Explorar el Código

Working with all at once kernel calculation. Much faster.

master
T-bone hace 8 años
padre
commit
0c5bbd8c51
Se han modificado 3 ficheros con 58 adiciones y 85 borrados
  1. 4
    4
      examples/KernelV0.cpp
  2. 7
    10
      include/KernelV0.h
  3. 47
    71
      src/KernelV0.cpp

+ 4
- 4
examples/KernelV0.cpp Ver fichero

@@ -34,7 +34,7 @@ int main() {
34 34
 
35 35
     // Transmitter loops
36 36
     auto Tx1 = CircularLoop(21, 15, 100, 100);
37
-    auto Tx2 = CircularLoop(21, 15, 100, 120);
37
+    auto Tx2 = CircularLoop(21, 15, 100, 124.8);
38 38
     //auto Tx1 = CircularLoop(60, 15, 0, 0); // was 60
39 39
 
40 40
     auto Kern = KernelV0::NewSP();
@@ -45,7 +45,7 @@ int main() {
45 45
 
46 46
         Kern->SetIntegrationSize( (Vector3r() << 200,200,200).finished() );
47 47
         Kern->SetIntegrationOrigin( (Vector3r() << 0,0,0).finished() );
48
-        Kern->SetTolerance( 1e-12 );
48
+        Kern->SetTolerance( 1e-10 );
49 49
         //Kern->SetTolerance( .55 ) ; // 1%
50 50
 
51 51
         Kern->SetPulseDuration(0.020);
@@ -63,9 +63,9 @@ int main() {
63 63
 
64 64
     // We could, I suppose, take the earth model in here? For non-linear that
65 65
     // may be more natural to work with?
66
-    std::vector<std::string> tx = {std::string("Coil 1")};
66
+    std::vector<std::string> tx = {std::string("Coil 1"), std::string("Coil 2") };
67 67
     std::vector<std::string> rx = {std::string("Coil 1")};
68
-    Kern->CalculateK0( tx, rx, false );
68
+    Kern->CalculateK0( tx, rx, true );
69 69
 
70 70
 }
71 71
 

+ 7
- 10
include/KernelV0.h Ver fichero

@@ -10,11 +10,11 @@
10 10
 /**
11 11
  * @file
12 12
  * @date      11/11/2016 01:47:34 PM
13
- * @version   $Id$
14 13
  * @author    Trevor Irons (ti)
15 14
  * @email     tirons@egi.utah.edu
16 15
  * @copyright Copyright (c) 2016, University of Utah
17 16
  * @copyright Copyright (c) 2016, Lemma Software, LLC
17
+ * @copyright Copyright (c) 2008, Colorado School of Mines
18 18
  */
19 19
 #ifndef  KERNELV0_INC
20 20
 #define  KERNELV0_INC
@@ -225,18 +225,15 @@ namespace Lemma {
225 225
          */
226 226
         VectorXcr f( const Vector3r& r, const Real& volume , const Vector3cr& Ht, const Vector3cr& Hr);
227 227
 
228
-//         Complex ComputeV0Cell(const Vector3cr& Bt, const Vector3cr& Br, const Real& vol,
229
-//             const Real& phi);
230
-
231
-        Complex ComputeV0Cell(const EllipticB& EBT, const EllipticB& EBR,
232
-                const Real& sintheta, const Real& phase, const Real& Mn0Abs,
233
-                const Real& vol);
228
+//         Complex ComputeV0Cell(const EllipticB& EBT, const EllipticB& EBR,
229
+//                 const Real& sintheta, const Real& phase, const Real& Mn0Abs,
230
+//                 const Real& vol);
234 231
 
235 232
         EllipticB EllipticFieldRep (const Vector3cr& B, const Vector3r& B0hat);
236 233
 
237 234
         Vector3r ComputeMn0(const Real& Porosity, const Vector3r& B0);
238 235
 
239
-        Complex IntegrateOnOctreeGrid( const int& iq, bool vtkOutput=false );
236
+        void IntegrateOnOctreeGrid( bool vtkOutput=false );
240 237
 
