123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830 |
- from __future__ import division # in case this is called from python2
- from __future__ import print_function
-
- import numpy as np
- import matplotlib.pyplot as plt
- import sys, os
- import notch
- from scipy import signal
- from scipy.interpolate import splprep, splev, spline # for smoothing spline FITPACK
- from scipy.interpolate import UnivariateSpline
- from decay import *
- import scipy.stats as stats
- from pwctimeWhite import *
- # for signal slot communication with GUI
- #from PyQt4.QtCore import QObject, SIGNAL
- from PySide.QtCore import QObject, SIGNAL
- from pandas.io.parsers import read_csv #<<- faster than Numpy but not working right now
- from timeit import timeit
-
-
- class MRProc(QObject):
- """ Class to process read and invert ORS borehole data
- """
- def __init__(self):
- QObject.__init__(self)
- self.burst = False # For Schlumberger or VC burst data
-
- #def __init__(self, filename):
- # # what do we need to know that isn't in new files?
- # fileName, fileExtension = os.path.splitext(filename)
- # if fileExtension == ".ors":
- # self.loadORSFile(filename)
- #self.DistRes = { }
- #self.DistRes = { 'env':np.array(0), 'mod':np.array(0), 'Time':np.array(0) } #[a0,b0,rt20] }
-
- def loadORSFile_OLD(self, filename):
- """ Loads ORS files with minimal header info
- """
- f = open(filename)
- header = f.readline().split() #np.loadtxt(filename, comment="#", )
- ih = 1
- while (header[0] == "#"):
- ih += 1
- header = f.readline().split() #np.loadtxt(filename, comment="#", )
- self.NR = eval(header[0]) # number of records in an echo
- self.NE = eval(header[1]) # number of echoes
- self.DT = eval(header[2]) # in s
- self.TAUE = eval(header[3]) # in s
- self.RL = self.DT * self.NR # in s
-
- # pandas is about ~16 times faster than numpy for import (7 sec vs. .5 sec on tested example)
- # Parse in datafile, TODO update for newer format and remove hardcoded 3 in pandas
- #DATA = np.loadtxt(filename, comments="#", skiprows=ih)
- DATA = read_csv(filename, comment="#", sep='\t', skiprows=3, engine='c', header=None, names=('time','inphase','quadrature')).as_matrix()
-
- self.NS = int(np.shape(DATA)[0] / (self.NE * self.NR))
-
- # reshape DATA
- #self.DATA = np.reshape( DATA[:,1] + 1j*DATA[:,2], ( self.NS, self.NE, self.NR) )
- self.DATA = np.reshape( self.A2D(DATA[:,1]) + 1j*self.A2D(DATA[:,2]), ( self.NS, self.NE, self.NR) )
- self.WTIME = np.reshape( DATA[:,0], ( self.NS, self.NE, self.NR) )
- self.TIMES = np.arange(self.DT, self.RL + 1e-8, self.DT) # 1 ms record, 1 us dwell
-
- self.emit(SIGNAL("plotRAW()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("doneStatus()"))
-
- def evaluate(self, value):
- if len(value) == 1:
- if value[0][-1].isdigit():
- return eval(value[0])
- else:
- if value[0][-1] == "u": # micro
- return eval(value[0][0:-1]) * 1e-6
- elif value[0][-1] == "M": # mega
- return eval(value[0][0:-1]) * 1e6
- elif value[0][-1] == "s": # second
- return eval(value[0][0:-1])
- else:
- print("DOOM!")
