Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

WireAntenna.cpp 8.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/16/2009
  9. @version $Id: wireantenna.cpp 199 2014-12-29 19:25:20Z tirons $
  10. **/
  11. #include "WireAntenna.h"
  12. namespace Lemma {
  13. #ifdef HAVE_YAMLCPP
  14. std::ostream &operator << (std::ostream &stream, const WireAntenna &ob) {
  15. stream << ob.Serialize() << "\n---\n"; // End of doc --- as a direct stream should encapulste thingy
  16. return stream;
  17. }
  18. #else
  19. std::ostream &operator<<(std::ostream &stream,
  20. const WireAntenna &ob) {
  21. stream << *(LemmaObject*)(&ob);
  22. stream << "Current: " << ob.Current << " [A]\n";
  23. stream << "Frequencies: " << ob.Freqs.transpose() << " [Hz]\n";
  24. stream << "Number of points " << ob.NumberOfPoints << "\n";
  25. stream << "Number of turns " << ob.NumberOfTurns << "\n";
  26. if (ob.NumberOfPoints) {
  27. stream << "Points:\n" << ob.Points.transpose() << "\n";
  28. //stream << "Dipoles used to approximate " << ob.Dipoles.size() << "\n";
  29. }
  30. return stream;
  31. }
  32. #endif
  33. // ==================== LIFECYCLE =======================
  34. WireAntenna::WireAntenna(const std::string &name) :
  35. LemmaObject(name),
  36. NumberOfPoints(0), Current(1), NumberOfTurns(1) {
  37. }
  38. #ifdef HAVE_YAMLCPP
  39. WireAntenna::WireAntenna(const YAML::Node &node) :
  40. LemmaObject(node) {
  41. Points = node["Points"].as<Vector3Xr>();
  42. Freqs = node["Freqs"].as<VectorXr>();
  43. NumberOfPoints = node["NumberOfPoints"].as<int>();
  44. NumberOfTurns = node["NumberOfTurns"].as<int>();
  45. Current = node["Current"].as<Real>();
  46. }
  47. #endif
  48. WireAntenna::~WireAntenna() {
  49. for (unsigned int id=0; id<Dipoles.size(); ++id) {
  50. Dipoles[id]->Delete();
  51. }
  52. Dipoles.clear();
  53. if (this->NumberOfReferences != 0) {
  54. throw DeleteObjectWithReferences(this);
  55. }
  56. }
  57. WireAntenna* WireAntenna::New() {
  58. WireAntenna* Obj = new WireAntenna("WireAntenna");
  59. Obj->AttachTo(Obj);
  60. return Obj;
  61. }
  62. WireAntenna* WireAntenna::Clone() {
  63. WireAntenna* copy = WireAntenna::New();
  64. //copy->AttachTo(copy); // NO! Attached above!
  65. copy->NumberOfPoints = this->NumberOfPoints;
  66. copy->Freqs = this->Freqs;
  67. copy->Current = this->Current;
  68. copy->NumberOfTurns = this->NumberOfTurns;
  69. copy->Points = this->Points;
  70. //copy->Dipoles = this->Dipoles; // no, disaster
  71. return copy;
  72. }
  73. void WireAntenna::Delete() {
  74. this->DetachFrom(this);
  75. }
  76. void WireAntenna::Release() {
  77. delete this;
  78. }
  79. // ==================== ACCESS =======================
  80. void WireAntenna::SetNumberOfTurns(const int &nturns) {
  81. this->NumberOfTurns = nturns;
  82. }
  83. int WireAntenna::GetNumberOfTurns( ) {
  84. return this->NumberOfTurns;
  85. }
  86. void WireAntenna::SetNumberOfPoints(const int &np) {
  87. Points.resize( Eigen::NoChange, np);
  88. NumberOfPoints = np;
  89. }
  90. void WireAntenna::SetNumberOfFrequencies(const int &nfreq){
  91. Freqs.resize(nfreq);
  92. Freqs.setZero();
  93. }
  94. void WireAntenna::SetFrequency(const int& ifreq, const Real & freq) {
  95. assert(ifreq < Freqs.size());
  96. this->Freqs[ifreq] = freq;
  97. }
  98. Real WireAntenna::GetFrequency(const int& ifreq) {
  99. return this->Freqs[ifreq];
  100. }
  101. int WireAntenna::GetNumberOfFrequencies() {
  102. return Freqs.size();
  103. }
  104. Vector3Xr WireAntenna::GetPoints() {
  105. return Points;
  106. }
  107. MatrixXr WireAntenna::GetPointsMat() {
  108. return MatrixXr(Points.transpose());
  109. }
  110. void WireAntenna::SetCurrent(const Real &amps) {
  111. this->Current = amps;
  112. }
  113. Real WireAntenna::GetCurrent( ) {
  114. return this->Current;
  115. }
  116. void WireAntenna::SetPoint(const int &p, const Vector3r& pos) {
  117. if (p >= 0 && p<NumberOfPoints ) {
  118. Points.col(p) = pos;
  119. } else {
  120. throw 7;
  121. }
  122. }
  123. void WireAntenna::SetPoint(const int &p, const Real& x, const Real& y, const Real& z) {
