Main Lemma Repository
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

DipoleSource.cpp 74KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "DipoleSource.h"
  11. #include "KernelEM1DManager.h"
  12. //#include "GroundedElectricDipole.h"
  13. //#include "UngroundedElectricDipole.h"
  14. //#include "MagneticDipole.h"
  15. #include "FieldPoints.h"
  16. #include "HankelTransform.h"
  17. namespace Lemma {
  18. // ==================== FRIENDS ======================
  19. std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) {
  20. stream << ob.Serialize() << "\n";
  21. return stream;
  22. }
  23. // ==================== LIFECYCLE ======================
  24. DipoleSource::DipoleSource( const ctor_key& key ) : LemmaObject( key ),
  25. Type(NOSOURCETYPE),
  26. irec(-1),
  27. Phase(0),
  28. Moment(1),
  29. KernelManager(nullptr),
  30. Receivers(nullptr),
  31. Earth(nullptr)
  32. {
  33. this->Location.setZero();
  34. this->Phat.setZero();
  35. }
  36. DipoleSource::~DipoleSource() {
  37. }
  38. std::shared_ptr<DipoleSource> DipoleSource::NewSP() {
  39. return std::make_shared<DipoleSource> ( ctor_key() );
  40. }
  41. YAML::Node DipoleSource::Serialize() const {
  42. YAML::Node node = DipoleSource::Serialize();
  43. node.SetTag( GetName() );
  44. /*
  45. node["LayerConductivity"] = LayerConductivity;
  46. node["LayerSusceptibility"] = LayerSusceptibility;
  47. node["LayerLowFreqSusceptibility"] = LayerLowFreqSusceptibility;
  48. node["LayerHighFreqSusceptibility"] = LayerHighFreqSusceptibility;
  49. node["LayerTauSusceptibility"] = LayerTauSusceptibility;
  50. node["LayerBreathSusceptibility"] = LayerBreathSusceptibility;
  51. node["LayerPermitivity"] = LayerPermitivity;
  52. node["LayerLowFreqPermitivity"] = LayerLowFreqPermitivity;
  53. node["LayerHighFreqPermitivity"] = LayerHighFreqPermitivity;
  54. node["LayerTauPermitivity"] = LayerTauPermitivity;
  55. node["LayerBreathPermitivity"] = LayerBreathPermitivity;
  56. */
  57. return node;
  58. }
  59. std::shared_ptr<DipoleSource> DipoleSource::Clone() {
  60. auto Obj = DipoleSource::NewSP();
  61. // copy
  62. Obj->Type = Type;
  63. Obj->irec = irec;
  64. Obj->lays = lays;
  65. Obj->layr = layr;
  66. Obj->Phase = Phase;
  67. Obj->Moment = Moment;
  68. Obj->xxp = xxp;
  69. Obj->yyp = yyp;
  70. Obj->rho = rho;
  71. Obj->sp = sp;
  72. Obj->cp = cp;
  73. Obj->scp = scp;
  74. Obj->sps = sps;
  75. Obj->cps = cps;
  76. Obj->c2p = c2p;
  77. Obj->FieldsToCalculate = FieldsToCalculate;
  78. Obj->f = f;
  79. Obj->ik = ik;
  80. Obj->Location = Location;
  81. Obj->Phat = Phat;
  82. Obj->Freqs = Freqs;
  83. return Obj;
  84. }
  85. //--------------------------------------------------------------------------------------
  86. // Class: DipoleSource
  87. // Method: GetName
  88. // Description: Class identifier
  89. //--------------------------------------------------------------------------------------
  90. inline std::string DipoleSource::GetName ( ) const {
  91. return CName;
  92. } // ----- end of method DipoleSource::GetName -----
  93. // ==================== ACCESS ======================
  94. void DipoleSource::SetLocation(const Vector3r &posin) {
  95. this->Location = posin;
  96. }
  97. void DipoleSource::SetLocation(const Real &xp, const Real &yp,
  98. const Real &zp) {
  99. this->Location = Vector3r(xp, yp, zp);
  100. }
  101. void DipoleSource::SetPhase(const Real &phase) {
  102. this->Phase = phase;
  103. }
  104. void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) {
  105. static bool called = false;
  106. if (!called) {
  107. std::cerr << "\n\n=================================================================\n"
  108. << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n"
