123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- /* This file is part of Lemma, a geophysical modelling and inversion API.
- * More information is available at http://lemmasoftware.org
- */
-
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/.
- */
-
- /**
- * @file
- * @date 05/02/2018 09:46:38 PM
- * @author Trevor Irons (ti)
- * @email Trevor.Irons@utah.edu
- * @copyright Copyright (c) 2018, University of Utah
- * @copyright Copyright (c) 2018, Trevor Irons & Lemma Software, LLC
- */
-
-
-
-
-
-
-
-
- namespace Lemma {
-
- /**
- \ingroup FDEM1D
- \brief Impliments lagged and related fast Hankel transform through
- digital filtering.
- \details A general Fast Hankel Transform routine which uses the digital
- filter apporach. Both lagged and related kernels are supported in
- order to minimize kernel function calls.
- This approach performs a complete sweep of the
- coefficients , for a variant that uses a longer filter which may
- be truncated, see FHTAnderson801.
- @see FHTAnderson801
- @see GQChave
- @see QWEKey
- */
- template < HANKELTRANSFORMTYPE Type >
- class FHT : public HankelTransform {
-
- friend std::ostream &operator<<(std::ostream &stream, const FHT<Type> &ob) {
- stream << ob.Serialize(); // << "\n";
- return stream;
- }
-
- public:
-
- // ==================== LIFECYCLE =======================
-
- /**
- * Default protected constructor, use NewSP methods to construct
- * @see FHT::NewSP
- */
- explicit FHT (const ctor_key& key ) : HankelTransform( key ) {
- }
-
- /**
- * Protected DeDerializing constructor, use factory DeSerialize method.
- * @see FHT::DeSerialize
- */
- FHT (const YAML::Node& node, const ctor_key& key) : HankelTransform(node, key) {
- }
-
- /** Default protected destructor, use smart pointers (std::shared_ptr) */
- ~FHT () {
- }
-
- /**
- * Factory method for generating concrete class.
- * @return a std::shared_ptr of type FHT
- */
- static std::shared_ptr< FHT > NewSP() {
- return std::make_shared< FHT >( ctor_key() );
- }
-
- /**
- * Uses YAML to serialize this object.
- * @return a YAML::Node
- * @see FHT::DeSerialize
- */
- YAML::Node Serialize() const {
- YAML::Node node = HankelTransform::Serialize();
- node.SetTag( this->GetName() ); // + enum2String(Type) );
- //node.SetTag( enum2String(Type) );
- //node["var"] = 0;
- return node;
- }
-
- /**
- * Constructs an FHT object from a YAML::Node.
- * @see FHT::Serialize
- */
- static std::shared_ptr<FHT> DeSerialize(const YAML::Node& node);
-
- // ==================== OPERATORS =======================
-
- // ==================== OPERATIONS =======================
-
- Complex Zgauss(const int&, const Lemma::EMMODE&, const int&, const Real&,
- const Real&, Lemma::KernelEM1DBase* Kernel);
-
- /// Computes related kernels, if applicable, otherwise this is
- /// just a dummy function.
- void ComputeRelated(const Real& rho, std::shared_ptr<KernelEM1DBase> Kernel) {
- }
-
- void ComputeRelated(const Real& rho, std::vector< std::shared_ptr<KernelEM1DBase> > KernelVec) {
- }
-
- void ComputeRelated(const Real& rho, std::shared_ptr<KernelEM1DManager> KernelManager);
-
- void ComputeLaggedRelated(const Real& rho, const int& nlag, std::shared_ptr<KernelEM1DManager> KernelManager);
-
- // ==================== ACCESS =======================
-
- /**
- * @param[in] rho is the argument for lagged convolution evaluation from the
- * spline after calculation.
