/* This file is part of Lemma, a geophysical modelling and inversion API. * More information is available at http://lemmasoftware.org */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * @file * @date 11/11/2016 02:44:37 PM * @version $Id$ * @author Trevor Irons (ti) * @email tirons@egi.utah.edu * @copyright Copyright (c) 2016, University of Utah * @copyright Copyright (c) 2016, Lemma Software, LLC */ #include using namespace Lemma; std::shared_ptr CircularLoop ( int nd, Real radius, Real Offsetx, Real Offsety ) ; int main(int argc, char** argv) { if (argc < 3) { std::cout << "./KVo-3loops " << std::endl; exit(0); } Real offset = atof(argv[1]); std::cout << offset << std::endl; Real tol = atof(argv[2]); auto earth = LayeredEarthEM::NewSP(); earth->SetNumberOfLayers(3); earth->SetLayerConductivity( (VectorXcr(3) << Complex(0.,0), Complex(1./50.,0), Complex(1./100.)).finished() ); earth->SetLayerThickness( (VectorXr(1) << 10).finished() ); // Set mag field info // From NOAA, Laramie WY, June 9 2016, aligned with mag. north earth->SetMagneticFieldIncDecMag( 67, 0, 52750, NANOTESLA ); // Transmitter loops auto Tx1 = CircularLoop(21, 15, 100+offset/2., 100-offset/2.); auto Tx2 = CircularLoop(21, 15, 100+offset/2., 100+offset/2.); auto Tx3 = CircularLoop(21, 15, 100-offset/2., 100 ); auto Kern = KernelV0::NewSP(); Kern->PushCoil( "Coil 1", Tx1 ); Kern->PushCoil( "Coil 2", Tx2 ); Kern->PushCoil( "Coil 3", Tx3 ); Kern->SetLayeredEarthEM( earth ); Kern->SetIntegrationSize( (Vector3r() << 200,200,200).finished() ); Kern->SetIntegrationOrigin( (Vector3r() << 0,0,0).finished() ); Kern->SetTolerance( tol ); // 1e-12 Kern->SetPulseDuration(0.020); VectorXr I(36); // off from VC by 1.075926340216996 // Pulses from Wyoming Red Buttes exp 0 I << 397.4208916184016, 352.364477036168, 313.0112765842783, 278.37896394065376, 247.81424224324982, 220.77925043190442, 196.76493264105017, 175.31662279234038, 156.0044839325404, 138.73983004230124, 123.42064612625474, 109.82713394836259, 97.76534468972267, 87.06061858367781, 77.56000002944572, 69.1280780096311, 61.64250263640252, 54.99473044877554, 49.091182970515476, 43.84634004556388, 39.184136917167976, 35.03619319797924, 31.347205894128976, 28.06346770557137, 25.139117042424758, 22.53420773366429, 20.214205433283347, 18.144318026099942, 16.299965972298878, 14.652633628829891, 13.184271405688083, 11.870540177313893, 10.697057141915716, 9.64778948429609, 8.709338689612677, 7.871268012862094; //Kern->SetPulseCurrent( VectorXr::LinSpaced( 1, 10, 200 ) ); // nbins, low, high Kern->SetPulseCurrent( I ); // nbins, low, high //Kern->SetDepthLayerInterfaces( VectorXr::LinSpaced( 30, 3, 45.5 ) ); // nlay, low, high VectorXr interfaces = VectorXr::LinSpaced( 41, .5, 45.5 ); // nlay, low, high Real thick = .5; for (int ilay=1; ilaySetDepthLayerInterfaces( interfaces ); // nlay, low, high // We could, I suppose, take the earth model in here? For non-linear that // may be more natural to work with? std::vector tx = {std::string("Coil 1"), std::string("Coil 2"), std::string("Coil 3") }; //std::vector rx = {std::string("Coil 1"), std::string("Coil 2")};//, std::string("Coil 3") }; std::vector rx = {std::string(argv[3])}; Kern->CalculateK0( tx, rx, false ); std::ofstream dout = std::ofstream(std::string("k0-3Tx-RxCh-") + std::string(argv[3]) + std::string("-tol") + std::string(argv[1])+ std::string(".dat")); dout << "# Transmitters: "; for (auto lp : tx) { dout << lp << "\t"; } dout << "\n# Receivers: "; for (auto lp : rx) { dout << lp << "\t"; } dout << "\n# Tolerance: " << tol << std::endl; dout << "# Offset: " << offset << std::endl; dout << "# Radius: " << 15 << std::endl; dout << interfaces.transpose() << std::endl; dout << Kern->GetPulseDuration()*I.transpose() << std::endl; dout << "#real\n"; dout << Kern->GetKernel().real() << std::endl; dout << "#imag\n"; dout << Kern->GetKernel().imag() << std::endl; dout.close(); //std::ofstream out = std::ofstream(std::string("k0-3Tx-RxCh1-")+std::string(argv[1])+std::string(".yaml")); std::ofstream out = std::ofstream(std::string("k0-3Tx-RxCh-") + std::string(argv[3]) + std::string("-tol") + std::string(argv[1])+ std::string(".yaml")); out << *Kern; out.close(); } std::shared_ptr CircularLoop ( int nd, Real Radius, Real Offsetx, Real Offsety ) { auto Tx1 = Lemma::PolygonalWireAntenna::NewSP(); Tx1->SetNumberOfPoints(nd); VectorXr range = VectorXr::LinSpaced(nd, 0, 2*PI); int ii; for (ii=0; iiSetPoint(ii, Vector3r(Offsetx+Radius*std::cos(range(ii)), Offsety+Radius*std::sin(range(ii)), -1e-3)); } //Tx1->SetPoint(ii, Vector3r(Offsetx+Radius*1, Offsety, -1e-3)); Tx1->SetCurrent(1.); Tx1->SetNumberOfTurns(1); Tx1->SetNumberOfFrequencies(1); Tx1->SetFrequency(0,2246); return Tx1; }