241 238
         /**
242 239
          *  Recursive call to integrate a function on an adaptive Octree Grid.
@@ -257,7 +254,7 @@ namespace Lemma {
257 254
          *  HyperOctree, which is useful for visualization.
258 255
          */
259 256
         void EvaluateKids2(  const Vector3r& size, const int& level, const Vector3r& cpos,
260
-                            const Complex& parentVal, vtkHyperOctree* octree, vtkHyperOctreeCursor* curse );
257
+                            const VectorXcr& parentVal, vtkHyperOctree* octree, vtkHyperOctreeCursor* curse );
261 258
 
262 259
         void GetPosition( vtkHyperOctreeCursor* Cursor, Real* p );
263 260
         #endif
@@ -293,7 +290,7 @@ namespace Lemma {
293 290
         std::map< std::string , std::shared_ptr< EMEarth1D > >             EMEarths;
294 291
 
295 292
         #ifdef LEMMAUSEVTK
296
-        std::map< int, Complex  >                 LeafDict;
293
+        std::map< int, VectorXcr  >               LeafDict;
297 294
         std::map< int, int     >                  LeafDictIdx;
298 295
         std::map< int, Real     >                 LeafDictErr;
299 296
         #endif

+ 47
- 71
src/KernelV0.cpp Ver fichero

@@ -10,11 +10,11 @@
10 10
 /**
11 11
  * @file
12 12
  * @date      11/11/2016 01:47:25 PM
13
- * @version   $Id$
14 13
  * @author    Trevor Irons (ti)
15 14
  * @email     tirons@egi.utah.edu
16 15
  * @copyright Copyright (c) 2016, University of Utah
17 16
  * @copyright Copyright (c) 2016, Lemma Software, LLC
17
+ * @copyright Copyright (c) 2008, Colorado School of Mines
18 18
  */
19 19
 
20 20
 
@@ -145,16 +145,12 @@ namespace Lemma {
145 145
             std::cout << "Layer " << ilay << std::endl; //<< " q " << iq << std::endl;
146 146
             Size(2) = Interfaces(ilay+1) - Interfaces(ilay);
147 147
             Origin(2) = Interfaces(ilay);
148
-            //for (int iq=0; iq< PulseI.size(); ++iq) {
149
-            //    Ip = PulseI(iq);
150
-                //Kern(ilay, iq) =
151
-            IntegrateOnOctreeGrid( 0, vtkOutput );
152
-            //}
148
+            IntegrateOnOctreeGrid( vtkOutput );
153 149
         }
154 150
         std::cout << "\rFinished KERNEL\n";
155
-        std::cout << "real\n";
151
+        std::cout << "#real\n";
156 152
         std::cout << Kern.real() << std::endl;
157
-        std::cout << "imag\n";
153
+        std::cout << "#imag\n";
158 154
         std::cout << Kern.imag() << std::endl;
159 155
     }
160 156
 
@@ -162,7 +158,7 @@ namespace Lemma {
162 158
     //       Class:  KernelV0
163 159
     //      Method:  IntegrateOnOctreeGrid
164 160
     //--------------------------------------------------------------------------------------
165
-    Complex KernelV0::IntegrateOnOctreeGrid( const int& iq, bool vtkOutput) {
161
+    void KernelV0::IntegrateOnOctreeGrid( bool vtkOutput) {
166 162
 
167 163
         Vector3r cpos = Origin + Size/2.;
168 164
 
@@ -179,7 +175,9 @@ namespace Lemma {
179 175
                 oct->SetSize( Size(0), Size(1), Size(2) );
180 176
             vtkHyperOctreeCursor* curse = oct->NewCellCursor();
181 177
                 curse->ToRoot();
182
-            EvaluateKids2( Size, 0, cpos, 1e6, oct, curse );
178
+            EvaluateKids2( Size, 0, cpos, VectorXcr::Ones(PulseI.size()), oct, curse );
179
+
180
+            for (int iq=0; iq<PulseI.size(); ++iq) {
183 181
 
184 182
             // Fill in leaf data
185 183
             vtkDoubleArray* kr = vtkDoubleArray::New();
@@ -204,9 +202,9 @@ namespace Lemma {
204 202
 
