Galerkin FEM for elliptic PDEs
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

FEM4EllipticPDE.cpp 38KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960
  1. // ===========================================================================
  2. //
  3. // Filename: FEM4EllipticPDE.cpp
  4. //
  5. // Created: 08/16/12 18:19:57
  6. // Compiler: Tested with g++, icpc, and MSVC 2010
  7. //
  8. // Author: Trevor Irons (ti)
  9. //
  10. // Organisation: Colorado School of Mines (CSM)
  11. // United States Geological Survey (USGS)
  12. //
  13. // Email: tirons@mines.edu, tirons@usgs.gov
  14. //
  15. // This program is free software: you can redistribute it and/or modify
  16. // it under the terms of the GNU General Public License as published by
  17. // the Free Software Foundation, either version 3 of the License, or
  18. // (at your option) any later version.
  19. //
  20. // This program is distributed in the hope that it will be useful,
  21. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  23. // GNU General Public License for more details.
  24. //
  25. // You should have received a copy of the GNU General Public License
  26. // along with this program. If not, see <http://www.gnu.org/licenses/>.
  27. //
  28. // ===========================================================================
  29. /**
  30. @file
  31. @author Trevor Irons
  32. @date 08/16/12
  33. @version 0.0
  34. **/
  35. #include "FEM4EllipticPDE.h"
  36. namespace Lemma {
  37. std::ostream &operator<<(std::ostream &stream,
  38. const FEM4EllipticPDE &ob) {
  39. stream << *(LemmaObject*)(&ob);
  40. return stream;
  41. }
  42. // ==================== LIFECYCLE =======================
  43. FEM4EllipticPDE::FEM4EllipticPDE(const std::string&name) :
  44. LemmaObject(name), BndryH(10), BndrySigma(10),
  45. vtkSigma(NULL), vtkG(NULL), vtkGrid(NULL), gFcn3(NULL) {
  46. }
  47. FEM4EllipticPDE::~FEM4EllipticPDE() {
  48. }
  49. void FEM4EllipticPDE::Release() {
  50. delete this;
  51. }
  52. FEM4EllipticPDE* FEM4EllipticPDE::New( ) {
  53. FEM4EllipticPDE* Obj = new FEM4EllipticPDE("FEM4EllipticPDE");
  54. Obj->AttachTo(Obj);
  55. return Obj;
  56. }
  57. void FEM4EllipticPDE::Delete() {
  58. this->DetachFrom(this);
  59. }
  60. // ==================== OPERATIONS =======================
  61. void FEM4EllipticPDE::SetSigmaFunction(vtkImplicitFunction* sigma) {
  62. vtkSigma = sigma;
  63. }
  64. void FEM4EllipticPDE::SetBoundaryStep(const Real& h) {
  65. BndryH = h;
  66. }
  67. void FEM4EllipticPDE::SetGFunction(vtkImplicitFunction* g) {
  68. vtkG = g;
  69. }
  70. void FEM4EllipticPDE::SetGFunction( Real (*gFcn)(const Real&, const Real&, const Real&) ) {
  71. // vtkG = g;
  72. gFcn3 = gFcn;
  73. }
  74. void FEM4EllipticPDE::SetGrid(vtkDataSet* grid) {
  75. vtkGrid = grid;
  76. }
  77. vtkSmartPointer<vtkIdList> FEM4EllipticPDE::GetConnectedPoints(const int& id0) {
  78. vtkSmartPointer<vtkIdList> pointIds = vtkSmartPointer<vtkIdList>::New();
  79. vtkSmartPointer<vtkIdList> cellList = vtkSmartPointer<vtkIdList>::New();
  80. vtkGrid->GetPointCells(id0, cellList);
  81. for(int i=0;i<cellList->GetNumberOfIds(); ++i){
  82. vtkCell* cell = vtkGrid->GetCell(cellList->GetId(i));
  83. if(cell->GetNumberOfEdges() > 0){
  84. for(int j=0; j<cell->GetNumberOfEdges(); ++j){
  85. vtkCell* edge = cell->GetEdge(j);
  86. vtkIdList* edgePoints=edge->GetPointIds();
  87. if(edgePoints->GetId(0)==id0){
  88. pointIds->InsertUniqueId(edgePoints->GetId(1));
  89. } else if(edgePoints->GetId(1)==id0){
  90. pointIds->InsertUniqueId(edgePoints->GetId(0));
  91. }
  92. }
  93. }
  94. }
  95. return pointIds;
  96. }
  97. Real FEM4EllipticPDE::dist(Real r0[3], Real r1[3]) {
  98. Real rm0 = r1[0] - r0[0];
  99. Real rm1 = r1[1] - r0[1];
  100. Real rm2 = r1[2] - r0[2];
  101. return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
  102. }
  103. Real FEM4EllipticPDE::dist(const Vector3r& r0, const Vector3r& r1) {
  104. Real rm0 = r1[0] - r0[0];
  105. Real rm1 = r1[1] - r0[1];
  106. Real rm2 = r1[2] - r0[2];
