in enumerate(isum):
- for iboot in range(nboot):
- cs = np.random.randint(0,nc-nwin)
- Means[ii,iboot] = np.mean( N[cs:cs+nwin] )
-
- return Means #, np.array(isum)
-
- def gateIntegrate(T2D, T2T, gpd, sigma, stackEfficiency=2.):
- """ Gate integrate the signal to gpd, gates per decade
- T2D = the time series to gate integrate, complex
- T2T = the abscissa values
- gpd = gates per decade
- sigma = estimate of standard deviation for theoretical gate noise
- stackEfficiency = exponential in theoretical gate noise, 2 represents ideal stacking
- """
-
- # use artificial time gates so that early times are fully captured
- T2T0 = T2T[0]
- T2TD = T2T[0] - (T2T[1]-T2T[0])
- T2T -= T2TD
-
- #####################################
- # calculate total number of decades #
- # windows edges are approximate until binning but will be adjusted to reflect data timing, this
- # primarily impacts bins with a few samples
- nd = np.log10(T2T[-1]/T2T[0])
- tdd = np.logspace( np.log10(T2T[0]), np.log10(T2T[-1]), (int)(gpd*nd)+1, base=10, endpoint=True)
- tdl = tdd[0:-1] # approximate window left edges
- tdr = tdd[1::] # approximate window right edges
- td = (tdl+tdr) / 2. # approximate window centres
-
-
- Vars = np.zeros( len(td) )
- htd = np.zeros( len(td), dtype=complex )
- isum = np.zeros( len(td), dtype=int )
-
- ii = 0
- for itd in range(len(T2T)):
- if ( round(T2T[itd], 4) > round(tdr[ii], 4) ):
- ii += 1
- # correct window edges to centre about data
- tdr[ii-1] = (T2T[itd-1]+T2T[itd])*.5
- tdl[ii ] = (T2T[itd-1]+T2T[itd])*.5
- isum[ii] += 1
- htd[ii] += T2D[ itd ]
- Vars[ii] += sigma**2
-
- td = (tdl+tdr) / 2. # actual window centres
- sigma2 = np.sqrt( Vars * ((1/(isum))**stackEfficiency) )
-
- # Reset abscissa where isum == 1
- # when there is no windowing going on
- td[isum==1] = T2T[0:len(td)][isum==1]
-
- tdd = np.append(tdl, tdr[-1])
-
- htd /= isum # average
- T2T += T2TD
- return td+T2TD, htd, tdd+T2TD, sigma2, isum # centre abscissa, data, window edges, error
-
- if __name__ == "__main__":
-
- dt = 1e-4
- TT = 1.5
- t = np.arange(0, TT, dt)
- vL = 2057.
- wL = 2.*np.pi*vL
- wL2 = 2.*np.pi*(vL-2.5) #-2) #-2.2) # 3 Hz off
- zeta = -np.pi/6. #4.234
- t2 = .150
-
- xs = np.exp(-t/t2) * np.cos(wL2*t + zeta)
- xe = np.exp(-t/t2)
- xn = xs + np.random.normal(0,.1,len(xs))# + (np.sign(xs)
- # np.random.random_integers(-1,1,len(xs))*0.6*np.random.lognormal(0, .35, len(xs)) + \
- # np.random.random_integers(-1,1,len(xs))*.004*np.random.weibull(.25, len(xs)), 60)))
-
- # quadrature detection downsampling
- T = 50 # sampling period, grab every T'th oscilation
- DT = .002 #85 # dead time ms
- #[irsamp, iisamp, abse, b0, rt20, times, b, rt2, phase, tdec, he, dsamp] = quadDetect(T, vL, wL, dt, xn, DT)
-
- [Q, I, tt] = quadrature(T, vL, wL, dt, xn, DT, t)
- [E0,df,phi,T2] = quadratureDetect(Q, I, tt)
- print("df", df)
- D = RotateAmplitude(I, Q, phi, df, tt)
-
- fig = plt.figure(figsize=[pc2in(20), pc2in(14)]) #
- ax1 = fig.add_axes([.125,.2,.8,.7])
- #ax1.plot(tt*1e3, np.exp(-tt/t2), linewidth=2, color='black', label="actual")
- ax1.plot(tt*1e3, D.imag, label="CA", color='red')
- ax1.plot(t*1e3, xn, color='blue', alpha=.25)
- ax1.plot(tt*1e3, I, label="inphase", color='blue')
- ax1.plot(tt*1e3, Q, label="quadrature", color='green')
-
- #ax1.plot(tt*1e3, np.angle( Q + 1j*I), label="angle", color='purple')
-
-
- GT, GD = gateIntegrate( D.imag, tt, 10 )
- GT, GDR = gateIntegrate( D.real, tt, 10 )
- GT, GQ = gateIntegrate( Q, tt, 10 )
- GT, GI = gateIntegrate( I, tt, 10 )
- #ax1.plot(tt*1e3, np.arctan( Q/I), label="angle", color='purple')
- #ax1.plot(GT*1e3, np.real(GD), 'o', label="GATE", color='purple')
- #ax1.plot(GT*1e3, np.real(GDR), 'o', label="GATE Real", color='red')
- #ax1.plot(GT*1e3, np.arctan( np.real(GQ)/np.real(GI)), 'o',label="GATE ANGLE", color='magenta')
-
-
- ax1.set_xlabel(r"time [ms]")
- ax1.set_ylim( [-1.25,1.65] )
-
- #light_grey = np.array([float(248)/float(255)]*3)
- legend = plt.legend( frameon=True, scatterpoints=1, numpoints=1, labelspacing=0.2 )
- #rect = legend.get_frame()
- fixLeg(legend)
- #rect.set_color('None')
- #rect.set_facecolor(light_grey)
- #rect.set_linewidth(0.0)
- #rect.set_alpha(0.5)
-
- # Remove top and right axes lines ("spines")
- spines_to_remove = ['top', 'right']
- for spine in spines_to_remove:
- ax1.spines[spine].set_visible(False)
- #ax1.xaxis.set_ticks_position('none')
- #ax1.yaxis.set_ticks_position('none')
- ax1.get_xaxis().tick_bottom()
- ax1.get_yaxis().tick_left()
-
- plt.savefig('rotatetime.pdf',dpi=600)
- plt.savefig('rotatetime.eps',dpi=600)
-
- # phase part
- plt.figure()
- plt.plot( tt*1e3, D.real, label="CA", color='red' )
-
- plt.show()
- exit()
|