  109. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  110. << "This method will be removed in future versions of Lemma"
  111. << "\n=================================================================\n";
  112. called = true;
  113. }
  114. // Polarity = pol;
  115. // switch (Polarity) {
  116. // case POSITIVE:
  117. // Moment = std::abs(Moment);
  118. // break;
  119. // case NEGATIVE:
  120. // Moment = -std::abs(Moment);
  121. // break;
  122. // default:
  123. // throw NonValidDipolePolarity();
  124. // };
  125. }
  126. void DipoleSource::SetType(const DipoleSourceType & stype) {
  127. switch (stype) {
  128. case (GROUNDEDELECTRICDIPOLE):
  129. this->Type = stype;
  130. break;
  131. case (UNGROUNDEDELECTRICDIPOLE):
  132. this->Type = stype;
  133. break;
  134. case (MAGNETICDIPOLE):
  135. this->Type = stype;
  136. break;
  137. default:
  138. throw NonValidDipoleTypeAssignment();
  139. }
  140. }
  141. void DipoleSource::SetPolarisation(const Vector3r& pol) {
  142. this->Phat = pol / pol.norm();
  143. }
  144. void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) {
  145. Vector3r pol = (VectorXr(3) << x, y, z).finished();
  146. this->Phat = pol / pol.norm();
  147. }
  148. Vector3r DipoleSource::GetPolarisation() {
  149. return Phat;
  150. }
  151. DipoleSourceType DipoleSource::GetType() {
  152. return Type;
  153. }
  154. void DipoleSource::SetPolarisation(const
  155. DipoleSourcePolarisation &pol) {
  156. static bool called = false;
  157. if (!called) {
  158. std::cout << "\n\n========================================================================================\n"
  159. << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n"
  160. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  161. << "This method will be removed in future versions of Lemma"
  162. << "\n========================================================================================\n";
  163. called = true;
  164. }
  165. switch (pol) {
  166. case (XPOLARISATION):
  167. //this->Polarisation = pol;
  168. this->Phat = (VectorXr(3) << 1, 0, 0).finished();
  169. break;
  170. case (YPOLARISATION):
  171. //this->Polarisation = pol;
  172. this->Phat = (VectorXr(3) << 0, 1, 0).finished();
  173. break;
  174. case (ZPOLARISATION):
  175. //this->Polarisation = pol;
  176. this->Phat = (VectorXr(3) << 0, 0, 1).finished();
  177. break;
  178. default:
  179. throw NonValidDipolePolarisationAssignment();
  180. }
  181. }
  182. void DipoleSource::SetMoment(const Real &moment) {
  183. this->Moment = moment;
  184. }
  185. // ==================== OPERATIONS =====================
  186. void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> ReceiversIn, const int& irecin,
  187. std::shared_ptr<LayeredEarthEM> EarthIn ) {
  188. if (Receivers != ReceiversIn) {
  189. Receivers = ReceiversIn;
  190. }
  191. if (Earth != EarthIn) {
  192. Earth = EarthIn;
  193. }
  194. if (irecin != irec) {
  195. irec = irecin;
  196. }
  197. if (FieldsToCalculate != Fields) {
  198. FieldsToCalculate = Fields;
  199. }
  200. xxp = Receivers->GetLocation(irec)[0] - Location[0];
  201. yyp = Receivers->GetLocation(irec)[1] - Location[1];
  202. rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm();
  203. sp = yyp/rho;
  204. cp = xxp/rho;
  205. scp = sp*cp;
  206. sps = sp*sp;
  207. cps = cp*cp;
  208. c2p = cps-sps;
  209. f = VectorXcr::Zero(13);
  210. ik = VectorXi::Zero(13);
  211. lays = Earth->GetLayerAtThisDepth(Location[2]);
  212. layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]);
  213. KernelManager = KernelEM1DManager::NewSP();
  214. KernelManager->SetEarth(Earth);
  215. // alternative is to use weak_ptr here, this is deep and internal, and we are safe.