- exit(1)
- else:
- # TODO
- # logic here is a little lacking, but current tool does not do anything
- # sneaky with array values, could break in the future though
- vals = []
- for val in value:
- vals.append( eval(val) )
- return vals
-
- def loadORSFile(self, fname):
- """ Loads ORS files with extensive header info
- """
- parameters = False
- data = False
- pars = {}
- with open(fname) as f:
- iline = 0
- for line in f:
- if len(line.split()) == 0:
- pass # empty do nothing
- else:
- if line.split()[0] == "[ps]":
- parameters = False
- # these entries specify the chip programming
- if parameters:
- # proc header info
- split,comment = line.split("#")
- var, val = split.split("=")
- val = val.split(";")[0].split()
- pars[var.strip()] = self.evaluate(val)
- if line.split()[0] == "[parameters]":
- parameters = True
- if data:
- if line[0] == "#":
- pass
- else:
- header = line.split()
- iline += 1
- break
- if line.split()[0] == "[data]":
- data = True
- iline += 1
-
- self.NR = eval(header[0]) # number of records in an echo
- self.NE = eval(header[1]) # number of echoes
- self.DT = eval(header[2]) # in s
- self.TAUE = eval(header[3]) # in s
- self.RL = self.DT * self.NR # in s
-
- # Pandas is much faster than numpy
- DATA = read_csv(fname, comment="#", sep='\t', skiprows=iline, engine='c', header=None, names=('time','inphase','quadrature')).as_matrix()
- self.NS = int(np.shape(DATA)[0] / (self.NE * self.NR))
-
- # reshape DATA
- #self.DATA = np.reshape( DATA[:,1] + 1j*DATA[:,2], ( self.NS, self.NE, self.NR) )
- self.DATA = np.reshape( self.A2D(DATA[:,1], pars) + 1j*self.A2D(DATA[:,2], pars), ( self.NS, self.NE, self.NR) )
- self.WTIME = np.reshape( DATA[:,0], ( self.NS, self.NE, self.NR) )
- self.TIMES = np.arange(self.DT, self.RL + 1e-8, self.DT) # 1 ms record, 1 us dwell
-
- self.emit(SIGNAL("plotRAW()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("doneStatus()"))
-
- # analogue to digital conversion, 'don't quote me on this -- kevin'
- def A2D(self, i, pars):
- """ Actual voltage is not known. This routine will need to be expaned to account for
- calibration datasets. Or perhaps the inversion and fitting routines instead.
- TODO, if prestacked data, we need to account for this.
- """
- #return (i/(.5 * (2.**16)))
- #cal = 7.85 # TODO query for this
- cal = 5.51 # 1/2 full
- return i / ( pars['n'] * pars['cal'] )
-
- def loadJavelinLog(self, filename):
- """Loads processed Javelin data"""
- #print("Javelin time")
- import scipy.io as sio
- Data = sio.loadmat(filename)
- self.T2T = Data['time'][:,0]
- self.TAUE = self.T2T[3] - self.T2T[2]
- # Better sigma estimate needed
- self.sigma = 2.5
- self.T2N = np.random.normal( 0, self.sigma, len(self.T2T) )
- self.NS = 1
- self.T2D = self.T2N + 1j*Data['se_vector_wc'][:,56] # depth 0
- # What about each depth? How is modelling handled.