  107. return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
  108. }
  109. //--------------------------------------------------------------------------------------
  110. // Class: FEM4EllipticPDE
  111. // Method: SetupDC
  112. //--------------------------------------------------------------------------------------
  113. void FEM4EllipticPDE::SetupDC ( DCSurvey* Survey, const int& ij ) {
  114. ////////////////////////////////////////////////////////////
  115. // Load vector g, solution vector u
  116. std::cout << "\nBuilding load vector (g)" << std::endl;
  117. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  118. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
  119. int iia(0);
  120. Real jja(0);
  121. Survey->GetA( ij, iia, jja );
  122. //g(ii) = jj;
  123. int iib(0);
  124. Real jjb(0);
  125. Survey->GetB( ij, iib, jjb );
  126. //g(ii) = jj;
  127. /* 3D Phi */
  128. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  129. // Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  130. // for (int ii=0; ii<4; ++ii) {
  131. // double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  132. // C(ii, 0) = 1;
  133. // C(ii, 1) = pts[0];
  134. // C(ii, 2) = pts[1];
  135. // C(ii, 3) = pts[2];
  136. // }
  137. // Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  138. //
  139. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  140. int ID[4];
  141. ID[0] = Ids->GetId(0);
  142. ID[1] = Ids->GetId(1);
  143. ID[2] = Ids->GetId(2);
  144. ID[3] = Ids->GetId(3);
  145. //Real V = C.determinant(); // volume of tetrahedra
  146. Real sum(0);
  147. if (ID[0] == iia || ID[1] == iia || ID[2] == iia || ID[3] == iia ) {
  148. std::cout << "Caught A electrode, injecting " << iia << std::endl;
  149. //sum = 10;
  150. //g(ID[iia]) += jja;
  151. g(iia) += jja;
  152. }
  153. if (ID[0] == iib || ID[1] == iib || ID[2] == iib || ID[3] == iib) {
  154. //sum = -10;
  155. std::cout << "Caught B electrode, injecting " << iib << std::endl;
  156. //g(ID[iib]) += jjb;
  157. g(iib) += jjb;
  158. }
  159. //g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
  160. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  161. }
  162. return ;
  163. } // ----- end of method FEM4EllipticPDE::SetupDC -----
  164. void FEM4EllipticPDE::Solve( const std::string& resfile ) {
  165. ConstructAMatrix();
  166. SetupPotential();
  167. //ConstructLoadVector();
  168. std::cout << "\nSolving" << std::endl;
  169. std::cout << std::setw(5) << " " << std::setw(14) << "rows" << std::setw(14) << "cols" << std::endl;
  170. std::cout << std::setw(5) << " " << std::setw(14) << "--------" << std::setw(14) << "--------" << std::endl;
  171. std::cout << std::setw(5) << "A:" << std::setw(14) << A.rows() << std::setw(14) << A.cols() << std::endl;
  172. std::cout << std::setw(5) << "g:" << std::setw(14) << g.rows() << std::setw(14) << g.cols() << std::endl;
  173. ////////////////////////////////////////////////////////////
  174. // Solving:
  175. //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
  176. //VectorXr u = chol.solve(g);
  177. //#define LUSOLVE
  178. #ifdef LUSOLVE
  179. Eigen::SparseLU<Eigen::SparseMatrix<Real, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > solver;
  180. std::cout << "LU analyze pattern" << std::endl;
  181. solver.analyzePattern(A);
  182. std::cout << "LU factorizing" << std::endl;
  183. solver.factorize(A);
  184. std::cout << "LU solving" << std::endl;
  185. solver.factorize(A);
  186. VectorXr u = solver.solve(g);
  187. #endif
  188. #define CGSOLVE
  189. #ifdef CGSOLVE
  190. // TODO try IncompleteLUT preconditioner
  191. Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
  192. //cg.setMaxIterations(3000);
  193. //cg.setTolerance(1e-28);
  194. VectorXr u = cg.solve(g);
  195. std::cout << "#iterations: " << cg.iterations() << std::endl;
  196. std::cout << "estimated error: " << cg.error() << std::endl;
  197. #endif
  198. vtkDoubleArray *gArray = vtkDoubleArray::New();
  199. vtkDoubleArray *uArray = vtkDoubleArray::New();
  200. uArray->SetNumberOfComponents(1);
  201. gArray->SetNumberOfComponents(1);
