123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- /* This file is part of Lemma, a geophysical modelling and inversion API.
- * More information is available at http://lemmasoftware.org
- */
-
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/.
- */
-
- /**
- * @file
- * @date 09/25/2013 08:20:14 AM
- * @version $Id$
- * @author Trevor Irons (ti)
- * @email Trevor.Irons@xri-geo.com
- * @copyright Copyright (c) 2013, XRI Geophysics, LLC
- * @copyright Copyright (c) 2013, Trevor Irons
- */
-
- #ifndef CUBICSPLINEINTERPOLATOR_INC
- #define CUBICSPLINEINTERPOLATOR_INC
-
- #include "LemmaObject.h"
-
- namespace Lemma {
-
- // Simple struct to hold spline terms
- struct SplineSet{
- VectorXr a;
- VectorXr b;
- VectorXr c;
- VectorXr d;
- VectorXr x;
-
- SplineSet( ) {
- }
-
- SplineSet(const int&n) {
- a = VectorXr::Zero(n+1);
- b = VectorXr::Zero(n);
- c = VectorXr::Zero(n+1);
- d = VectorXr::Zero(n);
- x = VectorXr::Zero(n+1);
- }
- };
-
- /**
- \brief Real 1D Natural cubic spline interpolator.
- \details Splines are fit between knots \f$j\f$ according to the forulae
- \f[ S_j(x) = a_j + b_j(x - x_j) + c_j(x-x_j)^2 + d_j(x-x_y)^3 \f]
- The spline must satisfy the following conditions
- \f{eqnarray} {
- S_i(x_i) & = & y_i = S_{i-1}(x_i), i = 1,..., n-1 \\
- S'_i(x_i) & = & S'_{i-1}(x_i), i = 1,..., n-1 \\
- S''_i(x_i) & = & S''_{i-1}(x_i), i = 1,..., n-1 \\
- S''_0(x_0) & = & S''_{n-1}(x_n) = 0
- \f}
- */
- class CubicSplineInterpolator : public LemmaObject {
-
- friend std::ostream &operator<<(std::ostream &stream,
- const CubicSplineInterpolator &ob);
-
- public:
-
- // ==================== LIFECYCLE =======================
-
- /**
- * Factory method for generating concrete class.
- * @return a std::shared_ptr of type CubicSplineInterpolator
- */
- static std::shared_ptr<CubicSplineInterpolator> NewSP();
-
- /**
- * Uses YAML to serialize this object.
- * @return a YAML::Node
- */
- YAML::Node Serialize() const;
-
- /**
- * Constructs an object from a YAML::Node.
- */
- static std::shared_ptr< CubicSplineInterpolator > DeSerialize(const YAML::Node& node);
-
- // ==================== OPERATORS =======================
-
- // ==================== OPERATIONS =======================
-
- /** Sets the knots to use for interpolation.
- @param[in] x are the absissa values
- @param[in] y are the ordinate values
- */
- void SetKnots(const VectorXr& x, const VectorXr& y);
-
- /** Resets the knots to use for interpolation, when abscissa values haven't changed.
- @param[in] y are the ordinate values
- */
- void ResetKnotOrdinate( const VectorXr& y );
-
- /** Interpolate a monotonically increasing ordered set.
- @param[in] x are the interpolation abscissa points
- @return the ordinate values at x
- */
- VectorXr InterpolateOrderedSet(const VectorXr& x);
-
- /** integrates the spline from x0 to x1. Uses composite Simpson's rule and n is the number of segments
- * @param[in] x0 is left argument
- * @param[in] x1 is right argument
- * @param[in] n is the number of points, must be even
- */
- Real Integrate(const Real& x0, const Real& x1, const int& n);
-
- /** integrates using cubic spline values. Taken from AMRIRA P223F project code Leroi, which in turn was based on
- This is a modification of the FUNCTION PPVALU in the book
- "A PRACTICAL GUIDE TO SPLINES" by C. DE BOOR
- */
- Real Integrate(const Real& x0, const Real& x1);
-
- /** @returns the know abscissa values
- */
- VectorXr GetKnotAbscissa();
-
- /** @returns the know abscissa values
- */
- VectorXr GetKnotOrdinate();
-
- /** Interpolation at a single point.
- @param[in] x is the interpolation abscissa point
- @param[in] i is an optional index to start searching at. Defaults to zero
- @return the ordinate value at x
- */
- Real Interpolate(const Real& x, int& i);
-
- /** Interpolation at a single point.
- @param[in] x is the interpolation abscissa point
- @return the ordinate value at x
- */
- Real Interpolate(const Real& x);
-
- // ==================== ACCESS =======================
-
- // ==================== INQUIRY =======================
-
- /** Returns the name of the underlying class, similiar to Python's type */
- virtual inline std::string GetName() const {
- return CName;
- }
-
- protected:
-
- // ==================== LIFECYCLE =======================
-
- /** Default protected constructor, use New */
- CubicSplineInterpolator ( );
-
- /** Protected DeDerializing constructor, use factory DeSerialize method*/
- CubicSplineInterpolator (const YAML::Node& node);
-
- /** Default protected destructor, smart pointers auto delete */
- ~CubicSplineInterpolator ();
-
- /**
- * @copybrief LemmaObject::Release()
- * @copydetails LemmaObject::Release()
- */
- void Release();
-
- // ==================== OPERATIONS =======================
-
- /** Finds the interval of knots in spline to use for integration.
- */
- int Interval(const Real& x);
-
- private:
-
- /** ASCII string representation of the class name */
- static constexpr auto CName = "CubicSplineInterpolator";
-
- SplineSet Spline;
-
- int ilo;
-
- int mflag;
-
- // ==================== DATA MEMBERS =========================
-
- }; // ----- end of class CubicSplineInterpolator -----
-
- } // ----- end of Lemma name -----
-
- #endif // ----- #ifndef CUBICSPLINEINTERPOLATOR_INC -----
-
- /* vim: set tabstop=4 expandtab: */
- /* vim: set filetype=cpp: */
|