-
- def loadVCMFile(self, filename):
- #print("LOADING VCM file")
- Data = np.loadtxt(filename, comments = "#")
- self.T2T = Data[:,0]
- self.sigma = eval(open( filename, 'r' ).readline().split()[1])
- self.T2N = np.random.normal( 0, self.sigma, len(self.T2T) )
- self.T2D = self.T2N + 1j*Data[:,1]
- self.NS = 1
- self.TAUE = self.T2T[3] - self.T2T[2]
-
- #self.emit(SIGNAL("plotLOG10ENV()"))
- #self.emit(SIGNAL("enableDSP()"))
- #self.emit(SIGNAL("enableINV()"))
- #self.emit(SIGNAL("doneStatus()"))
-
- def loadTextFile(self, filename, NS, NE, NR):
- """ Loads older format files without header info """
- print ("OLD TEXT FORMAT DETECTED, not SUPPORTED RIGHT NOW")
- exit()
- pass
-
- def batchThread(self, pars, tag, bload=True, bwindow=True, benvelope=True, bphase=True, bgate=True):
-
- #print("batdacheing", load, window, envelope, phase, gate)
- fileName, fileExtension = os.path.splitext( str(tag) )
- if bload:
- #print ("loading", tag)
- if fileExtension == ".ors":
- self.loadORSFile(str(tag))
- elif fileExtension == ".vcm":
- self.loadVCMFile(str(tag))
-
- if bwindow:
- #print("windowing", pars['ftype'], pars['winWidth'])
- self.WindowAndStack( pars['ftype'] , pars['winTrimLeft'], pars['winTrimRight'] )
-
- if benvelope:
- #print("enveloping", pars['offset'])
- self.T2EnvelopeDetect( pars['offset'] )
-
- if bphase:
- self.CorrectedAmplitude( 0,0 )
-
- if bgate:
- #print("gating", pars['gpd'])
- self.gateIntegrate( pars['gpd'], pars['stackEfficiency'] )
-
- self.emit(SIGNAL("doneStatus()"))
-
-
- def WindowAndStack(self, ftype="Blackman-Harris", triml=0, trimr=0):
- # TODO, consider lowpass filter and interpolate to higher DT in order to minimize window amplitude effects
- # what would cost of such an operation be?
- # TODO, should record be overwritten? I don't think so. I think we should make a deep copy here and then you can always fall back.
-
- # Trim ends to centre echo, this many are REMOVED
- #triml = 18
- #trimr = 15
- self.TIMES = self.TIMES[triml:-(trimr)]
- self.NR -= triml + trimr
- if ftype == "Blackman-Harris":
- window = signal.blackmanharris(self.NR)
- elif ftype == "Blackman":
- window = signal.blackman(self.NR)
- elif ftype == "Hann":
- window = signal.hann(self.NR)
- elif ftype == "sinc":
- window = np.ones( (self.NR) )
-
- self.DATAP = self.DATA[:,:,triml:-trimr].copy()
- for istk in range(0,self.NS):
- for ie in range(0,self.NE,1):
- self.DATAP[istk, ie,:] *= window # signal.blackmanharris(self.NR)
- #pass
- #self.DATA[istk, ie, :] *= signal.hann(self.NR)
- #self.DATA[istk, ie, :] *= signal.blackman(self.NR)
- #DATA2[istk, ie, :] *= signal.blackmanharris(self.NR)
- self.emit(SIGNAL("updateProgress(int)"), (int)(1e2*istk/self.NS))
-
- self.DATASTACK = np.average(self.DATAP, axis=0)
- if (self.NS > 1):
- # for noise calculation, destructively average phase-cycled echoes
- self.DATAP[1::2,:,:] *= -1.
- self.NOISE = np.average(self.DATAP, axis=0)
- self.NOISE -= np.mean(self.NOISE) # The noise can be biased? Don't understand why!!
- #self.DATA[0::2,:,:] *= -1.
- self.emit(SIGNAL("plotWIN()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("doneStatus()"))
-
- def ResampleEnvelopeData(self, Q, Mask=0, GatesPD=0):
- """ Mirror the data and then apply window function and resample in Fourier domain at twice the number.
- Then take half. Should be better.
- GatesPD is Gates Per Decade
- """
-
- tt = np.concatenate( [self.T2T[Mask::], self.T2T[Mask::][-1]+self.T2T[Mask::] ] )
- xx = np.concatenate( [self.T2D[Mask::][::-1] , self.T2D[Mask::] ] )
-
- xx,tx = signal.resample( xx, 2*Q, t=tt)#, window='hanning')
- self.T2D = xx[0:Q][::-1]
- #self.T2D = self.T2D[::-1]
-
- xx = np.concatenate( [self.T2N[::-1] , self.T2N] )
- xx,tx = signal.resample( xx, 2*Q, t=tt)#, window='hanning')
- self.T2N = xx[0:Q][::-1]
-
- # don't reverse times dummy!