  202. for (int iu = 0; iu<u.size(); ++iu) {
  203. uArray->InsertTuple1(iu, u[iu]);
  204. gArray->InsertTuple1(iu, g[iu]);
  205. }
  206. uArray->SetName("u");
  207. gArray->SetName("g");
  208. vtkGrid->GetPointData()->AddArray(uArray);
  209. vtkGrid->GetPointData()->AddArray(gArray);
  210. vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
  211. Writer->SetInputData(vtkGrid);
  212. Writer->SetFileName(resfile.c_str());
  213. Writer->Write();
  214. Writer->Delete();
  215. gArray->Delete();
  216. uArray->Delete();
  217. }
  218. //--------------------------------------------------------------------------------------
  219. // Class: FEM4EllipticPDE
  220. // Method: ConstructAMatrix
  221. //--------------------------------------------------------------------------------------
  222. void FEM4EllipticPDE::ConstructAMatrix ( ) {
  223. /////////////////////////////////////////////////////////////////////////
  224. // Build stiffness matrix (A)
  225. std::cout << "Building Stiffness Matrix (A) " << std::endl;
  226. std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
  227. std::cout << "\tMesh has " << vtkGrid->GetNumberOfPoints() << " points " << std::endl;
  228. //Eigen::SparseMatrix<Real>
  229. A.resize(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
  230. std::vector< Eigen::Triplet<Real> > coeffs;
  231. if ( !vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet") ) {
  232. throw std::runtime_error("No HomogeneousDirichlet boundary conditions in input file.");
  233. }
  234. if ( !vtkGrid->GetCellData()->GetScalars("G") && !vtkGrid->GetPointData()->GetScalars("G") ) {
  235. throw std::runtime_error("No Cell or Point Data G");
  236. }
  237. bool GCell = false;
  238. if ( vtkGrid->GetCellData()->GetScalars("G") ) {
  239. GCell = true;
  240. }
  241. // Here we iterate over all of the cells
  242. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  243. assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
  244. // TODO, in production code we might not want to do this check here
  245. if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
  246. throw std::runtime_error("Non-tetrahedral mesh encountered!");
  247. }
  248. // construct coordinate matrix C
  249. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  250. for (int ii=0; ii<4; ++ii) {
  251. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  252. C(ii, 0) = 1;
  253. C(ii, 1) = pts[0] ;
  254. C(ii, 2) = pts[1] ;
  255. C(ii, 3) = pts[2] ;
  256. }
  257. Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  258. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  259. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  260. int ID[4];
  261. ID[0] = Ids->GetId(0);
  262. ID[1] = Ids->GetId(1);
  263. ID[2] = Ids->GetId(2);
  264. ID[3] = Ids->GetId(3);
  265. Real sigma_bar(0);
  266. // TEST VOID IN SIGMA!! TODO DON"T KEEP THIS
  267. /*
  268. Real xc = C.col(1).array().mean();
  269. Real yc = C.col(2).array().mean();
  270. Real zc = C.col(3).array().mean();
  271. if ( xc >= 2.5 && xc <= 5. && yc>=2.5 && yc <= 5.) {
  272. sigma_bar = 0.;
  273. } else {
  274. sigma_bar = 1.;
  275. }
  276. */
  277. sigma_bar = 1.;
  278. for (int ii=0; ii<4; ++ii) {
  279. int bbi = vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0];
  280. if (bbi) {
  281. /* Dirichlet boundary */
  282. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[ii], 1));
  283. } else {
  284. for (int jj=0; jj<4; ++jj) {
  285. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  286. }
  287. }
  288. }
  289. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  290. }
  291. A.setFromTriplets(coeffs.begin(), coeffs.end());
  292. A.finalize();
  293. A.makeCompressed();
  294. }
  295. void FEM4EllipticPDE::SetupPotential() {
  296. ////////////////////////////////////////////////////////////
  297. // Load vector g
  298. std::cout << "\nBuilding load vector (g)" << std::endl;
  299. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  300. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " points" << std::endl;