  216. KernelManager->SetDipoleSource( shared_from_this().get() , ifreq, Receivers->GetLocation(irec)[2]);
  217. kernelFreq = Freqs(ifreq); // this is never used
  218. ReSetKernels( ifreq, Fields, Receivers, irec, Earth );
  219. return;
  220. }
  221. // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably
  222. // not the most critical piece though
  223. void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> Receivers, const int& irec,
  224. std::shared_ptr<LayeredEarthEM> Earth ) {
  225. Vector3r Pol = Phat;
  226. switch (Type) {
  227. case (GROUNDEDELECTRICDIPOLE):
  228. if (std::abs(Pol[2]) > 0) { // z dipole
  229. switch(FieldsToCalculate) {
  230. case E:
  231. if (lays == 0 && layr == 0) {
  232. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  233. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  234. } else if (lays == 0 && layr > 0) {
  235. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  236. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  237. } else if (lays > 0 && layr == 0) {
  238. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  239. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  240. } else {
  241. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  242. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  243. }
  244. break;
  245. case H:
  246. if (lays == 0 && layr == 0) {
  247. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  248. } else if (lays == 0 && layr > 0) {
  249. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  250. } else if (lays > 0 && layr == 0) {
  251. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  252. } else {
  253. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  254. }
  255. break;
  256. case BOTH:
  257. if ( lays == 0 && layr == 0) {
  258. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  259. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  260. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  261. } else if (lays == 0 && layr > 0) {
  262. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  263. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  264. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  265. } else if (lays > 0 && layr == 0) {
  266. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  267. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  268. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  269. } else {
  270. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  271. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  272. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  273. }
  274. }
  275. }
  276. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  277. switch(FieldsToCalculate) {
  278. case E:
  279. if ( lays == 0 && layr == 0) {
  280. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  281. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  282. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  283. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  284. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  285. } else if (lays == 0 && layr > 0) {
  286. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  287. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  288. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  289. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  290. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  291. } else if (lays > 0 && layr == 0) {
  292. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  293. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  294. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  295. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  296. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  297. } else {
  298. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  299. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  300. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  301. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  302. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  303. }
  304. break;
  305. case H:
  306. if (lays == 0 && layr == 0) {
  307. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  308. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  309. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  310. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  311. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  312. } else if (lays == 0 && layr > 0) {
  313. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  314. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  315. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  316. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  317. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  318. } else if (lays > 0 && layr == 0) {
  319. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  320. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  321. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  322. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  323. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  324. } else {
  325. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  326. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  327. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  328. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  329. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  330. }
  331. break;
  332. case BOTH:
  333. if (lays == 0 && layr == 0) {
  334. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  335. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  336. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  337. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  338. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  339. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  340. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  341. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  342. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  343. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  344. } else if (lays == 0 && layr > 0) {
  345. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  346. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  347. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  348. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  349. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  350. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  351. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  352. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  353. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  354. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  355. } else if (lays > 0 && layr == 0) {
