|
@@ -234,13 +234,13 @@ def main():
|
234
|
234
|
mmax = np.max(np.abs(VV))
|
235
|
235
|
mmin = np.min(VV)
|
236
|
236
|
|
237
|
|
- obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax)
|
|
237
|
+ obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='nearest') # pcolor edge not defined
|
238
|
238
|
ax1.set_title("observed")
|
239
|
239
|
|
240
|
240
|
pre = np.dot(KQT[ich*ntq:(ich+1)*ntq,:], inv)
|
241
|
241
|
|
242
|
242
|
PRE = np.reshape( pre, np.shape(VV) )
|
243
|
|
- prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax )
|
|
243
|
+ prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax,shading='nearest' )
|
244
|
244
|
ax2.set_title("predicted")
|
245
|
245
|
|
246
|
246
|
cbar = plt.colorbar(prem, axc1)
|
|
@@ -250,7 +250,7 @@ def main():
|
250
|
250
|
|
251
|
251
|
DIFF = (PRE-VV) / VVS
|
252
|
252
|
md = np.max(np.abs(DIFF))
|
253
|
|
- dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md)
|
|
253
|
+ dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='nearest')
|
254
|
254
|
ax3.set_title("misfit / $\widehat{\sigma}$")
|
255
|
255
|
|
256
|
256
|
cbar2 = plt.colorbar(dim, axc2)
|
|
@@ -357,14 +357,14 @@ def main():
|
357
|
357
|
mmax = np.max(np.abs(VV))
|
358
|
358
|
mmin = np.min(VV)
|
359
|
359
|
|
360
|
|
- obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax)
|
|
360
|
+ obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='nearest')
|
361
|
361
|
ax1.set_title("observed")
|
362
|
362
|
|
363
|
363
|
## Here neds to change
|
364
|
364
|
pre = np.abs(np.dot(KQTc[ich*ntq:(ich+1)*ntq,:], inv))
|
365
|
365
|
|
366
|
366
|
PRE = np.reshape( pre, np.shape(VV) )
|
367
|
|
- prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax )
|
|
367
|
+ prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='nearest' )
|
368
|
368
|
ax2.set_title("predicted")
|
369
|
369
|
|
370
|
370
|
cbar = plt.colorbar(prem, axc1)
|
|
@@ -374,7 +374,7 @@ def main():
|
374
|
374
|
|
375
|
375
|
DIFF = (PRE-VV) / VVS
|
376
|
376
|
md = np.max(np.abs(DIFF))
|
377
|
|
- dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md)
|
|
377
|
+ dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='nearest')
|
378
|
378
|
ax3.set_title("misfit / $\widehat{\sigma}$")
|
379
|
379
|
|
380
|
380
|
cbar2 = plt.colorbar(dim, axc2)
|
|
@@ -487,7 +487,7 @@ def main():
|
487
|
487
|
ax1 = fig.add_axes( [.2,.15,.6,.7] )
|
488
|
488
|
im = ax1.pcolor(X, Y, INV.T, cmap=cmocean.cm.tempo) #cmap='viridis')
|
489
|
489
|
im.set_edgecolor('face')
|
490
|
|
- ax1.set_xlim( T2Bins[0], T2Bins2[-1] )
|
|
490
|
+ ax1.set_xlim( T2Bins[0], T2Bins[-1] )
|
491
|
491
|
ax1.set_ylim( ifaces[-1], ifaces[0] )
|
492
|
492
|
cb = plt.colorbar(im, label = u"PWC (m$^3$/m$^3$)") #, format='%1.1f')
|
493
|
493
|
cb.locator = MaxNLocator( nbins = 4)
|
|
@@ -540,7 +540,14 @@ def main():
|
540
|
540
|
#ax.axhline( y=ifaces[SNRidx], xmin=0, xmax=1, color='black', linestyle='dashed' )
|
541
|
541
|
if CalcDOI:
|
542
|
542
|
ax.axhline( y=DOI, xmin=0, xmax=1, color='black', linestyle='dashed' )
|
543
|
|
-
|
|
543
|
+
|
|
544
|
+ # Hide the right and top spines
|
|
545
|
+ ax.spines['right'].set_visible(False)
|
|
546
|
+ ax.spines['top'].set_visible(False)
|
|
547
|
+ # Only show ticks on the left and bottom spines
|
|
548
|
+ ax.yaxis.set_ticks_position('left')
|
|
549
|
+ ax.xaxis.set_ticks_position('bottom')
|
|
550
|
+
|
544
|
551
|
plt.savefig("akvoInversionWC.pdf")
|
545
|
552
|
plt.legend()
|
546
|
553
|
|
|
@@ -559,7 +566,7 @@ def main():
|
559
|
566
|
############## NONLINEAR RESULT ##########################
|
560
|
567
|
|
561
|
568
|
if nonLinearRefinement:
|
562
|
|
- Y,X = meshgrid( ifaces, T2Bins )
|
|
569
|
+ Y,X = meshgrid( ifaces, T2Bins2 )
|
563
|
570
|
fig = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) )
|
564
|
571
|
ax1 = fig.add_axes( [.2,.15,.6,.7] )
|
565
|
572
|
im = ax1.pcolor(X, Y, INVc.T, cmap=cmocean.cm.tempo) #cmap='viridis')
|
|
@@ -595,7 +602,7 @@ def main():
|
595
|
602
|
if CalcDOI:
|
596
|
603
|
ax2.axhline( y=DOI, xmin=0, xmax=1, color='black', linestyle='dashed' )
|
597
|
604
|
#ax2.xaxis.set_label_position('bottom')
|
598
|
|
- fig.suptitle("Non linear inversion")
|
|
605
|
+ #fig.suptitle("Non linear inversion")
|
599
|
606
|
plt.savefig("akvoInversionNL.pdf")
|
600
|
607
|
|
601
|
608
|
|
|
@@ -627,7 +634,14 @@ def main():
|
627
|
634
|
if CalcDOI:
|
628
|
635
|
ax.axhline( y=DOI, xmin=0, xmax=1, color='black', linestyle='dashed' )
|
629
|
636
|
|
630
|
|
- plt.savefig("akvoInversionWC.pdf")
|
|
637
|
+ # Hide the right and top spines
|
|
638
|
+ ax.spines['right'].set_visible(False)
|
|
639
|
+ ax.spines['top'].set_visible(False)
|
|
640
|
+ # Only show ticks on the left and bottom spines
|
|
641
|
+ ax.yaxis.set_ticks_position('left')
|
|
642
|
+ ax.xaxis.set_ticks_position('bottom')
|
|
643
|
+
|
|
644
|
+ plt.savefig("akvoNLInversionWC.pdf")
|
631
|
645
|
plt.legend()
|
632
|
646
|
|
633
|
647
|
|