- self.T2T = tx[0:Q] #[::-1] ## <-- No! bad Trevor
- self.NE = len(self.T2D)
-
- def computeSTD(self):
- if self.NS >= 2:
- self.sigma = np.std( np.imag(self.T2N) )
- else:
- s0 = np.std( np.real(self.T2D) )
- self.sigma = s0
-
- def computeSTDBurst(self):
- if self.NS >= 2:
- self.sigmaBurst = np.std( np.imag(self.T2Nb) )
- else:
- N = np.real(self.T2Db)
- s0 = np.std( np.real(self.T2Db) )
- sr = ( np.std( (np.exp(-1j*self.zeta)*N).real) )
- si = ( np.std( (np.exp(-1j*self.zeta)*N).imag) )
- self.sigmaBurst = s0 #+ (sr+si-s0)/2.
- #self.T2Db.real *= self.sigmaBurst/s0 #nr #(nr+ni)/2.
- #self.sigmaBurst = np.std( np.real(self.T2Db) )
-
- def gateIntegrateBurst(self, gpd, stackEfficiency):
-
- self.computeSTDBurst()
-
- # calculate total number of decades
- nd = np.log10(self.T2Tb[-1]/self.T2Tb[0]) #np.log10(self.T2T[-1]) - np.log10(self.T2T[-1])
- tdd = np.logspace( np.log10(self.T2Tb[0]), np.log10(self.T2Tb[-1]), (int)(gpd*nd)+1, base=10, endpoint=True)
- tdl = tdd[0:-1] # these are left edges
- tdr = tdd[1::] # these are left edges
- td = (tdl+tdr) / 2. # window centres
-
- htd = np.zeros( len(td), dtype=complex )
- htn = np.zeros( len(td), dtype=complex )
-
- isum = np.zeros( len(td), dtype=int )
-
- Vars = np.ones( len(td) ) * self.sigmaBurst**2 #* .15**2
-
- ii = 0
- for itd in range(len(self.T2Tb)):
- if ( self.T2Tb[itd] > tdr[ii] ):
- if (ii < len(td)-1):
- ii += 1
- else:
- break
- isum[ii] += 1
- htd[ii] += self.T2Db[ itd ]
- #htn[ii] += self.T2N[ itd ]
- Vars[ii] += self.sigmaBurst**2
- #self.emit(SIGNAL("updateProgress(int)"), (int)(1e2*itd/len(self.T2T)))
-
- # The 1.5 should be 2 in the theory, the 1.5 compensates for correlated noise, etc. Bascically
- # we don't see noise reduce like ideal averaging.
- self.sigmaBurst = np.sqrt( Vars * (1/isum)**stackEfficiency ) # Var (aX) = a^2 Var(x)
-
- # Bootstrap
- bootstrap = False
- if bootstrap:
- Means, isumbs = self.bootstrapWindows(np.real(self.T2Db), 300, isum)
- ts,sm = self.smooth( isumbs, np.std(Means, axis=1) )
- for it in range(ii):
- self.sigmaBurst[it] = sm[isum[it]]
-
- # RESET times where isum == 1
- ii = 0
- while (isum[ii] == 1):
- td[ii] = self.T2Tb[ii]
- ii += 1
-
- htd /= isum
- htn /= isum
-
- self.T2Tb = td
- self.T2Db = htd
-
-
- def gateIntegrate(self, gpd, stackEfficiency):
- """
- Gate integrate the signal to gpd, gates per decade
- """
- self.computeSTD()
- self.gpd = gpd
- if self.burst:
- self.gateIntegrateBurst(gpd, stackEfficiency)
- print ("BBBBBUUURSSSSTTTTTTTTTTTT DOOOM FIXME MRProc.py!!!!!!!!!!!")
- # I need to apply gate shifting logic to burst data as well
-
- #########################################################################
- # use artificial time gates so that early times are fully captured at gpd
- # very minor correction for borehole data.