  356. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  357. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  358. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  359. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  360. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  361. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  362. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  363. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  364. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  365. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  366. } else {
  367. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  368. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  369. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  370. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  371. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  372. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  373. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  374. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  375. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  376. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  377. }
  378. break;
  379. }
  380. }
  381. break;
  382. case (UNGROUNDEDELECTRICDIPOLE):
  383. if (std::abs(Pol[2]) > 0) { // z dipole
  384. switch(FieldsToCalculate) {
  385. case E:
  386. if (lays == 0 && layr == 0) {
  387. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  388. } else if (lays == 0 && layr > 0) {
  389. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  390. } else if (lays > 0 && layr == 0) {
  391. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  392. } else {
  393. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  394. }
  395. break;
  396. case H:
  397. if (lays == 0 && layr == 0) {
  398. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  399. } else if (lays == 0 && layr > 0) {
  400. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  401. } else if (lays > 0 && layr == 0) {
  402. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  403. } else {
  404. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  405. }
  406. break;
  407. case BOTH:
  408. if ( lays == 0 && layr == 0) {
  409. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  410. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  411. } else if (lays == 0 && layr > 0) {
  412. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  413. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  414. } else if (lays > 0 && layr == 0) {
  415. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  416. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  417. } else {
  418. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  419. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  420. }
  421. }
  422. }
  423. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  424. switch(FieldsToCalculate) {
  425. case E:
  426. if ( lays == 0 && layr == 0) {
  427. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  428. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  429. } else if (lays == 0 && layr > 0) {
  430. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  431. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  432. } else if (lays > 0 && layr == 0) {
  433. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  434. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  435. } else {
  436. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  437. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  438. }
  439. break;
  440. case H:
  441. if (lays == 0 && layr == 0) {
  442. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  443. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  444. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  445. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  446. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  447. } else if (lays == 0 && layr > 0) {
  448. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  449. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  450. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  451. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  452. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  453. } else if (lays > 0 && layr == 0) {
  454. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  455. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  456. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  457. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  458. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  459. } else {
  460. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  461. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  462. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  463. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  464. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  465. }
  466. break;
  467. case BOTH:
  468. if (lays == 0 && layr == 0) {
  469. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  470. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  471. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  472. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  473. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  474. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  475. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  476. } else if (lays == 0 && layr > 0) {
  477. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  478. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  479. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  480. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  481. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  482. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  483. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  484. } else if (lays > 0 && layr == 0) {
  485. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  486. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  487. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  488. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  489. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  490. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  491. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  492. } else {
  493. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  494. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  495. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  496. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  497. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  498. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  499. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  500. }
