Main Lemma Repository
Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

TEMSurvey.cpp 9.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. /* This file is part of Lemma, a geophysical modelling and inversion API.
  2. * More information is available at http://lemmasoftware.org
  3. */
  4. /* This Source Code Form is subject to the terms of the Mozilla Public
  5. * License, v. 2.0. If a copy of the MPL was not distributed with this
  6. * file, You can obtain one at http://mozilla.org/MPL/2.0/.
  7. */
  8. /**
  9. * @file
  10. * @date 10/16/2018 01:58:22 PM
  11. * @author Trevor Irons (ti)
  12. * @email Trevor.Irons@utah.edu
  13. * @copyright Copyright (c) 2018, University of Utah
  14. * @copyright Copyright (c) 2018, Lemma Software, LLC
  15. */
  16. #include <TEM1D>
  17. using namespace Lemma;
  18. int main() {
  19. // Each pulse sequence functions as an autonomous transmitter. A record may contain multiple transmitters (moments).
  20. // There is some small overhead for wire loop locations, but generality is retained doing this, as well as monitoring of
  21. // slight changes in geometry for both pulses.
  22. auto TxHM = TEMTransmitter::NewSP();
  23. TxHM->SetRepFrequency( 20, KHZ );
  24. VectorXr Times (18);
  25. VectorXr Amps (18);
  26. Times << 0.0, 0.03051, 0.10267, 0.19408, 0.19889, 0.21332, 0.74249, 1.3775, 1.83452, 2.52245, \
  27. 3.191132, 3.9031135, 4.0, 4.00484486, 4.123904, 4.200182, 4.20732, 4.212946;
  28. Amps << 0.0, 14.71872, 62.34372, 114.84372, 117.84372, 118.96872, 118.96872, 118.96872, 118.96872,\
  29. 118.59372, 119.34372, 120.0, 120.0, 117.94176, 47.60364, 0.8905848, 0.1203888, 0.0;
  30. TxHM->SetWaveform( Times, Amps, MILLISEC );
  31. // Define wire loop
  32. TxHM->SetNumberOfPoints(8);
  33. TxHM->SetPoint(0, Vector3r( -16.10, 2.13, -34));
  34. TxHM->SetPoint(1, Vector3r( -7.51, 10.72, -34));
  35. TxHM->SetPoint(2, Vector3r( 7.51, 10.72, -34));
  36. TxHM->SetPoint(3, Vector3r( 14.92, 3.31, -34));
  37. TxHM->SetPoint(4, Vector3r( 14.92, -3.31, -34));
  38. TxHM->SetPoint(5, Vector3r( 7.51, -10.72, -34));
  39. TxHM->SetPoint(6, Vector3r( -7.51, -10.72, -34));
  40. TxHM->SetPoint(7, Vector3r( -16.10, -2.13, -34));
  41. TxHM->SetNumberOfTurns(8);
  42. // Each Transmitter needs its own `Receiver(s)', the only difference may be the time gates, but that's OK.
  43. // It's a minor amount of overhead for greatly improved genearality. As sometimes different gates are
  44. // masked.
  45. auto RxHM = TEMInductiveReceiver::NewSP();
