Surface NMR forward modelling

KernelV0.cpp 4.9KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. /* This file is part of Lemma, a geophysical modelling and inversion API.
  2. * More information is available at http://lemmasoftware.org
  3. */
  4. /* This Source Code Form is subject to the terms of the Mozilla Public
  5. * License, v. 2.0. If a copy of the MPL was not distributed with this
  6. * file, You can obtain one at http://mozilla.org/MPL/2.0/.
  7. */
  8. /**
  9. * @file
  10. * @date 11/11/2016 02:44:37 PM
  11. * @version $Id$
  12. * @author Trevor Irons (ti)
  13. * @email tirons@egi.utah.edu
  14. * @copyright Copyright (c) 2016, University of Utah
  15. * @copyright Copyright (c) 2016, Lemma Software, LLC
  16. */
  17. #include <Merlin>
  18. using namespace Lemma;
  19. std::shared_ptr<PolygonalWireAntenna> CircularLoop ( int nd, Real radius, Real Offsetx, Real Offsety ) ;
  20. int main(int argc, char** argv) {
  21. Real offset = atof(argv[1]);
  22. auto earth = LayeredEarthEM::NewSP();
  23. earth->SetNumberOfLayers(3);
  24. earth->SetLayerConductivity( (VectorXcr(3) << Complex(0.,0), Complex(1./50.,0), Complex(1./100.)).finished() );
  25. earth->SetLayerThickness( (VectorXr(1) << 10).finished() );
  26. // Set mag field info
  27. // From NOAA, Laramie WY, June 9 2016, aligned with mag. north
  28. earth->SetMagneticFieldIncDecMag( 67, 9, 52750, NANOTESLA );
  29. // Transmitter loops
  30. auto Tx1 = CircularLoop(21, 15, 100, 100);
  31. auto Tx2 = CircularLoop(21, 15, 100, 100 + offset); // 100, 115, 124.8, 130
  32. //auto Tx1 = CircularLoop(60, 15, 0, 0); // was 60
  33. auto Kern = KernelV0::NewSP();
  34. Kern->PushCoil( "Coil 1", Tx1 );
  35. Kern->PushCoil( "Coil 2", Tx2 );
  36. Kern->SetLayeredEarthEM( earth );
  37. Kern->SetIntegrationSize( (Vector3r() << 200,200,200).finished() );
  38. Kern->SetIntegrationOrigin( (Vector3r() << 0,0,0).finished() );
  39. Kern->SetTolerance( 1e-12 ); // 1e-12
  40. Kern->AlignWithAkvoDataset( YAML::LoadFile(argv[2]) );
  41. Kern->SetPulseDuration(0.020);
  42. VectorXr I(36);
  43. // off from VC by 1.075926340216996
  44. // Pulses from Wyoming Red Buttes exp 0
  45. I << 397.4208916184016, 352.364477036168, 313.0112765842783, 278.37896394065376, 247.81424224324982,
  46. 220.77925043190442, 196.76493264105017, 175.31662279234038, 156.0044839325404, 138.73983004230124,
  47. 123.42064612625474, 109.82713394836259, 97.76534468972267, 87.06061858367781, 77.56000002944572, 69.1280780096311,
  48. 61.64250263640252, 54.99473044877554, 49.091182970515476, 43.84634004556388, 39.184136917167976, 35.03619319797924,
  49. 31.347205894128976, 28.06346770557137, 25.139117042424758, 22.53420773366429, 20.214205433283347,
  50. 18.144318026099942, 16.299965972298878, 14.652633628829891, 13.184271405688083, 11.870540177313893,
  51. 10.697057141915716, 9.64778948429609, 8.709338689612677, 7.871268012862094;
  52. //Kern->SetPulseCurrent( VectorXr::LinSpaced( 1, 10, 200 ) ); // nbins, low, high
  53. Kern->SetPulseCurrent( I ); // nbins, low, high
  54. //VectorXr interfaces = VectorXr::LinSpaced( 41, .5, 45.5 ); // nlay, low, high
  55. VectorXr interfaces = VectorXr::LinSpaced( 51, .5, 45.5 ); // nlay, low, high
  56. Real thick = .5;
  57. for (int ilay=1; ilay<interfaces.size(); ++ilay) {
  58. interfaces(ilay) = interfaces(ilay-1) + thick;
  59. thick *= 1.05;
  60. }
  61. Kern->SetDepthLayerInterfaces( interfaces ); // nlay, low, high
  62. // We could, I suppose, take the earth model in here? For non-linear that
  63. // may be more natural to work with?
  64. std::vector<std::string> tx = {std::string("Coil 1"), std::string("Coil 2") };
  65. std::vector<std::string> rx = {std::string("Coil 2")};
  66. Kern->CalculateK0( tx, rx, false );
  67. std::ofstream dout = std::ofstream(std::string("k-Tx2coil-Rx1coil-offset-")+ std::string(argv[1])+ std::string(".dat"));
  68. //std::ofstream dout = std::ofstream(std::string("k-coincident.dat"));
  69. dout << interfaces.transpose() << std::endl;
  70. dout << I.transpose() << std::endl;
  71. dout << "#real\n";
  72. dout << Kern->GetKernel().real() << std::endl;
  73. dout << "#imag\n";
  74. dout << Kern->GetKernel().imag() << std::endl;
  75. dout.close();
  76. std::ofstream out = std::ofstream(std::string("k-Tx2coil-Rx1coil-offset-")+std::string(argv[1])+std::string(".yaml"));
  77. //std::ofstream out = std::ofstream(std::string("k-coincident.yaml"));
  78. out << *Kern;
  79. out.close();
  80. }
  81. std::shared_ptr<Lemma::PolygonalWireAntenna> CircularLoop ( int nd, Real Radius, Real Offsetx, Real Offsety ) {
  82. auto Tx1 = Lemma::PolygonalWireAntenna::NewSP();
  83. Tx1->SetNumberOfPoints(nd);
  84. VectorXr range = VectorXr::LinSpaced(nd, 0, 2*PI);
  85. int ii;
  86. for (ii=0; ii<nd; ++ii) {
  87. Tx1->SetPoint(ii, Vector3r(Offsetx+Radius*std::cos(range(ii)), Offsety+Radius*std::sin(range(ii)), -1e-3));
  88. }
  89. //Tx1->SetPoint(ii, Vector3r(Offsetx+Radius*1, Offsety, -1e-3));
  90. Tx1->SetCurrent(1.);
  91. Tx1->SetNumberOfTurns(1);
  92. Tx1->SetNumberOfFrequencies(1);
  93. Tx1->SetFrequency(0,2246);
  94. return Tx1;
  95. }