  501. break;
  502. }
  503. }
  504. break;
  505. case (MAGNETICDIPOLE):
  506. if (std::abs(Pol[2]) > 0) { // z dipole
  507. switch (FieldsToCalculate) {
  508. case E:
  509. if (lays == 0 && layr == 0) {
  510. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  511. } else if (lays == 0 && layr > 0) {
  512. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  513. } else if (lays > 0 && layr == 0) {
  514. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  515. } else {
  516. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  517. }
  518. break;
  519. case H:
  520. if (lays == 0 && layr == 0) {
  521. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  522. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  523. } else if (lays == 0 && layr > 0) {
  524. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  525. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  526. } else if (lays > 0 && layr == 0) {
  527. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  528. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  529. } else {
  530. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  531. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  532. }
  533. break;
  534. case BOTH:
  535. if (lays == 0 && layr == 0) {
  536. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  537. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  538. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  539. } else if (lays == 0 && layr > 0) {
  540. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  541. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  542. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  543. } else if (lays > 0 && layr == 0) {
  544. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  545. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  546. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  547. } else {
  548. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  549. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  550. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  551. }
  552. }
  553. }
  554. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  555. switch (FieldsToCalculate) {
  556. case E:
  557. if ( lays == 0 && layr == 0) {
  558. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  559. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  560. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  561. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  562. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  563. } else if (lays == 0 && layr > 0) {
  564. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  565. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  566. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  567. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  568. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  569. } else if (lays > 0 && layr == 0) {
  570. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INAIR>( );
  571. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INAIR>( );
  572. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INAIR>( );
  573. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INAIR>( );
  574. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INAIR>( );
  575. } else {
  576. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  577. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  578. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  579. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  580. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  581. }
  582. break;
  583. case H:
  584. if ( lays == 0 && layr == 0) {
  585. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  586. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  587. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  588. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  589. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  590. } else if (lays == 0 && layr > 0) {
  591. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  592. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  593. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  594. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  595. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  596. } else if (lays > 0 && layr == 0) {
  597. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INAIR>( );
  598. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INAIR>( );
  599. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INAIR>( );
  600. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INAIR>( );
  601. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INAIR>( );
  602. } else {
  603. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  604. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  605. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  606. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  607. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  608. }
  609. break;
  610. case BOTH:
  611. if ( lays == 0 && layr == 0) {
  612. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  613. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  614. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  615. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  616. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  617. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  618. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  619. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  620. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  621. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  622. } else if (lays == 0 && layr > 0) {
  623. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  624. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  625. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  626. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  627. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  628. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  629. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  630. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  631. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  632. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  633. } else {
