Surface NMR processing and inversion GUI
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

harmonic.py 7.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. import numpy as np
  2. from scipy.optimize import least_squares
  3. from scipy.optimize import minimize
  4. from scipy.linalg import lstsq as sclstsq
  5. import scipy.linalg as lin
  6. def harmonic2 ( f1, f2, sN, fs, nK, t ):
  7. """
  8. Performs inverse calculation of two harmonics contaminating a signal.
  9. Args:
  10. f01 = base frequency of the first sinusoidal noise
  11. f02 = base frequency of the second sinusoidal noise
  12. sN = signal containing noise
  13. fs = sampling frequency
  14. nK = number of harmonics to calculate
  15. t = time samples
  16. """
  17. print("building matrix 2")
  18. A = np.zeros( (len(t), 4*nK) )
  19. #f1 = f1MHz * 1e-3
  20. #f2 = f2MHz * 1e-3
  21. for irow, tt in enumerate(t):
  22. A[irow, 0:2*nK:2] = np.cos( np.arange(nK)*2*np.pi*(f1/fs)*irow )
  23. A[irow, 1:2*nK:2] = np.sin( np.arange(nK)*2*np.pi*(f1/fs)*irow )
  24. A[irow, 2*nK::2] = np.cos( np.arange(nK)*2*np.pi*(f2/fs)*irow )
  25. A[irow, 2*nK+1::2] = np.sin( np.arange(nK)*2*np.pi*(f2/fs)*irow )
  26. v = np.linalg.lstsq(A, sN, rcond=1e-8)
  27. #v = sclstsq(A, sN) #, rcond=1e-6)
  28. alpha = v[0][0:2*nK:2] + 1e-16
  29. beta = v[0][1:2*nK:2] + 1e-16
  30. amp = np.sqrt( alpha**2 + beta**2 )
  31. phase = np.arctan(- beta/alpha)
  32. alpha2 = v[0][2*nK::2] + 1e-16
  33. beta2 = v[0][2*nK+1::2] + 1e-16
  34. amp2 = np.sqrt( alpha2**2 + beta2**2 )
  35. phase2 = np.arctan(- beta2/alpha2)
  36. h = np.zeros(len(t))
  37. for ik in range(nK):
  38. h += np.sqrt( alpha[ik]**2 + beta[ik]**2) * np.cos( 2.*np.pi*ik * (f1/fs) * np.arange(0, len(t), 1 ) + phase[ik] ) \
  39. + np.sqrt(alpha2[ik]**2 + beta2[ik]**2) * np.cos( 2.*np.pi*ik * (f2/fs) * np.arange(0, len(t), 1 ) + phase2[ik] )
  40. return sN-h
  41. def harmonic ( f0, sN, fs, nK, t ):
  42. """
  43. Performs inverse calculation of harmonics contaminating a signal.
  44. Args:
  45. f0 = base frequency of the sinusoidal noise
  46. sN = signal containing noise
  47. fs = sampling frequency
  48. nK = number of harmonics to calculate
  49. t = time samples
  50. """
  51. print("building matrix ")
  52. A = np.zeros( (len(t), 2*nK) )
  53. for irow, tt in enumerate(t):
  54. A[irow, 0::2] = np.cos( np.arange(nK)*2*np.pi*(f0/fs)*irow )
  55. A[irow, 1::2] = np.sin( np.arange(nK)*2*np.pi*(f0/fs)*irow )
  56. v = np.linalg.lstsq(A, sN, rcond=1e-16) # rcond=None) #, rcond=1e-8)
  57. #v = sclstsq(A, sN) #, rcond=1e-6)
  58. alpha = v[0][0::2]
  59. beta = v[0][1::2]
  60. #print("Solving A A.T")
  61. #v = lin.solve(np.dot(A,A.T).T, sN) #, rcond=1e-6)
  62. #v = np.dot(A.T, v)
  63. #v = np.dot(np.linalg.inv(np.dot(A.T, A)), np.dot(A.T, sN))
  64. #alpha = v[0::2]
  65. #beta = v[1::2]
  66. amp = np.sqrt( alpha**2 + beta**2 )
  67. phase = np.arctan(- beta/alpha)
  68. #print("amp:", amp, " phase", phase)
  69. h = np.zeros(len(t))
  70. for ik in range(nK):
  71. h += np.sqrt(alpha[ik]**2 + beta[ik]**2) * np.cos( 2.*np.pi*ik * (f0/fs) * np.arange(0, len(t), 1 ) + phase[ik] )
  72. #plt.matshow(A, aspect='auto')
  73. #plt.colorbar()
  74. #plt.figure()
  75. #plt.plot(alpha)
  76. #plt.plot(beta)
  77. #plt.plot(amp)
  78. #plt.figure()
  79. #plt.plot(h)
  80. #plt.title("modelled noise")
  81. return sN-h
  82. def harmonicEuler ( f0, sN, fs, nK, t ):
  83. """