  46. RxHM->SetComponent( ZCOMPONENT ); // What about Overloaded to take (X), (X,Y), or (X,Y,Z) or what about tilt?
  47. RxHM->SetMoment( 1 ); // Normalized
  48. RxHM->SetReferenceTime( 4., MILLISEC );
  49. RxHM->SetRxLocation( (Vector3r() << -16.80, 0, -36.00).finished() );
  50. // Gate Centres ms
  51. VectorXr centres (37);
  52. centres << 7.15000000e-04, 2.21500000e-03, 4.21500000e-03, 6.21500000e-03,
  53. 8.21500000e-03, 1.02150000e-02, 1.22150000e-02, 1.47150000e-02,
  54. 1.82150000e-02, 2.27150000e-02, 2.82150000e-02, 3.52150000e-02,
  55. 4.42150000e-02, 5.57150000e-02, 7.02150000e-02, 8.82150000e-02,
  56. 1.10715000e-01, 1.38715000e-01, 1.74215000e-01, 2.19715000e-01,
  57. 2.76715000e-01, 3.48715000e-01, 4.39715000e-01, 5.53715000e-01,
  58. 6.97715000e-01, 8.79215000e-01, 1.10771500e+00, 1.39621500e+00,
  59. 1.76021500e+00, 2.21871500e+00, 2.79671500e+00, 3.52571500e+00,
  60. 4.44471500e+00, 5.60321500e+00, 7.06321500e+00, 8.90421500e+00,
  61. 1.10667200e+01;
  62. //centres.array() += 4.;
  63. // Gate Widths ms
  64. VectorXr widths (37);
  65. widths << 4.30000000e-04, 1.43000000e-03, 3.43000000e-03, 5.43000000e-03,
  66. 7.43000000e-03, 9.43000000e-03, 1.14300000e-02, 1.34300000e-02,
  67. 1.64300000e-02, 2.04300000e-02, 2.54300000e-02, 3.14300000e-02,
  68. 3.94300000e-02, 4.94300000e-02, 6.24300000e-02, 7.84300000e-02,
  69. 9.84300000e-02, 1.23430000e-01, 1.54430000e-01, 1.94430000e-01,
  70. 2.45430000e-01, 3.08430000e-01, 3.89430000e-01, 4.90430000e-01,
  71. 6.17430000e-01, 7.78430000e-01, 9.80430000e-01, 1.23543000e+00,
  72. 1.55743000e+00, 1.96343000e+00, 2.47443000e+00, 3.11943000e+00,
  73. 3.93243000e+00, 4.95743000e+00, 6.24943000e+00, 7.87743000e+00,
  74. 9.93143000e+00;
  75. RxHM->SetWindows(centres, widths, MILLISEC);
  76. auto TxLM = TEMTransmitter::NewSP();
  77. TxLM->SetRepFrequency( 20, KHZ );
  78. VectorXr TimesLM (18);
  79. VectorXr AmpsLM (18);
  80. TimesLM << -8.00000E-004, -7.86965E-004, -7.66493E-004, -7.23688E-004,
  81. -6.39938E-004, -5.16174E-004, -3.93340E-004, -2.63993E-004,
  82. -1.43952E-004, -7.15990E-006, -2.50712E-006, 0.00000E+000,
  83. 2.19597E-007, 1.47193E-006, 3.34398E-006, 4.68669E-006,
  84. 5.96484E-006, 7.04934E-006;
  85. TimesLM.array() = TimesLM.array() + 8e-4; // Valgrind Hack += yields error. Correct for SkyTEM convention
  86. AmpsLM << 0.00000E+000, 3.67188E-002, 6.17188E-002, 1.17969E-001,
  87. 2.14844E-001, 3.28906E-001, 4.75781E-001, 6.30469E-001,
  88. 7.82031E-001, 9.92969E-001, 1.00000E+000, 1.00000E+000,
  89. 9.63459E-001, 6.01030E-001, 2.29652E-001, 8.64702E-002,
  90. 2.53196E-002, 0.00000E+000;
  91. AmpsLM.array() = AmpsLM.array() * 8.; // Also correct for SkyTEM convention in .geo file
  92. TxLM->SetWaveform( TimesLM, AmpsLM, SEC );
  93. // Define wire loop
  94. TxLM->SetNumberOfPoints(8);
  95. TxLM->SetPoint(0, Vector3r( -16.10, 2.13, -34));
  96. TxLM->SetPoint(1, Vector3r( -7.51, 10.72, -34));
  97. TxLM->SetPoint(2, Vector3r( 7.51, 10.72, -34));
  98. TxLM->SetPoint(3, Vector3r( 14.92, 3.31, -34));
  99. TxLM->SetPoint(4, Vector3r( 14.92, -3.31, -34));
  100. TxLM->SetPoint(5, Vector3r( 7.51, -10.72, -34));
  101. TxLM->SetPoint(6, Vector3r( -7.51, -10.72, -34));
  102. TxLM->SetPoint(7, Vector3r( -16.10, -2.13, -34));
  103. TxLM->SetNumberOfTurns(8);
  104. auto RxLM = TEMInductiveReceiver::NewSP();