  634. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  635. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  636. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  637. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  638. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  639. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  640. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  641. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  642. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  643. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  644. }
  645. break;
  646. }
  647. }
  648. break;
  649. default:
  650. std::cerr << "Dipole type incorrect, in dipolesource.cpp";
  651. exit(EXIT_FAILURE);
  652. }
  653. }
  654. void DipoleSource::UpdateFields( const int& ifreq, HankelTransform* Hankel, const Real& wavef) {
  655. Vector3r Pol = Phat;
  656. switch (Type) {
  657. case (GROUNDEDELECTRICDIPOLE):
  658. //Hankel->ComputeRelated(rho, KernelManager);
  659. if (std::abs(Pol[2]) > 0) { // z dipole
  660. switch(FieldsToCalculate) {
  661. case E:
  662. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  663. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  664. std::cout.precision(12);
  665. this->Receivers->AppendEfield(ifreq, irec,
  666. -Pol[2]*QPI*cp*f(10)*Moment,
  667. -Pol[2]*QPI*sp*f(10)*Moment,
  668. Pol[2]*QPI*f(11)*Moment);
  669. break;
  670. case H:
  671. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  672. this->Receivers->AppendHfield(ifreq, irec,
  673. -Pol[2]*QPI*sp*f(12)*Moment,
  674. Pol[2]*QPI*cp*f(12)*Moment,
  675. 0. );
  676. break;
  677. case BOTH:
  678. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  679. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  680. this->Receivers->AppendEfield(ifreq, irec,
  681. -Pol[2]*QPI*cp*f(10)*Moment,
  682. -Pol[2]*QPI*sp*f(10)*Moment,
  683. Pol[2]*QPI*f(11)*Moment );
  684. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  685. this->Receivers->AppendHfield(ifreq, irec,
  686. -Pol[2]*QPI*sp*f(12)*Moment,
  687. Pol[2]*QPI*cp*f(12)*Moment,
  688. 0. );
  689. } // Fields to calculate Z polarity Electric dipole
  690. }
  691. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  692. switch(FieldsToCalculate) {
  693. case E:
  694. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  695. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  696. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  697. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  698. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  699. if (std::abs(Pol[1]) > 0) {
  700. this->Receivers->AppendEfield(ifreq, irec,
  701. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  702. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  703. Pol[1]*QPI*sp*f(4)*Moment);
  704. }
  705. if (std::abs(Pol[0]) > 0) {
  706. this->Receivers->AppendEfield(ifreq, irec,
  707. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  708. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  709. Pol[0]*Moment*QPI*cp*f(4) );
  710. }
  711. break;
  712. case H:
  713. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  714. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  715. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  716. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  717. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  718. if (std::abs(Pol[1]) > 0) {
  719. this->Receivers->AppendHfield(ifreq, irec,
  720. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  721. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  722. -Pol[1]*QPI*cp*f(9)*Moment );
  723. }
  724. if (std::abs(Pol[0]) > 0) {
  725. this->Receivers->AppendHfield(ifreq, irec,
  726. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  727. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  728. Pol[0]*Moment*QPI*sp*f(9) );
  729. }
  730. break;
  731. case BOTH:
  732. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  733. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  734. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  735. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  736. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  737. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  738. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  739. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  740. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  741. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  742. if (std::abs(Pol[1]) > 0) {
  743. this->Receivers->AppendEfield(ifreq, irec,
  744. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  745. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  746. Pol[1]*QPI*sp*f(4)*Moment);
  747. this->Receivers->AppendHfield(ifreq, irec,
  748. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  749. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  750. -Pol[1]*QPI*cp*f(9)*Moment );
  751. }
  752. if (std::abs(Pol[0]) > 0) {
  753. this->Receivers->AppendEfield(ifreq, irec,
  754. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  755. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  756. Pol[0]*Moment*QPI*cp*f(4) );
  757. this->Receivers->AppendHfield(ifreq, irec,
  758. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  759. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  760. Pol[0]*Moment*QPI*sp*f(9) );
  761. }
  762. break;
  763. }
  764. }
  765. break; // GROUNDEDELECTRICDIPOLE
  766. case UNGROUNDEDELECTRICDIPOLE:
  767. if (std::abs(Pol[2]) > 0) { // z dipole
  768. switch(FieldsToCalculate) {
  769. case E:
  770. f(10) = 0;
  771. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  772. this->Receivers->AppendEfield(ifreq, irec,
  773. -Pol[2]*QPI*cp*f(10)*Moment,
  774. -Pol[2]*QPI*sp*f(10)*Moment,
  775. Pol[2]*QPI*f(11)*Moment);
  776. break;
  777. case H:
  778. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  779. this->Receivers->AppendHfield(ifreq, irec,
  780. -Pol[2]*QPI*sp*f(12)*Moment,
  781. Pol[2]*QPI*cp*f(12)*Moment,
  782. 0. );
  783. break;
  784. case BOTH:
  785. f(10) = 0;
  786. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  787. this->Receivers->AppendEfield(ifreq, irec,
  788. -Pol[2]*QPI*cp*f(10)*Moment,
  789. -Pol[2]*QPI*sp*f(10)*Moment,
  790. Pol[2]*QPI*f(11)*Moment );
  791. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  792. this->Receivers->AppendHfield(ifreq, irec,
  793. -Pol[2]*QPI*sp*f(12)*Moment,
  794. Pol[2]*QPI*cp*f(12)*Moment,
  795. 0. );
  796. } // Fields to calculate Z polarity Electric dipole
  797. }
  798. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole
  799. switch(FieldsToCalculate) {
  800. case E:
  801. f(0) = 0;
  802. f(1) = 0;
  803. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  804. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  805. f(4) = 0;