  301. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  302. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  303. for (int ii=0; ii<4; ++ii) {
  304. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  305. C(ii, 0) = 1;
  306. C(ii, 1) = pts[0];
  307. C(ii, 2) = pts[1];
  308. C(ii, 3) = pts[2];
  309. }
  310. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  311. //Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  312. /* The indices */
  313. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  314. int ID[4];
  315. ID[0] = Ids->GetId(0);
  316. ID[1] = Ids->GetId(1);
  317. ID[2] = Ids->GetId(2);
  318. ID[3] = Ids->GetId(3);
  319. /* Fill the RHS vector with Dirichlet conditions or fuction value */
  320. for (int ii=0; ii<4; ++ii) {
  321. if (vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0]) {
  322. g(ID[ii]) += vtkGrid->GetPointData()->GetScalars("analytic_phi")->GetTuple(ID[ii])[0];
  323. } else {
  324. g(ID[ii]) += (V/4.)*(vtkGrid->GetCellData()->GetScalars("G")->GetTuple(ic)[0]); // Why 3.0??
  325. }
  326. }
  327. }
  328. }
  329. void FEM4EllipticPDE::SolveOLD2(const std::string& fname) {
  330. Real r0[3];
  331. Real r1[3];
  332. /////////////////////////////////////////////////////////////////////////
  333. // Surface filter, to determine if points are on boundary, and need
  334. // boundary conditions applied
  335. vtkDataSetSurfaceFilter* Surface = vtkDataSetSurfaceFilter::New();
  336. Surface->SetInputData(vtkGrid);
  337. Surface->PassThroughPointIdsOn( );
  338. Surface->Update();
  339. vtkIdTypeArray* BdryIds = static_cast<vtkIdTypeArray*>
  340. (Surface->GetOutput()->GetPointData()->GetScalars("vtkOriginalPointIds"));
  341. // Expensive search for whether or not point is on boundary. O(n) cost.
  342. VectorXi bndryCnt = VectorXi::Zero(vtkGrid->GetNumberOfPoints());
  343. for (int isp=0; isp < Surface->GetOutput()->GetNumberOfPoints(); ++isp) {
  344. //double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  345. // x \in -14.5 to 14.5
  346. // y \in 0 to 30
  347. bndryCnt(BdryIds->GetTuple1(isp)) += 1;
  348. }
  349. /////////////////////////////////////////////////////////////////////////
  350. // Build stiffness matrix (A)
  351. std::cout << "Building Stiffness Matrix (A) " << std::endl;
  352. std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
  353. std::cout << "\tMesh has " << vtkGrid->GetNumberOfPoints() << " points " << std::endl;
  354. Eigen::SparseMatrix<Real> A(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
  355. std::vector< Eigen::Triplet<Real> > coeffs;
  356. // Here we iterate over all of the cells
  357. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  358. assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
  359. // TODO, in production code we might not want to do this check here
  360. if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
  361. std::cout << "DOOM FEM4EllipticPDE encountered non-tetrahedral mesh\n";
  362. std::cout << "Number of points in cell " << vtkGrid->GetCell(ic)->GetNumberOfPoints() << std::endl ;
  363. exit(1);
  364. }
  365. // construct coordinate matrix C
  366. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  367. for (int ii=0; ii<4; ++ii) {
  368. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  369. C(ii, 0) = 1;
  370. C(ii, 1) = pts[0] ;
  371. C(ii, 2) = pts[1] ;
  372. C(ii, 3) = pts[2] ;
  373. }
  374. Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  375. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  376. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  377. int ID[4];
  378. ID[0] = Ids->GetId(0);
  379. ID[1] = Ids->GetId(1);
  380. ID[2] = Ids->GetId(2);
  381. ID[3] = Ids->GetId(3);
  382. Real sum(0);
  383. Real sigma_bar = vtkGrid->GetCellData()->GetScalars()->GetTuple1(ic);
  384. for (int ii=0; ii<4; ++ii) {
  385. for (int jj=0; jj<4; ++jj) {
  386. if (jj == ii) {
  387. // I apply boundary to Stiffness matrix, it's common to take the other approach and apply to the load vector and then
  388. // solve for the boundaries? Is one better? This seems to work, which is nice.