- */
- void SetLaggedArg(const Real& rho) {
- for (int i=0; i<Zans.cols(); ++ i) {
- Zans(0, i) = Complex( splineVecReal[i]->Interpolate(rho),
- splineVecImag[i]->Interpolate(rho) );
- }
- return ;
- }
-
- // ==================== INQUIRY =======================
-
- /**
- * @return filter asbscissa spacing
- */
- inline Real GetABSER();
- //{
- // return 0; //this->WT(0,0)/this->WT(1,0);
- //}
-
- /** Returns the name of the underlying class, similiar to Python's type */
- inline std::string GetName() const {
- return enum2String(Type); //this->CName;
- }
-
- protected:
-
- // ==================== LIFECYCLE =======================
-
- // ==================== DATA MEMBERS =========================
-
- private:
-
- // Filter Weights, these are specialized for each template type
- static const Eigen::Matrix<Real, Eigen::Dynamic, 3> WT;
-
- /// Spines for lagged convolutions (real part)
- std::vector <std::shared_ptr<CubicSplineInterpolator> > splineVecReal;
-
- /// Spines for lagged convolutions (imaginary part)
- std::vector < std::shared_ptr<CubicSplineInterpolator> > splineVecImag;
-
- /// Holds answer, dimensions are NumConv, and NumberRelated.
- Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic> Zans;
-
- /** ASCII string representation of the class name */
- //static constexpr auto CName = "FHT";
-
- }; // ----- end of class FHT ----
-
- // Clang wants forward declarations, MSVC doesn't
-
- template<>
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT<FHTKEY201>::WT;
- template<>
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT<FHTKEY101>::WT;
- template<>
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT<FHTKEY51>::WT;
- template<>
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT<FHTKONG61>::WT;
- template<>
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT<FHTKONG121>::WT;
- template<>
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT<FHTKONG241>::WT;
- template<>
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT<IRONS>::WT;
- // Clang wants generic declaration
- template < HANKELTRANSFORMTYPE Type >
- const Eigen::Matrix<Real, Eigen::Dynamic, 3> FHT< Type >::WT;
-
-
- template < HANKELTRANSFORMTYPE Type >
- Complex FHT<Type>::Zgauss(const int& ii, const Lemma::EMMODE& mode, const int& jj, const Real& val,
- const Real& val2, Lemma::KernelEM1DBase* Kernel){
- // TODO, in 101 or 51 we never reach here!!
- //std::cout << "Zgauss " << std::endl;
- return this->Zans(0, Kernel->GetManagerIndex());
- }
-
- // Specialisations
- // Note that ANDERSON801, CHAVE, QWEKEY will throw errors as they are not consistent
- // part of this class
- template < HANKELTRANSFORMTYPE Type >
- Real FHT< Type >::GetABSER() {
- return WT(0,0)/WT(1,0);
- }
-
- /* specializations could provide slighly better performance by reducing divides */
- // template < >
- // Real FHT< FHTKEY201 >::GetABSER() {
- // return WT(0,0)/WT(1,0);
- // }
- //
- // template < >
- // Real FHT< FHTKEY101 >::GetABSER() {
- // return WT(0,0)/WT(1,0);
- // }
- //
- // template < >
- // Real FHT< FHTKEY51 >::GetABSER() {
- // return WT(0,0)/WT(1,0);
- // }
-
- //--------------------------------------------------------------------------------------
- // Class: FHT
- // Method: ComputeRelated
- //--------------------------------------------------------------------------------------
- template < HANKELTRANSFORMTYPE Type >