  806. if (std::abs(Pol[1]) > 0) {
  807. this->Receivers->AppendEfield(ifreq, irec,
  808. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  809. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  810. Pol[1]*QPI*sp*f(4)*Moment);
  811. }
  812. if (std::abs(Pol[0]) > 0) {
  813. this->Receivers->AppendEfield(ifreq, irec,
  814. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  815. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  816. Pol[0]*Moment*QPI*cp*f(4) );
  817. }
  818. break;
  819. case H:
  820. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  821. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  822. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  823. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  824. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  825. if (std::abs(Pol[1]) > 0) {
  826. this->Receivers->AppendHfield(ifreq, irec,
  827. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  828. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  829. -Pol[1]*QPI*cp*f(9)*Moment );
  830. // Analytic whole space solution could go here
  831. }
  832. if (std::abs(Pol[0]) > 0) {
  833. this->Receivers->AppendHfield(ifreq, irec,
  834. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  835. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  836. Pol[0]*Moment*QPI*sp*f(9) );
  837. // Analytic whole space solution
  838. }
  839. break;
  840. case BOTH:
  841. f(0) = 0;
  842. f(1) = 0;
  843. f(4) = 0;
  844. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(0)->GetZs();
  845. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(1)->GetZs();
  846. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  847. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  848. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  849. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  850. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  851. if (std::abs(Pol[1]) > 0) {
  852. this->Receivers->AppendEfield(ifreq, irec,
  853. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  854. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  855. Pol[1]*QPI*sp*f(4)*Moment);
  856. this->Receivers->AppendHfield(ifreq, irec,
  857. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  858. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  859. -Pol[1]*QPI*cp*f(9)*Moment );
  860. }
  861. if (std::abs(Pol[0]) > 0) {
  862. this->Receivers->AppendEfield(ifreq, irec,
  863. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  864. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  865. Pol[0]*Moment*QPI*cp*f(4) );
  866. this->Receivers->AppendHfield(ifreq, irec,
  867. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  868. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  869. Pol[0]*Moment*QPI*sp*f(9) );
  870. }
  871. break;
  872. }
  873. }
  874. break; // UNGROUNDEDELECTRICDIPOLE
  875. case MAGNETICDIPOLE:
  876. //Hankel->ComputeRelated(rho, KernelManager);
  877. if (std::abs(Pol[2]) > 0) { // z dipole
  878. switch(FieldsToCalculate) {
  879. case E:
  880. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  881. this->Receivers->AppendEfield(ifreq, irec,
  882. Pol[2]*Moment*QPI*sp*f(12),
  883. -Pol[2]*Moment*QPI*cp*f(12),
  884. 0);
  885. break;
  886. case H:
  887. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  888. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  889. this->Receivers->AppendHfield(ifreq, irec,
  890. -Pol[2]*Moment*QPI*cp*f(10),
  891. -Pol[2]*Moment*QPI*sp*f(10),
  892. Pol[2]*Moment*QPI*f(11) );
  893. break;
  894. case BOTH:
  895. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  896. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  897. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  898. this->Receivers->AppendEfield(ifreq, irec,
  899. Pol[2]*Moment*QPI*sp*f(12),
  900. -Pol[2]*Moment*QPI*cp*f(12),
  901. 0);
  902. this->Receivers->AppendHfield(ifreq, irec,
  903. -Pol[2]*Moment*QPI*cp*f(10),
  904. -Pol[2]*Moment*QPI*sp*f(10),
  905. Pol[2]*Moment*QPI*f(11) );
  906. break;
  907. }
  908. }
  909. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  910. switch (FieldsToCalculate) {
  911. case E:
  912. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  913. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  914. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  915. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  916. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  917. if (std::abs(Pol[0]) > 0) {
  918. this->Receivers->AppendEfield(ifreq, irec,
  919. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  920. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  921. Pol[0]*Moment*QPI*sp*f(9));
  922. }
  923. if (std::abs(Pol[1]) > 0) {
  924. this->Receivers->AppendEfield(ifreq, irec,
  925. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  926. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  927. -Pol[1]*Moment*QPI*cp*f(9) );
  928. }
  929. break;
  930. case H:
  931. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  932. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  933. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  934. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  935. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  936. if (std::abs(Pol[0]) > 0) {
  937. this->Receivers->AppendHfield(ifreq, irec,
  938. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  939. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  940. Pol[0]*Moment*QPI*cp*f(4) );
  941. }
  942. if (std::abs(Pol[1]) > 0) {
  943. this->Receivers->AppendHfield(ifreq, irec,
  944. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  945. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  946. Pol[1]*Moment*QPI*sp*f(4));
  947. }
  948. break;
  949. case BOTH:
  950. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  951. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  952. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  953. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  954. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  955. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  956. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  957. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  958. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  959. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  960. if (std::abs(Pol[0]) > 0) {
  961. this->Receivers->AppendEfield(ifreq, irec,
  962. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  963. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  964. Pol[0]*Moment*QPI*sp*f(9));