  389. //Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bndryCnt( ID[ii] ); // + sum;
  390. Real bb = vtkGrid->GetPointData()->GetScalars("vtkValidPointMask")->GetTuple(ID[ii])[0];
  391. //std::cout << "bb " << bb << std::endl;
  392. Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bb; // + sum;
  393. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], bdry + GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  394. } else {
  395. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  396. }
  397. // Stiffness matrix no longer contains boundary conditions...
  398. //coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  399. }
  400. }
  401. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  402. }
  403. A.setFromTriplets(coeffs.begin(), coeffs.end());
  404. //A.makeCompressed();
  405. ////////////////////////////////////////////////////////////
  406. // Load vector g, solution vector u
  407. std::cout << "\nBuilding load vector (g)" << std::endl;
  408. VectorXr g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  409. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
  410. // If the G function has been evaluated at each *node*
  411. // --> but still needs to be integrated at the surfaces
  412. // Aha, requires that there is in fact a pointdata memeber // BUG TODO BUG!!!
  413. std::cout << "Point Data ptr " << vtkGrid->GetPointData() << std::endl;
  414. //if ( vtkGrid->GetPointData() != NULL && std::string( vtkGrid->GetPointData()->GetScalars()->GetName() ).compare( std::string("G") ) == 0 ) {
  415. bool pe(false);
  416. bool ne(false);
  417. if ( true ) {
  418. std::cout << "\nUsing G from file" << std::endl;
  419. /* 3D Phi */
  420. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  421. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  422. for (int ii=0; ii<4; ++ii) {
  423. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  424. C(ii, 0) = 1;
  425. C(ii, 1) = pts[0];
  426. C(ii, 2) = pts[1];
  427. C(ii, 3) = pts[2];
  428. }
  429. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  430. //Real V = C.determinant(); // volume of tetrahedra
  431. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  432. int ID[4];
  433. ID[0] = Ids->GetId(0);
  434. ID[1] = Ids->GetId(1);
  435. ID[2] = Ids->GetId(2);
  436. ID[3] = Ids->GetId(3);
  437. /* bad news bears for magnet */
  438. double* pt = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(0);
  439. Real sum(0);
  440. /*
  441. if (!pe) {
  442. if (std::abs(pt[0]) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
  443. sum = 1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0];
  444. pe = true;
  445. }
  446. }*/
  447. if (ID[0] == 26) {
  448. sum = 10;
  449. }
  450. if (ID[0] == 30) {
  451. sum = -10;
  452. }
  453. /*
  454. if (!ne) {
  455. if (std::abs(pt[0]+1.) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
  456. sum = -1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0];
  457. std::cout << "Negative Electroce\n";
  458. ne = true;
  459. }
  460. }
  461. */
  462. //for (int ii=0; ii<4; ++ii) {
  463. //g(ID[ii]) += (V/4.) * ( vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0] ) ;
  464. //if ( std::abs(vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0]) > 1e-3 )
  465. //}
  466. // TODO check Load Vector...
  467. g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
  468. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  469. }
  470. /*
  471. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  472. vtkGrid->GetPoint(ic, r0);
  473. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  474. double g0 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ;
  475. //std::cout << "num conn " << connectedVertices->GetNumberOfIds() << std::endl;
  476. if ( std::abs(g0) > 1e-3 ) {
  477. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  478. int ii = connectedVertices->GetId(i);
  479. vtkGrid->GetPoint(ii, r1);
  480. double g1 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ii)[0] ;
  481. //g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
  482. if ( std::abs(g1) > 1e-3 ) {
  483. g(ic) += CompositeSimpsons2(g1, g0, r1, r0, 1000);
  484. }
  485. //g(ic) += CompositeSimpsons2(g0, r1, r0, 8);
  486. //if ( std::abs(g1) > 1e-3 ) {
  487. //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 8);
  488. //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 100); // / (2*dist(r0,r1)) ;
  489. // g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
  490. //g(ic) += CompositeSimpsons2(g0, r0, r1, 8);
  491. // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
  492. //} //else {
  493. // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
  494. //}
  495. }
  496. }
  497. //g(ic) = 2.* vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ; // Why 2?