- T2T0 = self.T2T[0]
- T2TD = self.T2T[0] - (self.T2T[1]-self.T2T[0])
- self.T2T -= T2TD
-
- # calculate total number of decades
- nd = np.log10(self.T2T[-1]/self.T2T[0]) #np.log10(self.T2T[-1]) - np.log10(self.T2T[-1])
- tdd = np.logspace( np.log10(self.T2T[0]), np.log10(self.T2T[-1]), (int)(gpd*nd)+1, base=10, endpoint=True)
- tdl = tdd[0:-1] # these are left edges
- tdr = tdd[1::] # approximate left edges
- td = (tdl+tdr) / 2. # approximate window centres
-
- htd = np.zeros( len(td), dtype=complex )
- htn = np.zeros( len(td), dtype=complex )
- isum = np.zeros( len(td), dtype=int )
- Vars = np.zeros( len(td) )
-
- ii = 0
- for itd in range(len(self.T2T)):
- if ( self.T2T[itd] > tdr[ii] ):
- if (ii < len(td)-1):
- ii += 1
- # correct window edges to centre about data
- tdr[ii-1] = (self.T2T[itd-1]+self.T2T[itd])*.5
- tdl[ii ] = (self.T2T[itd-1]+self.T2T[itd])*.5
- else:
- break
- isum[ii] += 1
- htd[ii] += self.T2D[ itd ]
-
- #htn[ii] += self.T2N[ itd ]
- Vars[ii] += self.sigma**2
- self.emit(SIGNAL("updateProgress(int)"), (int)(1e2*itd/len(self.T2T)))
-
- # Correct window centres
- td = (tdl+tdr) / 2. # actual window centres
-
- # Theoretical gates
- # The 1.5 should be 2 in the theory, the 1.5 compensates for correlated noise, etc. Bascically
- # we don't see noise reduce like ideal averaging.
- self.sigma = np.sqrt(Vars * (1./isum)**stackEfficiency ) # Var (aX) = a^2 Var(x)
-
- # Bootstrap
- bootstrap = False
- #bs = open("bootstrap.dat", "a")
-
- if bootstrap:
- print("Bootstrappin")
- nboot=20000
- Means, isumbs = self.bootstrapWindows(np.real(self.T2D), nboot, isum[isum!=1], adapt=True)
- #Means, isumbs = self.bootstrapWindows(np.real(self.T2D), nboot, np.arange(1,isum[-1]+1), adapt=True)
-
- # MAD measure
- c = stats.norm.ppf(3/4.)
- mad = np.ma.median(np.ma.abs(Means), axis=1)/c
- #nboot2 = nboot//isumbs
- #std = np.ma.std(Means, axis=1, ddof=2) # unbiased
-
- #iqr = stats.iqr( Means, axis=1 )
-
- # Smoothing spline
- #ts,sm = self.smooth(isumbs, std)
- #ts,sm = self.smooth(isumbs, std)
-
- #for ii, s in enumerate(mad):
- # bs.write( str( (s-self.sigma[isum!=1][ii]) / self.sigma[isum!=1][ii] ) + " " )
- #for item in (sm[isum[isum!=1]-1]-self.sigma[isum!=1])/self.sigma[isum!=1]:
- # bs.write( str(item) + " ")
- #bs.write("\n")
-
- #ts,sm = self.smooth( isumbs, np.std(Means, axis=1))
- #bias = np.average(Means,axis=1)
- ii = 0
- for it in range(1, len(self.sigma)):
- #self.sigma[it] = sm[isum[it]-1]
- if isum[it] != 1:
- #print ( "assigning mad", it , mad[ii] )
- self.sigma[it] = mad[ii]
- ii += 1
- # RESET times where isum == 1
- ii = 0
- while (isum[ii] == 1):
- td[ii] = self.T2T[ii]
- ii += 1
-
- htd /= isum
- htn /= isum
-
- self.T2T = td + T2TD
- self.T2D = htd
-