  84. Performs inverse calculation of harmonics contaminating a signal.
  85. Args:
  86. f0 = base frequency of the sinusoidal noise
  87. sN = signal containing noise
  88. fs = sampling frequency
  89. nK = number of harmonics to calculate
  90. t = time samples
  91. """
  92. print("building Euler matrix ")
  93. A = np.zeros( (len(t), nK), dtype=np.complex64)
  94. for irow, tt in enumerate(t):
  95. #A[irow, 0::2] = np.cos( np.arange(nK)*2*np.pi*(f0/fs)*irow )
  96. #A[irow, 1::2] = np.sin( np.arange(nK)*2*np.pi*(f0/fs)*irow )
  97. A[irow,:] = np.exp( 1j* np.arange(nK)*2*np.pi*(f0/fs)*irow )
  98. v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8)
  99. #v = sclstsq(A, sN) #, rcond=1e-6)
  100. alpha = np.real(v[0]) #[0::2]
  101. beta = np.imag(v[0]) #[1::2]
  102. #print("Solving A A.T")
  103. #v = lin.solve(np.dot(A,A.T).T, sN) #, rcond=1e-6)
  104. #v = np.dot(A.T, v)
  105. #v = np.dot(np.linalg.inv(np.dot(A.T, A)), np.dot(A.T, sN))
  106. #alpha = v[0::2]
  107. #beta = v[1::2]
  108. amp = np.abs(v[0]) #np.sqrt( alpha**2 + beta**2 )
  109. phase = np.angle(v[0]) # np.arctan(- beta/alpha)
  110. #print("amp:", amp, " phase", phase)
  111. h = np.zeros(len(t))
  112. for ik in range(nK):
  113. h += 2*amp[ik] * np.cos( 2.*np.pi*ik * (f0/fs) * np.arange(0, len(t), 1 ) + phase[ik] )
  114. #plt.matshow(np.imag(A), aspect='auto')
  115. #plt.colorbar()
  116. #plt.figure()
  117. #plt.plot(alpha)
  118. #plt.plot(beta)
  119. #plt.plot(amp)
  120. #plt.figure()
  121. #plt.plot(h)
  122. #plt.title("modelled noise")
  123. return sN-h
  124. def jacobian( f0, sN, fs, nK, t):
  125. print("building Jacobian matrix ")
  126. A = np.zeros( (len(t), 2*nK) )
  127. for irow, tt in enumerate(t):
  128. #A[irow, 0::2] = np.cos( np.arange(nK)*2*np.pi*(f0/fs)*irow )
  129. #A[irow, 1::2] = np.sin( np.arange(nK)*2*np.pi*(f0/fs)*irow )
  130. # brutal
  131. for k, ik in enumerate( np.arange(0, 2*nK, 2) ):
  132. #A[irow, ik ] = np.cos( k*2*np.pi*(f0/fs)*irow )
  133. #A[irow, ik+1] = np.sin( k*2*np.pi*(f0/fs)*irow )
  134. A[irow, ik ] = - (2.*np.pi*k*irow * sin((2.*np.pi*irow*f0)/fs)) / fs
  135. A[irow, ik+1] = (2.*np.pi*k*irow * cos((2.*np.pi*irow*f0)/fs)) / fs
  136. def harmonicNorm ( f0, sN, fs, nK, t ):
  137. return np.linalg.norm( harmonicEuler(f0, sN, fs, nK, t))
  138. def harmonic2Norm ( f0, sN, fs, nK, t ):