  105. RxLM->SetComponent( ZCOMPONENT ); // What about Overloaded to take (X), (X,Y), or (X,Y,Z) or what about tilt?
  106. RxLM->SetMoment( 1 ); // Normalized
  107. RxLM->SetReferenceTime( 8e-4, SEC );
  108. RxLM->SetRxLocation( (Vector3r() << -16.80, 0, -36.00).finished() );
  109. // Gate Centres ms
  110. VectorXr centresLM (26);
  111. centresLM << 7.150000E-07, 2.215000E-06, 4.215000E-06, 6.215000E-06, 8.215000E-06,
  112. 1.021500E-05, 1.221500E-05, 1.471500E-05, 1.821500E-05, 2.271500E-05,
  113. 2.821500E-05, 3.521500E-05, 4.421500E-05, 5.571500E-05, 7.021500E-05,
  114. 8.821500E-05, 1.107150E-04, 1.387150E-04, 1.742150E-04, 2.197150E-04,
  115. 2.767150E-04, 3.487150E-04, 4.397150E-04, 5.537150E-04, 6.977150E-04,
  116. 8.792150E-04;
  117. VectorXr widthsLM (26);
  118. widthsLM << 5.700000E-07, 1.570000E-06, 1.570000E-06, 1.570000E-06, 1.570000E-06,
  119. 1.570000E-06, 1.570000E-06, 2.570000E-06, 3.570000E-06, 4.570000E-06,
  120. 5.570000E-06, 7.570000E-06, 9.570000E-06, 1.257000E-05, 1.557000E-05,
  121. 1.957000E-05, 2.457000E-05, 3.057000E-05, 3.957000E-05, 5.057000E-05,
  122. 6.257000E-05, 8.057000E-05, 1.005700E-04, 1.265700E-04, 1.605700E-04,
  123. 2.015700E-04;
  124. RxLM->SetWindows(centresLM, widthsLM, SEC);
  125. // // Specifies survey, this is the Glue Class, the top of the structure, etc.
  126. // TEMSurvey* Survey = TEMSurvey::New();
  127. // Survey->SetNumberOfLines(1); // Flight lines or
  128. // // Internally each line is a class? But that's sort of hidden to the
  129. // // end user. Having each line seperate is nice for constrained inversion, where
  130. // // each line is a nice thing to deal with.
  131. // Survey->GetLine(0)->SetNumberOfRecords(1); // Each Record then contains everything needed for modelling response curve(s)
  132. // Survey->GetLine(0)->GetRecord(0)->SetNumberOfPulseSequences( 1 );
  133. // Survey->GetLine(0)->GetRecord(0)->SetTransmitterReceiverPair( 0, TxHM, RxHM );
  134. // //Survey->GetLine(0)->GetRecord(0)->SetTransmitterReceiverPair( 1, TxHM, RxHM );
  135. //
  136. //
  137. // LayeredEarthEM* Earth = LayeredEarthEM::New();
  138. // Earth->SetNumberOfLayers(31);
  139. // Earth->SetLayerThickness( (VectorXr(29) << 5.00E+00, 5.40E+00,
  140. // 5.80E+00, 6.30E+00, 6.80E+00, 7.30E+00, 7.80E+00, 8.50E+00,
  141. // 9.10E+00, 9.80E+00, 1.06E+01, 1.14E+01, 1.23E+01, 1.33E+01,
  142. // 1.43E+01, 1.54E+01, 1.66E+01, 1.79E+01, 1.93E+01, 2.08E+01,
  143. // 2.25E+01, 2.42E+01, 2.61E+01, 2.81E+01, 3.03E+01, 3.27E+01,
  144. // 3.52E+01, 3.80E+01, 4.10E+01).finished() );
  145. //
  146. // VectorXcr rho = ( (VectorXcr(31) << 0, 1.54E+01, 4.21E+01,
  147. // 9.25E+01, 1.26E+02, 1.17E+02, 7.57E+01, 3.21E+01, 1.40E+01, 1.96E+01,
  148. // 2.67E+01, 2.56E+01, 2.00E+01, 1.86E+01, 2.31E+01, 2.97E+01, 3.50E+01,
  149. // 3.79E+01, 3.75E+01, 3.32E+01, 2.52E+01, 1.57E+01, 8.38E+00, 5.38E+00,
  150. // 5.49E+00, 6.34E+00, 7.07E+00, 7.81E+00, 8.67E+00, 9.59E+00, 1.05E+01
  151. // ).finished() ); // 200 Ohm-m half space
  152. //
  153. // Earth->SetLayerConductivity( 1./rho.array() );
  154. // // ALL SET UP
  155. // std::cout << *Survey << std::endl;
  156. //
  157. // // OK do your thinc
  158. // //DataTEM* data =
  159. // Survey->ForwardModel( Earth );
  160. }