205 203
             //Real LeafVol(0);
206 204
             for (auto leaf : LeafDict) {
207
-                kr->InsertTuple1( leaf.first, std::real(leaf.second) );
208
-                ki->InsertTuple1( leaf.first, std::imag(leaf.second) );
209
-                km->InsertTuple1( leaf.first, std::abs(leaf.second) );
205
+                kr->InsertTuple1( leaf.first, std::real(leaf.second(iq)) );
206
+                ki->InsertTuple1( leaf.first, std::imag(leaf.second(iq)) );
207
+                km->InsertTuple1( leaf.first, std::abs(leaf.second(iq)) );
210 208
                 kid->InsertTuple1( leaf.first, leaf.first );
211 209
                 //LeafVol += std::real(leaf.second);
212 210
             }
@@ -216,11 +214,11 @@ namespace Lemma {
216 214
                 kerr->InsertTuple1( leaf.first, leaf.second );
217 215
             }
218 216
 
219
-            oct->GetLeafData()->AddArray(kr);
220
-            oct->GetLeafData()->AddArray(ki);
221
-            oct->GetLeafData()->AddArray(km);
222
-            oct->GetLeafData()->AddArray(kid);
223
-            oct->GetLeafData()->AddArray(kerr);
217
+            auto kri = oct->GetLeafData()->AddArray(kr);
218
+            auto kii = oct->GetLeafData()->AddArray(ki);
219
+            auto kmi = oct->GetLeafData()->AddArray(km);
220
+            auto kidi = oct->GetLeafData()->AddArray(kid);
221
+            auto keri = oct->GetLeafData()->AddArray(kerr);
224 222
 
225 223
             auto write = vtkXMLHyperOctreeWriter::New();
226 224
                 //write.SetDataModeToAscii()
@@ -231,11 +229,20 @@ namespace Lemma {
231 229
                 write->Write();
232 230
                 write->Delete();
233 231
 
234
-            //kerr->Delete();
232
+            oct->GetLeafData()->RemoveArray( kri );
233
+            oct->GetLeafData()->RemoveArray( kii );
234
+            oct->GetLeafData()->RemoveArray( kmi );
235
+            oct->GetLeafData()->RemoveArray( kidi );
236
+            oct->GetLeafData()->RemoveArray( keri );
237
+
238
+            kerr->Delete();
235 239
             kid->Delete();
236 240
             kr->Delete();
237 241
             ki->Delete();
238 242
             km->Delete();
243
+
244
+            }
245
+
239 246
             curse->Delete();
240 247
             oct->Delete();
241 248
         #else
@@ -245,10 +252,6 @@ namespace Lemma {
245 252
         }
246 253
         std::cout << "\nVOLSUM=" << VOLSUM << "\tActual=" <<  Size(0)*Size(1)*Size(2)
247 254
                   << "\tDifference=" << VOLSUM - (Size(0)*Size(1)*Size(2)) <<  std::endl;
248
-        std::cout << "nleaves\t" << nleaves << std::endl;
249
-        std::cout << "KSUM\t" << SUM << std::endl;
250
-
251
-        return SUM;
252 255
     }
253 256
 
254 257
     //--------------------------------------------------------------------------------------
@@ -270,15 +273,16 @@ namespace Lemma {
270 273
         Real Mn0Abs = Mn0.norm();
271 274
 
272 275
         // Compute phase delay
273
-        // TODO add transmiiter phase and delay time phase!
274
-        Real phase = EBR.zeta+EBT.zeta;
276
+        // TODO add transmiiter current phase and delay induced apparent time phase!
277
+        Complex PhaseTerm = EBR.bhat.dot(EBT.bhat) + (B0hat.dot(EBR.bhat.cross(EBT.bhat) ));
278
+        Complex ejztr = std::exp(Complex(0, EBR.zeta + EBT.zeta));
275 279
 
