/* This file is part of Lemma, a geophysical modelling and inversion API. * More information is available at http://lemmasoftware.org */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * @file * @date 11/11/2016 02:44:37 PM * @version $Id$ * @author Trevor Irons (ti) * @email tirons@egi.utah.edu * @copyright Copyright (c) 2016, University of Utah * @copyright Copyright (c) 2016, Lemma Software, LLC */ #include using namespace Lemma; static constexpr Real GAMMA = 2.67518e8; // MKS units std::shared_ptr CircularLoop ( int nd, Real radius, Real Offsetx, Real Offsety, Real wL ) ; void MoveLoop( std::shared_ptr Loop, int nd, Real Radius, Real Offsetx, Real Offsety, Real wL ); int main(int argc, char** argv) { if ( argc < 2 ) { std::cout << "Calculates the coupling between two sNMR loops at the Larmor frequency. Usage\n" << "\t./Coupling EarthModel.yaml" << std::endl; exit(0); } //Real offset = atof(argv[1]); auto earth = LayeredEarthEM::DeSerialize( YAML::LoadFile(argv[1]) ); Real Larmor = earth->GetMagneticFieldMagnitude()*GAMMA/(2*PI); // RedButtes model, also how you can generate your own files // auto earth = LayeredEarthEM::NewSP(); // earth->SetNumberOfLayers(3); // earth->SetLayerConductivity( (VectorXcr(3) << Complex(0.,0), Complex(1./50.,0), Complex(1./100.)).finished() ); // earth->SetLayerThickness( (VectorXr(1) << 10).finished() ); // // Set mag field info // // From NOAA, Laramie WY, June 9 2016, aligned with mag. north // earth->SetMagneticFieldIncDecMag( 67, 0, 52750, NANOTESLA ); // auto sig = std::ofstream("SigmaModel.yaml"); // sig << *earth << std::endl; // sig.close(); // Transmitter loops auto Tx1 = CircularLoop(21, 15, 100, 75, Larmor); auto Tx2 = CircularLoop(21, 15, 100, 75, Larmor); // initially coincident auto Kern = Coupling::NewSP(); Kern->PushCoil( "Coil 1", Tx1 ); Kern->PushCoil( "Coil 2", Tx2 ); Kern->SetLayeredEarthEM( earth ); Kern->SetIntegrationSize( (Vector3r() << 200,300,20).finished() ); Kern->SetIntegrationOrigin( (Vector3r() << 0,0,0.01).finished() ); Kern->SetTolerance( 1e-5 ); // 1e-12 std::vector tx = {std::string("Coil 1")}; std::vector rx = {std::string("Coil 2")}; VectorXr Offsets = VectorXr::LinSpaced(6, 22.00, 23.0); // nbins, low, high auto outfile = std::ofstream("coupling.dat"); for (int ii=0; ii< Offsets.size(); ++ii) { MoveLoop(Tx2, 21, 15, 100, 75 + Offsets(ii), Larmor); #ifdef LEMMAUSEVTK Complex coupling = Kern->Calculate( tx, rx, true ); #else Complex coupling = Kern->Calculate( tx, rx, false ); #endif std::cout << "coupling " << coupling << std::endl; outfile << Offsets(ii) << "\t" << std::real(coupling) << "\t" << std::imag(coupling) << std::endl; } outfile.close(); } std::shared_ptr CircularLoop ( int nd, Real Radius, Real Offsetx, Real Offsety, Real wL ) { auto Tx1 = Lemma::PolygonalWireAntenna::NewSP(); Tx1->SetNumberOfPoints(nd); VectorXr range = VectorXr::LinSpaced(nd, 0, 2*PI); int ii; for (ii=0; iiSetPoint(ii, Vector3r(Offsetx+Radius*std::cos(range(ii)), Offsety+Radius*std::sin(range(ii)), -1e-3)); } Tx1->SetCurrent(1.); Tx1->SetNumberOfTurns(1); Tx1->SetNumberOfFrequencies(1); Tx1->SetFrequency(0,wL); return Tx1; } void MoveLoop( std::shared_ptr Tx1, int nd, Real Radius, Real Offsetx, Real Offsety, Real wL ) { Tx1->SetNumberOfPoints(nd); VectorXr range = VectorXr::LinSpaced(nd, 0, 2*PI); int ii; for (ii=0; iiSetPoint(ii, Vector3r(Offsetx+Radius*std::cos(range(ii)), Offsety+Radius*std::sin(range(ii)), -1e-3)); } Tx1->SetCurrent(1.); Tx1->SetNumberOfTurns(1); Tx1->SetNumberOfFrequencies(1); Tx1->SetFrequency(0,wL); }