  124. if (p >= 0 && p<NumberOfPoints ) {
  125. Points.col(p) = Vector3r(x,y,z);
  126. } else {
  127. throw 7;
  128. }
  129. }
  130. void WireAntenna::ApproximateWithElectricDipoles(const Real &deltai) {
  131. // Get rid of any dipoles
  132. for (unsigned int id=0; id<Dipoles.size(); ++id) {
  133. Dipoles[id]->Delete();
  134. }
  135. Dipoles.clear();
  136. Real Dist(0);
  137. Vector3r r;
  138. Vector3r p;
  139. for (int ip=0; ip<NumberOfPoints-1; ++ip) {
  140. Dist = (Points.col(ip+1) - Points.col(ip)).norm();
  141. r = (Points.col(ip+1) - Points.col(ip))/Dist;
  142. int nd = (int)(Dist/deltai);
  143. Real add = (Dist - (Real)(nd)*deltai) / (Real)(nd);
  144. Real delta = deltai + add;
  145. Real scale = (Real)(NumberOfTurns)*Current;
  146. p = Points.col(ip) + .5*delta*r;
  147. for (Real id=0.; id<Dist-delta/2; id+=delta) {
  148. // X dipoles
  149. if (std::abs(r[0]) > 1e-6) {
  150. DipoleSource *tx = DipoleSource::New();
  151. tx->SetLocation(p);
  152. tx->SetType(GROUNDEDELECTRICDIPOLE);
  153. tx->SetPolarisation(XPOLARISATION);
  154. tx->SetFrequencies(Freqs);
  155. tx->SetMoment(scale*delta*r[0]);
  156. Dipoles.push_back(tx);
  157. }
  158. // Y dipoles
  159. if (std::abs(r[1]) > 1e-6) {
  160. DipoleSource *ty = DipoleSource::New();
  161. ty->SetLocation(p);
  162. ty->SetType(GROUNDEDELECTRICDIPOLE);
  163. ty->SetPolarisation(YPOLARISATION);
  164. ty->SetFrequencies(Freqs);
  165. ty->SetMoment(scale*delta*r[1]);
  166. Dipoles.push_back(ty);
  167. }
  168. // Z dipoles
  169. if (std::abs(r[2]) > 1e-6) {
  170. DipoleSource *tz = DipoleSource::New();
  171. tz->SetLocation(p);
  172. tz->SetType(GROUNDEDELECTRICDIPOLE);
  173. tz->SetPolarisation(ZPOLARISATION);
  174. tz->SetFrequencies(Freqs);
  175. tz->SetMoment(scale*delta*r[2]);
  176. Dipoles.push_back(tz);
  177. }
  178. p += delta*r;
  179. }
  180. }
  181. }
  182. // ==================== INQUIRY =======================
  183. int WireAntenna::GetNumberOfDipoles() {
  184. return Dipoles.size();
  185. }
  186. DipoleSource* WireAntenna::GetDipoleSource(const int &dip) {
  187. return this->Dipoles[dip];
  188. }
  189. #ifdef LEMMAUSEVTK
  190. vtkActor* WireAntenna::GetVtkActor(const int &idip) {
  191. return Dipoles[idip]->GetVtkActor();
  192. }
  193. #endif
  194. #ifdef HAVE_YAMLCPP
  195. //--------------------------------------------------------------------------------------
  196. // Class: WireAntenna
  197. // Method: Serialize
  198. //--------------------------------------------------------------------------------------
  199. YAML::Node WireAntenna::Serialize ( ) const {
  200. YAML::Node node = LemmaObject::Serialize();
  201. node.SetTag( this->Name );
  202. node["NumberOfPoints"] = NumberOfPoints;
  203. node["NumberOfTurns"] = NumberOfTurns;
  204. node["Current"] = Current;
  205. node["Points"] = Points;
  206. node["Freqs"] = Freqs;
  207. return node;
  208. } // ----- end of method WireAntenna::Serialize -----
  209. //--------------------------------------------------------------------------------------
  210. // Class: WireAntenna
  211. // Method: DeSerialize
  212. //--------------------------------------------------------------------------------------
  213. WireAntenna* WireAntenna::DeSerialize ( const YAML::Node& node ) {
  214. WireAntenna* Object = new WireAntenna(node);
  215. Object->AttachTo(Object);
  216. DESERIALIZECHECK( node, Object )
  217. return Object ;
  218. } // ----- end of method WireAntenna::DeSerialize -----
  219. #endif
  220. //--------------------------------------------------------------------------------------
  221. // Class: WireAntenna
  222. // Method: IsPlanar
  223. //--------------------------------------------------------------------------------------
  224. bool WireAntenna::IsHorizontallyPlanar ( ) {
  225. //for (int ip=0; ip<NumberOfPoints; ++ip) {
  226. // std::cout << Points(2,ip) << std::endl;
  227. //}
  228. if ( std::abs(Points.row(2).sum() - (NumberOfPoints*Points(2,0))) < 1e-5 ) {
  229. return true ;
  230. } else {
  231. return false;
  232. }
  233. } // ----- end of method WireAntenna::IsPlanar -----
  234. }