- void FHT<Type>::ComputeRelated ( const Real& rho, std::shared_ptr<KernelEM1DManager> KernelManager ) {
-
- int nrel = (int)(KernelManager->GetSTLVector().size());
- Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic > Zwork;
- Zans= Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic>::Zero(1, nrel);
- Zwork.resize(WT.rows(), nrel);
- VectorXr lambda = WT.col(0).array()/rho;
- int NumFun = 0;
- int idx = 0;
-
- // Get Kernel values
- for (int ir=0; ir<lambda.size(); ++ir) {
- // irelated loop
- ++NumFun;
- KernelManager->ComputeReflectionCoeffs(lambda(ir), idx, rho);
- for (int ir2=0; ir2<nrel; ++ir2) {
- // Zwork* needed due to sign convention of filter weights
- Zwork(ir, ir2) = std::conj(KernelManager->GetSTLVector()[ir2]->RelBesselArg(lambda(ir)));
- }
- }
-
- for (int ir2=0; ir2<nrel; ++ir2) {
- Zans(0, ir2) = Zwork.col(ir2).dot(WT.col(KernelManager->GetSTLVector()[ir2]->GetBesselOrder() + 1))/rho;
- }
- return ;
- } // ----- end of method FHT::ComputeRelated -----
-
-
- //--------------------------------------------------------------------------------------
- // Class: FHT
- // Method: ComputeLaggedRelated
- //--------------------------------------------------------------------------------------
- template < HANKELTRANSFORMTYPE Type >
- void FHT<Type>::ComputeLaggedRelated ( const Real& rho, const int& nlag, std::shared_ptr<KernelEM1DManager> KernelManager ) {
-
- int nrel = (int)(KernelManager->GetSTLVector().size());
-
- Eigen::Matrix< Complex, Eigen::Dynamic, Eigen::Dynamic > Zwork;
- Zans= Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic>::Zero(nlag, nrel);
- Zwork.resize(WT.rows()+nlag, nrel); // Zwork needs to be expanded to filter length + nlag
-
- // lambda needs to be expanded to include lagged results
- VectorXr lambda = (VectorXr(WT.rows()+nlag) << WT.col(0).array()/rho, VectorXr::Zero(nlag)).finished();
- for (Index ilam = WT.rows(); ilam< nlag+WT.rows(); ++ilam) {
- lambda(ilam) = lambda(ilam-1)/GetABSER();
- }
-
- int NumFun = 0;
- int idx = 0;
-
- VectorXr Arg(nlag);
- Arg(nlag-1) = rho;
- for (int ilag=nlag-2; ilag>=0; --ilag) {
- Arg(ilag) = Arg(ilag+1) * GetABSER();
- }
-
- // Get Kernel values
- for (int ir=0; ir<lambda.size(); ++ir) {
- // irelated loop
- ++NumFun;
- KernelManager->ComputeReflectionCoeffs(lambda(ir), idx, rho);
- for (int ir2=0; ir2<nrel; ++ir2) {
- Zwork(ir, ir2) = std::conj(KernelManager->GetSTLVector()[ir2]->RelBesselArg(lambda(ir)));
- }
- }
-
- // Inner product and scale
- int ilagr = nlag-1; // Zwork is in opposite order from Arg
- for (int ilag=0; ilag<nlag; ++ilag) {
- for (int ir2=0; ir2<nrel; ++ir2) {
- Zans(ilagr, ir2) = Zwork.col(ir2).segment(ilag,WT.rows()).dot( WT.col(KernelManager->GetSTLVector()[ir2]->GetBesselOrder()+1) ) / Arg(ilagr);
- }
- ilagr -= 1;
- }
-
- // make sure vectors are empty
- splineVecReal.clear();
- splineVecImag.clear();
-
- // Now do cubic spline
- for (int ii=0; ii<Zans.cols(); ++ii) {
- auto SplineR = CubicSplineInterpolator::NewSP();
- SplineR->SetKnots( Arg, Zans.col(ii).real() );
- splineVecReal.push_back(SplineR);
-
- auto SplineI = CubicSplineInterpolator::NewSP();
- SplineI->SetKnots( Arg, Zans.col(ii).imag() );
- splineVecImag.push_back(SplineI);
- }
- return ;
- } // ----- end of method FHT::ComputeLaggedRelated -----
-
- } // ----- end of namespace Lemma ----
-
-
-
- /* vim: set tabstop=4 expandtab: */
- /* vim: set filetype=cpp: */
|