  498. //std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  499. }
  500. */
  501. } else if (vtkG) { // VTK implicit function, proceed with care
  502. std::cout << "\nUsing implicit file from file" << std::endl;
  503. // OpenMP right here
  504. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  505. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  506. //vtkGrid->GetPoint(ic, r0);
  507. //g(ic) += vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  508. // std::cout << vtkG->FunctionValue(r0[0], r0[1], r0[2]) << std::endl;
  509. //g(ic) += vtkGrid->GetPointData()->GetScalars()->GetTuple1(ic);// FunctionValue(r0[0], r0[1], r0[2]) ;
  510. /*
  511. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  512. int ii = connectedVertices->GetId(i);
  513. vtkGrid->GetPoint(ii, r1);
  514. g(ic) += CompositeSimpsons2(vtkG, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  515. }
  516. */
  517. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  518. }
  519. } else if (gFcn3) {
  520. std::cout << "\nUsing gFcn3" << std::endl;
  521. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  522. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  523. vtkGrid->GetPoint(ic, r0);
  524. // TODO, test OMP sum reduction here. Is vtkGrid->GetPoint thread safe?
  525. //Real sum(0.);
  526. //#ifdef LEMMAUSEOMP
  527. //#pragma omp parallel for reduction(+:sum)
  528. //#endif
  529. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  530. int ii = connectedVertices->GetId(i);
  531. vtkGrid->GetPoint(ii, r1);
  532. g(ic) += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  533. //sum += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  534. }
  535. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  536. //g(ic) = sum;
  537. }
  538. } else {
  539. std::cout << "No source specified\n";
  540. exit(EXIT_FAILURE);
  541. }
  542. // std::cout << g << std::endl;
  543. //g(85) = 1;
  544. std::cout << "\nSolving" << std::endl;
  545. ////////////////////////////////////////////////////////////
  546. // Solving:
  547. //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
  548. //VectorXr u = chol.solve(g);
  549. //Eigen::SparseLU<Eigen::SparseMatrix<Real, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > solver;
  550. //solver.analyzePattern(A);
  551. //solver.factorize(A);
  552. //VectorXr u = solver.solve(g);
  553. //Eigen::ConjugateGradient<Eigen::SparseMatrix<Real, Eigen::Lower > Eigen::DiagonalPreconditioner > cg;
  554. Eigen::ConjugateGradient< Eigen::SparseMatrix<Real> > cg(A);
  555. //Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
  556. cg.setMaxIterations(3000);
  557. //cg.compute(A);
  558. //std::cout << "Computed " << std::endl;
  559. VectorXr u = cg.solve(g);
  560. std::cout << "#iterations: " << cg.iterations() << std::endl;
  561. std::cout << "estimated error: " << cg.error() << std::endl;
  562. vtkDoubleArray *gArray = vtkDoubleArray::New();
  563. vtkDoubleArray *uArray = vtkDoubleArray::New();
  564. uArray->SetNumberOfComponents(1);
  565. gArray->SetNumberOfComponents(1);
  566. for (int iu = 0; iu<u.size(); ++iu) {
  567. uArray->InsertTuple1(iu, u[iu]);
  568. gArray->InsertTuple1(iu, g[iu]);
  569. }
  570. uArray->SetName("u");
  571. gArray->SetName("g");
  572. vtkGrid->GetPointData()->AddArray(uArray);
  573. vtkGrid->GetPointData()->AddArray(gArray);
  574. vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
  575. Writer->SetInputData(vtkGrid);
  576. Writer->SetFileName(fname.c_str());
  577. Writer->Write();
  578. Writer->Delete();
  579. Surface->Delete();
  580. gArray->Delete();
  581. uArray->Delete();
  582. }
  583. // Uses simpon's rule to perform a definite integral of a
  584. // function (passed as a pointer). The integration occurs from
  585. // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  586. Real FEM4EllipticPDE::CompositeSimpsons(vtkImplicitFunction* f, Real r0[3], Real r1[3], int n) {
  587. Vector3r R0(r0[0], r0[1], r0[2]);
