123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import numpy
-
- def smooth(x,window_len=11,window='hanning'):
- """smooth the data using a window with requested size.
-
- This method is based on the convolution of a scaled window with the signal.
- The signal is prepared by introducing reflected copies of the signal
- (with the window size) in both ends so that transient parts are minimized
- in the begining and end part of the output signal.
-
- input:
- x: the input signal
- window_len: the dimension of the smoothing window; should be an odd integer
- window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
- flat window will produce a moving average smoothing.
-
- output:
- the smoothed signal
-
- example:
-
- t=linspace(-2,2,0.1)
- x=sin(t)+randn(len(t))*0.1
- y=smooth(x)
-
- see also:
-
- numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
- scipy.signal.lfilter
-
- TODO: the window parameter could be the window itself if an array instead of a string
- """
-
- if x.ndim != 1:
- raise ValueError, "smooth only accepts 1 dimension arrays."
-
- if x.size < window_len:
- raise ValueError, "Input vector needs to be bigger than window size."
-
-
- if window_len<3:
- return x
-
-
- if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
- raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'"
-
-
- s=numpy.r_[2*x[0]-x[window_len:1:-1],x,2*x[-1]-x[-1:-window_len:-1]]
- #print(len(s))
- if window == 'flat': #moving average
- w=ones(window_len,'d')
- else:
- w=eval('numpy.'+window+'(window_len)')
-
- y=numpy.convolve(w/w.sum(),s,mode='same')
- return y[window_len-1:-window_len+1]
-
-
-
-
- from numpy import *
- from pylab import *
-
- def smooth_demo():
-
- t=linspace(-4,4,100)
- x=sin(t)
- xn=x+randn(len(t))*0.1
- y=smooth(x)
-
- ws=31
-
- subplot(211)
- plot(ones(ws))
-
- windows=['flat', 'hanning', 'hamming', 'bartlett', 'blackman']
-
- hold(True)
- for w in windows[1:]:
- eval('plot('+w+'(ws) )')
-
- axis([0,30,0,1.1])
-
- legend(windows)
- title("The smoothing windows")
- subplot(212)
- plot(x)
- plot(xn)
- for w in windows:
- plot(smooth(xn,10,w))
- l=['original signal', 'signal with noise']
- l.extend(windows)
-
- legend(l)
- title("Smoothing a noisy signal")
- show()
-
-
- if __name__=='__main__':
- smooth_demo()
|