  139. return np.linalg.norm(harmonic2(f0[0], f0[1], sN, fs, nK, t))
  140. def minHarmonic(f0, sN, fs, nK, t):
  141. f02 = guessf0(sN, fs)
  142. print("minHarmonic", f0, fs, nK, " guess=", f02)
  143. res = minimize( harmonicNorm, np.array((f0)), args=(sN, fs, nK, t)) #, method='Nelder-Mead' )# jac=None, hess=None, bounds=None )
  144. print(res)
  145. return harmonicEuler(res.x[0], sN, fs, nK, t)
  146. def minHarmonic2(f1, f2, sN, fs, nK, t):
  147. #f02 = guessf0(sN, fs)
  148. #print("minHarmonic2", f0, fs, nK, " guess=", f02)
  149. #methods with bounds, L-BFGS-B, TNC, SLSQP
  150. res = minimize( harmonic2Norm, np.array((f1,f2)), args=(sN, fs, nK, t)) #, bounds=((f1-1.,f1+1.0),(f2-1.0,f2+1.0)), method='TNC' )
  151. print(res)
  152. return harmonic2(res.x[0], res.x[1], sN, fs, nK, t)
  153. def guessf0( sN, fs ):
  154. S = np.fft.fft(sN)
  155. w = np.fft.fftfreq( len(sN), 1/fs )
  156. imax = np.argmax( np.abs(S) )
  157. #plt.plot( w, np.abs(S) )
  158. #plt.show()
  159. #print(w)
  160. #print ( w[imax], w[imax+1] )
  161. return abs(w[imax])
  162. if __name__ == "__main__":
  163. import matplotlib.pyplot as plt
  164. f0 = 60 # Hz
  165. f1 = 60 # Hz
  166. delta = np.random.rand()
  167. delta2 = 0 #np.random.rand()
  168. print("delta", delta)
  169. fs = 10000 # GMR
  170. t = np.arange(0, 1, 1/fs)
  171. phi = np.random.rand()
  172. phi2 = 0 # np.random.rand()
  173. A = 1.0
  174. A2 = 0.0
  175. A3 = 0.0
  176. nK = 35
  177. T2 = .200
  178. sN = A *np.sin( ( 1*(delta +f0))*2*np.pi*t + phi ) + \
  179. A2*np.sin( ( 1*(delta2 +f1))*2*np.pi*t + phi2 ) + \
  180. np.random.normal(0,.1,len(t)) + \
  181. + A3*np.exp( -t/T2 )
  182. sNc = A *np.sin( (1*(delta +f0))*2*np.pi*t + phi ) + \
  183. A2*np.sin( (1*(delta2+f1))*2*np.pi*t + phi2 ) + \
  184. + A3*np.exp( -t/T2 )
  185. guessf0(sN, fs)
  186. #h = harmonicEuler( f0, sN, fs, nK, t)
  187. #h = minHarmonic2( f0, f1, sN, fs, nK, t)
  188. #h = harmonic2( f0, f1, sN, fs, nK, t)
  189. h = minHarmonic( f0, sN, fs, nK, t)
  190. plt.figure()
  191. plt.plot(t, sN, label="sN")
  192. #plt.plot(t, sN-h, label="sN-h")
  193. plt.plot(t, h, label='h')
  194. plt.title("harmonic")
  195. plt.legend()
  196. plt.figure()
  197. plt.plot(t, sN-sNc, label='true noise')
  198. plt.plot(t, h, label='harmonic removal')
  199. plt.plot(t, np.exp(-t/T2), label="nmr")
  200. plt.legend()
  201. plt.title("true noise")
  202. plt.show()