  588. Vector3r R1(r1[0], r1[1], r1[2]);
  589. // force n to be even
  590. assert(n > 0);
  591. //n += (n % 2);
  592. Real h = dist(r0, r1) / (Real)(n) ;
  593. Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  594. Vector3r dr = (R1 - R0).array() / Real(n);
  595. Vector3r rx;
  596. rx.array() = R0.array() + dr.array();
  597. for (int i=1; i<n; i+=2) {
  598. S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]);
  599. rx += 2.*dr;
  600. }
  601. rx.array() = R0.array() + 2*dr.array();
  602. for (int i=2; i<n-1; i+=2) {
  603. S += 2.*f->FunctionValue(rx[0], rx[1], rx[2]);
  604. rx += 2.*dr;
  605. }
  606. return h * S / 3.;
  607. }
  608. // Uses simpon's rule to perform a definite integral of a
  609. // function (passed as a pointer). The integration occurs from
  610. // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  611. // This is just here as a convenience
  612. Real FEM4EllipticPDE::CompositeSimpsons(const Real& f, Real r0[3], Real r1[3], int n) {
  613. return dist(r0,r1)*f;
  614. /*
  615. Vector3r R0(r0[0], r0[1], r0[2]);
  616. Vector3r R1(r1[0], r1[1], r1[2]);
  617. // force n to be even
  618. assert(n > 0);
  619. //n += (n % 2);
  620. Real h = dist(r0, r1) / (Real)(n) ;
  621. Real S = f + f;
  622. Vector3r dr = (R1 - R0).array() / Real(n);
  623. //Vector3r rx;
  624. //rx.array() = R0.array() + dr.array();
  625. for (int i=1; i<n; i+=2) {
  626. S += 4. * f;
  627. //rx += 2.*dr;
  628. }
  629. //rx.array() = R0.array() + 2*dr.array();
  630. for (int i=2; i<n-1; i+=2) {
  631. S += 2. * f;
  632. //rx += 2.*dr;
  633. }
  634. return h * S / 3.;
  635. */
  636. }
  637. /*
  638. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  639. * test function owned by the FEM implimentaion.
  640. */
  641. Real FEM4EllipticPDE::CompositeSimpsons2(vtkImplicitFunction* f,
  642. Real r0[3], Real r1[3], int n) {
  643. Vector3r R0(r0[0], r0[1], r0[2]);
  644. Vector3r R1(r1[0], r1[1], r1[2]);
  645. // force n to be even
  646. assert(n > 0);
  647. //n += (n % 2);
  648. Real h = dist(r0, r1) / (Real)(n) ;
  649. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  650. Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  651. //Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  652. Vector3r dr = (R1 - R0).array() / Real(n);
  653. Vector3r rx;
  654. rx.array() = R0.array() + dr.array();
  655. for (int i=1; i<n; i+=2) {
  656. S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  657. rx += 2.*dr;
  658. }
  659. rx.array() = R0.array() + 2*dr.array();
  660. for (int i=2; i<n-1; i+=2) {
  661. S += 2. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  662. rx += 2.*dr;
  663. }
  664. return h * S / 3.;
  665. }
  666. /*
  667. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  668. * test function owned by the FEM implimentaion.
  669. */
  670. Real FEM4EllipticPDE::CompositeSimpsons2( Real (*f)(const Real&, const Real&, const Real&),
  671. Real r0[3], Real r1[3], int n) {
  672. Vector3r R0(r0[0], r0[1], r0[2]);
  673. Vector3r R1(r1[0], r1[1], r1[2]);
  674. // force n to be even
  675. assert(n > 0);
  676. //n += (n % 2);
  677. Real h = dist(r0, r1) / (Real)(n) ;
  678. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  679. //Real S = f(r0[0], r0[1], r0[2])*Hat(R0, R0, R1) + f(r1[0], r1[1], r1[2])*Hat(R1, R0, R1);
  680. Real S = f(r0[0], r0[1], r0[2]) + f(r1[0], r1[1], r1[2]);
  681. Vector3r dr = (R1 - R0).array() / Real(n);
  682. Vector3r rx;
  683. rx.array() = R0.array() + dr.array();
  684. for (int i=1; i<n; i+=2) {
  685. S += 4. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  686. rx += 2.*dr;
  687. }
  688. rx.array() = R0.array() + 2*dr.array();
  689. for (int i=2; i<n-1; i+=2) {
  690. S += 2. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  691. rx += 2.*dr;
  692. }
  693. return h * S / 3.;
  694. }
  695. /*
  696. * Performs numerical integration of two functions, one is constant valued f, the other is the FEM
  697. * test function owned by the FEM implimentaion.