276 280
         // Calcuate vector of all responses
277 281
         VectorXcr F = VectorXcr::Zero( PulseI.size() );
278 282
         for (int iq=0; iq<PulseI.size(); ++iq) {
279 283
             // Compute the tipping angle
280 284
             Real sintheta = std::sin(0.5*GAMMA*PulseI(iq)*Taup*std::abs(EBT.alpha-EBT.beta));
281
-            F(iq) = ComputeV0Cell(EBT, EBR, sintheta, phase, Mn0Abs, volume);
285
+            F(iq) = -volume*Complex(0,Larmor)*Mn0Abs*(EBR.alpha+EBR.beta)*ejztr*sintheta*PhaseTerm;
282 286
         }
283 287
         return F;
284 288
     }
@@ -287,46 +291,20 @@ namespace Lemma {
287 291
 //     //       Class:  KernelV0
288 292
 //     //      Method:  ComputeV0Cell
289 293
 //     //--------------------------------------------------------------------------------------
290
-//     Complex KernelV0::ComputeV0Cell(const Vector3cr& Bt,
291
-//                 const Vector3cr& Br, const Real& vol, const Real& phi) {
292
-//
293
-//         // Compute the elliptic fields
294
+//     Complex KernelV0::ComputeV0Cell(const EllipticB& EBT, const EllipticB& EBR,
295
+//                 const Real& sintheta, const Real& phase, const Real& Mn0Abs,
296
+//                 const Real& vol) {
297
+//         // earth response of receiver adjoint field
294 298
 //         Vector3r B0hat = SigmaModel->GetMagneticFieldUnitVector();
295
-//         Vector3r B0 = SigmaModel->GetMagneticField();
296
-//
297
-//         // Elliptic representation
298
-//         EllipticB EBT = EllipticFieldRep(Bt, B0hat);
299
-//         EllipticB EBR = EllipticFieldRep(Br, B0hat);
300
-//
301
-//         // Compute Mn0
302
-//         Vector3r Mn0 = ComputeMn0(phi, B0);
303
-//         Real Mn0Abs = Mn0.norm();
304
-//
305
-//         // Compute phase delay, TODO add transmiiter phase and delay time phase!
306
-//         Real phase = EBR.zeta+EBT.zeta;
307
-//
308
-//         Real sintheta = std::sin(0.5*GAMMA*Ip*Taup*std::abs(EBT.alpha-EBT.beta));
309
-//         return 0; ComputeV0Cell(EBT, EBR, sintheta, phase, Mn0Abs, vol);
299
+//         Complex ejztr = std::exp(Complex(0, EBR.zeta + EBT.zeta));
300
+//         Complex PhaseTerm = EBR.bhat.dot(EBT.bhat) + (B0hat.dot(EBR.bhat.cross(EBT.bhat) ));
301
+//         return -vol*Complex(0,Larmor)*Mn0Abs*(EBR.alpha+EBR.beta)*ejztr*sintheta*PhaseTerm;
310 302
 //     }
311 303
 
312 304
     //--------------------------------------------------------------------------------------
313 305
     //       Class:  KernelV0
314 306
     //      Method:  ComputeV0Cell
315 307
     //--------------------------------------------------------------------------------------
316
-    Complex KernelV0::ComputeV0Cell(const EllipticB& EBT, const EllipticB& EBR,
317
-                const Real& sintheta, const Real& phase, const Real& Mn0Abs,
318
-                const Real& vol) {
319
-        // earth response of receiver adjoint field
320
-        Vector3r B0hat = SigmaModel->GetMagneticFieldUnitVector();
321
-        Complex ejztr = std::exp(Complex(0, EBR.zeta + EBT.zeta));
322
-        Complex PhaseTerm = EBR.bhat.dot(EBT.bhat) + (B0hat.dot(EBR.bhat.cross(EBT.bhat) ));
323
-        return -vol*Complex(0,Larmor)*Mn0Abs*(EBR.alpha+EBR.beta)*ejztr*sintheta*PhaseTerm;
324
-    }
325
-
326
-    //--------------------------------------------------------------------------------------
327
-    //       Class:  KernelV0
328
-    //      Method:  ComputeV0Cell
329
-    //--------------------------------------------------------------------------------------
330 308
     Vector3r KernelV0::ComputeMn0(const Real& Porosity, const Vector3r& B0) {
331 309
         Real chi_n = NH2O*((GAMMA*GAMMA*HBAR*HBAR)/(4.*KB*Temperature));
332 310
         return chi_n*Porosity*B0;
@@ -378,7 +356,6 @@ namespace Lemma {
378 356
                         0, step[1], step[2],
379 357
                   step[0], step[1], step[2] ).finished();
380 358
 