  965. this->Receivers->AppendHfield(ifreq, irec,
  966. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  967. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  968. Pol[0]*Moment*QPI*cp*f(4) );
  969. }
  970. if (std::abs(Pol[1]) > 0) {
  971. this->Receivers->AppendEfield(ifreq, irec,
  972. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  973. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  974. -Pol[1]*Moment*QPI*cp*f(9) );
  975. this->Receivers->AppendHfield(ifreq, irec,
  976. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  977. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  978. Pol[1]*Moment*QPI*sp*f(4));
  979. }
  980. break;
  981. }
  982. }
  983. break;
  984. case NOSOURCETYPE:
  985. throw NonValidDipoleType(this);
  986. } // Source Type Switch
  987. }
  988. // ==================== INQUIRY ======================
  989. std::shared_ptr<KernelEM1DManager> DipoleSource::GetKernelManager() {
  990. return KernelManager;
  991. }
  992. Vector3r DipoleSource::GetLocation() {
  993. return this->Location;
  994. }
  995. #ifdef LEMMAUSEVTK
  996. vtkActor* DipoleSource::GetVtkActor() {
  997. vtkActor* vActor;
  998. vtkLineSource* vLineSource;
  999. vtkTubeFilter* vTube;
  1000. vtkPolyDataMapper* vMapper;
  1001. vtkRegularPolygonSource* vCircleSource;
  1002. vLineSource = vtkLineSource::New();
  1003. vTube = vtkTubeFilter::New();
  1004. vMapper = vtkPolyDataMapper::New();
  1005. vCircleSource = vtkRegularPolygonSource::New();
  1006. VectorXr M0 = Location - .5*Moment*Phat;
  1007. VectorXr M1 = Location + .5*Moment*Phat;
  1008. vActor = vtkActor::New();
  1009. switch (Type) {
  1010. case GROUNDEDELECTRICDIPOLE:
  1011. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1012. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1013. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1014. vTube->SetRadius(.1 * std::abs(Moment));
  1015. vTube->SetNumberOfSides(6);
  1016. vTube->SetCapping(1);
  1017. vMapper->SetInputConnection(vTube->GetOutputPort());
  1018. vActor->SetMapper(vMapper);
  1019. vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1020. break;
  1021. case UNGROUNDEDELECTRICDIPOLE:
  1022. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1023. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1024. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1025. vTube->SetRadius(.1 * std::abs(Moment));
  1026. vTube->SetNumberOfSides(6);
  1027. vTube->SetCapping(1);
  1028. vMapper->SetInputConnection(vTube->GetOutputPort());
  1029. vActor->SetMapper(vMapper);
  1030. //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1031. vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX));
  1032. vActor->GetProperty()->SetOpacity(1.);
  1033. break;
  1034. case MAGNETICDIPOLE:
  1035. vCircleSource->SetCenter(Location(0), Location(1),
  1036. Location(2));
  1037. vCircleSource->SetNumberOfSides(360);
  1038. vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]);
  1039. vCircleSource->SetRadius(0.2); // .2 m radius
  1040. vCircleSource->SetGeneratePolygon(false);
  1041. vCircleSource->SetGeneratePolyline(true);
  1042. vCircleSource->Update();
  1043. vTube->SetInputConnection(vCircleSource->GetOutputPort());
  1044. //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)),
  1045. // (float)(*yCoords->GetTuple(ny))) / 100);
  1046. vTube->SetRadius(.1*std::abs(Moment));
  1047. vTube->SetNumberOfSides(6);
  1048. vTube->SetCapping(1);
  1049. vMapper->SetInputConnection(vTube->GetOutputPort());
  1050. vActor->SetMapper(vMapper);
  1051. vActor->GetProperty()->SetColor(.9,.2,.9);
  1052. break;
  1053. default:
  1054. throw NonValidDipoleType();
  1055. }
  1056. vLineSource->Delete();
  1057. vCircleSource->Delete();
  1058. vTube->Delete();
  1059. vMapper->Delete();
  1060. return vActor;
  1061. }
  1062. #endif
  1063. Real DipoleSource::GetLocation(const int& coordinate) {
  1064. switch (coordinate) {
  1065. case (0):
  1066. return this->Location.x();
  1067. break;
  1068. case (1):
  1069. return this->Location.y();
  1070. break;
  1071. case (2):
  1072. return this->Location.z();
  1073. break;
  1074. default:
  1075. throw NonValidLocationCoordinate( );
  1076. }
  1077. }
  1078. DipoleSourceType DipoleSource::GetDipoleSourceType() {
  1079. return this->Type;
  1080. }
  1081. //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() {
  1082. // return this->Polarisation;
  1083. //}
  1084. Real DipoleSource::GetAngularFrequency(const int& ifreq) {
  1085. return 2.*PI*this->Freqs(ifreq);
  1086. }
  1087. Real DipoleSource::GetFrequency(const int& ifreq) {
  1088. return this->Freqs(ifreq);
  1089. }
  1090. VectorXr DipoleSource::GetFrequencies( ) {
  1091. return this->Freqs;
  1092. }
  1093. Real DipoleSource::GetPhase() {
  1094. return this->Phase;
  1095. }
  1096. Real DipoleSource::GetMoment() {
  1097. return this->Moment;
  1098. }
  1099. int DipoleSource::GetNumberOfFrequencies() {
  1100. return (int)(this->Freqs.size());
  1101. }
  1102. void DipoleSource::SetNumberOfFrequencies(const int &nfreq){
  1103. Freqs.resize(nfreq);
  1104. Freqs.setZero();
  1105. }
  1106. void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){
  1107. Freqs(ifreq) = freq;
  1108. }
  1109. void DipoleSource::SetFrequencies(const VectorXr &freqs){
  1110. Freqs = freqs;
  1111. }
  1112. /////////////////////////////////////////////////////////////////
  1113. /////////////////////////////////////////////////////////////////
  1114. // Error classes
  1115. NullDipoleSource::NullDipoleSource() :
  1116. runtime_error( "NULL VALUED DIPOLE SOURCE") {}
  1117. NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) :
  1118. runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { }
  1119. NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) :
  1120. runtime_error( "NON VALID DIPOLE TYPE") {
  1121. std::cout << "Thrown by instance of "
  1122. << ptr->GetName() << std::endl;
  1123. }
  1124. NonValidDipoleType::NonValidDipoleType( ) :
  1125. runtime_error( "NON VALID DIPOLE TYPE") { }
  1126. NonValidDipolePolarity::NonValidDipolePolarity () :
  1127. runtime_error( "NON VALID DIPOLE POLARITY") { }
  1128. NonValidDipolePolarisation::NonValidDipolePolarisation( ) :
  1129. runtime_error( "NON VALID DIPOLE TYPE") { }
  1130. NonValidDipolePolarisationAssignment::
  1131. NonValidDipolePolarisationAssignment( ) :
  1132. runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { }
  1133. NonValidLocationCoordinate::NonValidLocationCoordinate( ) :
  1134. runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { }
  1135. }