  698. */
  699. Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f, Real r0[3], Real r1[3], int n) {
  700. Vector3r R0(r0[0], r0[1], r0[2]);
  701. Vector3r R1(r1[0], r1[1], r1[2]);
  702. // force n to be even
  703. assert(n > 0);
  704. //n += (n % 2);
  705. Real h = dist(r0, r1) / (Real)(n) ;
  706. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  707. Real S = 2*f; //*Hat(R0, R0, R1) + f*Hat(R1, R0, R1);
  708. Vector3r dr = (R1 - R0).array() / Real(n);
  709. Vector3r rx;
  710. rx.array() = R0.array() + dr.array();
  711. for (int i=1; i<n; i+=2) {
  712. S += 4. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  713. rx += 2.*dr;
  714. }
  715. rx.array() = R0.array() + 2*dr.array();
  716. for (int i=2; i<n-1; i+=2) {
  717. S += 2. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  718. rx += 2.*dr;
  719. }
  720. return h * S / 3.;
  721. }
  722. /*
  723. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  724. * test function owned by the FEM implimentaion.
  725. */
  726. Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
  727. Vector3r R0(r0[0], r0[1], r0[2]);
  728. Vector3r R1(r1[0], r1[1], r1[2]);
  729. // force n to be even
  730. assert(n > 0);
  731. //n += (n % 2);
  732. Real h = dist(r0, r1) / (Real)(n) ;
  733. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  734. // NO! We are looking at 1/2 hat often!!! So S = f1!
  735. Real S = f1; //f0*Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
  736. Vector3r dr = (R1 - R0).array() / Real(n);
  737. // linear interpolate function
  738. //Vector3r rx;
  739. //rx.array() = R0.array() + dr.array();
  740. for (int i=1; i<n; i+=2) {
  741. double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
  742. S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0) ;
  743. }
  744. //rx.array() = R0.array() + 2*dr.array();
  745. for (int i=2; i<n-1; i+=2) {
  746. double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
  747. S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0);
  748. }
  749. return h * S / 3.;
  750. }
  751. /*
  752. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  753. * test function owned by the FEM implimentaion.
  754. */
  755. Real FEM4EllipticPDE::CompositeSimpsons3( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
  756. Vector3r R0(r0[0], r0[1], r0[2]);
  757. Vector3r R1(r1[0], r1[1], r1[2]);
  758. // force n to be even
  759. assert(n > 0);
  760. //n += (n % 2);
  761. Real h = dist(r0, r1) / (Real)(n) ;
  762. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  763. // NO! We are looking at 1/2 hat often!!! So S = f1!
  764. Real S = f0+f1; //Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
  765. Vector3r dr = (R1 - R0).array() / Real(n);
  766. // linear interpolate function
  767. //Vector3r rx;
  768. //rx.array() = R0.array() + dr.array();
  769. for (int i=1; i<n; i+=2) {
  770. double fx = 1;// f0 + (f1 - f0) * ((i*h)/(h*n));
  771. S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1) * Hat(R1.array() + i*dr.array(), R1, R0) ;
  772. }
  773. //rx.array() = R0.array() + 2*dr.array();
  774. for (int i=2; i<n-1; i+=2) {
  775. double fx = 1; // f0 + (f1 - f0) * ((i*h)/(h*n));
  776. S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1)* Hat(R1.array() + i*dr.array(), R1, R0);
  777. }
  778. return h * S / 3.;
  779. }
  780. //--------------------------------------------------------------------------------------
  781. // Class: FEM4EllipticPDE
  782. // Method: Hat
  783. //--------------------------------------------------------------------------------------
  784. Real FEM4EllipticPDE::Hat ( const Vector3r& r, const Vector3r& r0, const Vector3r& r1 ) {
  785. //return (r-r0).norm() / (r1-r0).norm() ;
  786. return dist(r, r0) / dist(r1, r0) ;
  787. } // ----- end of method FEM4EllipticPDE::Hat -----
  788. } // ----- end of Lemma name -----