381
-        //VectorXcr kvals(8);       // individual kernel vals
382 359
         MatrixXcr kvals(8, PulseI.size());       // individual kernel vals
383 360
         cpoints->ClearFields();
384 361
         for (int ichild=0; ichild<8; ++ichild) {
@@ -439,7 +416,7 @@ namespace Lemma {
439 416
     //      Method:  EvaluateKids2 -- same as Evaluate Kids, but include VTK octree generation
440 417
     //--------------------------------------------------------------------------------------
441 418
     void KernelV0::EvaluateKids2( const Vector3r& size, const int& level, const Vector3r& cpos,
442
-        const Complex& parentVal, vtkHyperOctree* oct, vtkHyperOctreeCursor* curse) {
419
+        const VectorXcr& parentVal, vtkHyperOctree* oct, vtkHyperOctreeCursor* curse) {
443 420
 
444 421
         std::cout << "\r" << (int)(1e2*VOLSUM/(Size[0]*Size[1]*Size[2])) << "\t" << nleaves;
445 422
         std::cout.flush();
@@ -460,7 +437,7 @@ namespace Lemma {
460 437
                         0, step[1], step[2],
461 438
                   step[0], step[1], step[2] ).finished();
462 439
 
463
-        VectorXcr kvals(8);                     // individual kernel vals
440
+        MatrixXcr kvals(8, PulseI.size());       // individual kernel vals
464 441
         cpoints->ClearFields();
465 442
         for (int ichild=0; ichild<8; ++ichild) {
466 443
             Vector3r cp = pos;    // Eigen complains about combining these
@@ -490,15 +467,14 @@ namespace Lemma {
490 467
         }
491 468
 
492 469
         for (int ichild=0; ichild<8; ++ichild) {
493
-            Vector3r cp = pos; // Eigen complains about combining these
470
+            Vector3r cp = pos;    // Eigen complains about combining these
494 471
             cp += posadd.row(ichild);
495
-            kvals(ichild) = f(cp, vol, Ht.col(ichild), Hr.col(ichild))(0);
472
+            kvals.row(ichild) = f(cp, vol, Ht.col(ichild), Hr.col(ichild));
496 473
         }
497 474
 
498
-        Complex ksum = kvals.sum();     // Kernel sum
475
+        VectorXcr ksum = kvals.colwise().sum();     // Kernel sum
499 476
         // Evaluate whether or not furthur splitting is needed
500
-        if ( std::abs(ksum - parentVal) > tol || level < minLevel && level < maxLevel ) {
501
-        //if ( std::abs(ksum.real()-parentVal.real())>tol || std::abs(ksum.imag()-parentVal.imag()) >tol ) {
477
+        if ( ((ksum - parentVal).array().abs() > tol).any() || level < minLevel && level < maxLevel ) {
502 478
             oct->SubdivideLeaf(curse);
503 479
             for (int ichild=0; ichild<8; ++ichild) {
504 480
                 curse->ToChild(ichild);
@@ -515,14 +491,14 @@ namespace Lemma {
515 491
                 }
516 492
                 */
517 493
                 /* End of position test */
518
-                EvaluateKids2( size, level+1, cp, kvals(ichild), oct, curse );
494
+                EvaluateKids2( size, level+1, cp, kvals.row(ichild), oct, curse );
519 495
                 curse->ToParent();
520 496
             }
521 497
             return;  // not a leaf
522 498
         }
523
-        LeafDict[curse->GetLeafId()] = ksum/(8.*vol);     //kvals(ichild) / vol;     // VTK
524
-        LeafDictIdx[curse->GetLeafId()] = nleaves;        // VTK
525
-        SUM += ksum;
499
+        LeafDict[curse->GetLeafId()] = ksum/(8.*vol);
500
+        LeafDictIdx[curse->GetLeafId()] = nleaves;
501
+        Kern.row(ilay) += ksum;
526 502
         VOLSUM += 8*vol;
527 503
         nleaves += 1;
528 504
         return;     // is a leaf

Loading…
Cancelar
Guardar