- self.emit(SIGNAL("plotLOG10ENV()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("enableINV()"))
- self.emit(SIGNAL("doneStatus()"))
-
- def bootstrapWindows(self, N, nboot, isum, adapt=False):
- """ Bootstraps noise as a function of gate width
- """
- nc = np.shape(N)[0]
- Means = {}
-
- if adapt:
- Means = -9999*np.ones((len(isum), nboot//isum[0]))
- for ii, nwin in enumerate(isum):
- for iboot in range(nboot//isum[ii]):
- cs = np.random.randint(0,nc-nwin)
- Means[ii,iboot] = np.mean( N[cs:cs+nwin] )
- #Means[ii,iboot] = np.mean( np.random.normal(0, self.sigma[0], nwin))
- Means = np.ma.masked_less(Means, -9995)
-
- else:
- Means = np.zeros((len(isum), nboot))
- for ii, nwin in enumerate(isum):
- for iboot in range(nboot):
- cs = np.random.randint(0,nc-nwin)
- Means[ii,iboot] = np.mean( N[cs:cs+nwin] )
- #Means[ii,iboot] = np.mean( np.random.normal(0, self.sigma[0], nwin))
-
- return Means, np.array(isum)
-
- def smooth(self, x, y):
- w = np.ones(len(x))
- #w[0] = 1. # force first time gate
- xs = np.arange(1, x[-1]+1, .1) # resample
- #s = UnivariateSpline( np.log(x), np.log(y), s=2.5, w=w)
- s = UnivariateSpline( np.log(x), np.log(y), s=4.5, w=w)
- #s = UnivariateSpline( x, y, s=2.5, w=w)
- ys = s(np.log(xs))
- #ys = s(xs)
-
- # resample
- ys = ys[0::10]
- xs = xs[0::10]
-
- return xs,np.exp(ys)
-
- def T2EnvelopeDetect(self, offset=0):
-
- self.NRS = (int)(2**12) # Number of zeros to pad with, total record length
- # Zero pad
- DATASTACKZPF = np.append( self.DATASTACK, np.zeros( (self.NE, self.NRS - self.NR) ), axis=1 )
- if (self.NS > 1):
- NOISEZPF = np.append( self.NOISE, np.zeros( (self.NE, self.NRS - self.NR) ), axis=1 )
-
- # TODO check for proper split
- SPLIT = self.NR//2 + offset # 20 # 15 #2
-
- # containers for array
- self.T2D = np.zeros( (self.NE), dtype='complex' )
- self.T2N = np.zeros( (self.NE), dtype='complex' )
- self.T2T = np.zeros( (self.NE) )
-
- # frequency-domain processing
- for ie in range(0,self.NE):
-
- COLOUR = np.array([ie/self.NE, 0., 1.-ie/self.NE]) # for plots
-
- ###############################################################
- # fold data need to reverse some of these
- #FOLD = ((DATASTACK[ie,0:NR/2] + DATASTACK[ie,:][::-1][0:NR/2])/2.)[::-1]
- #plt.figure(223)
- #plt.plot( self.TAUE*(float)(ie) + self.TIMES, np.imag(self.DATASTACK[ie]), color=COLOUR)
- #plt.plot( self.TAUE*(float)(ie) + self.TIMES, np.imag(self.DATA[0,ie]), color='green')
- #plt.plot( self.TAUE*(float)(ie) + self.TIMES, np.imag(self.DATA[1,ie]), color='black')
- #plt.plot( self.TAUE*(float)(ie) + self.TIMES, np.imag(self.DATA[2,ie]), color='cyan')
- #plt.plot( self.TAUE*(float)(ie) + self.TIMES, np.imag(self.DATA[3,ie]), color='purple')
- #plt.plot( TAUE*(1e-6)*(float)(ie) + TIMES[SPLIT], np.imag(DATASTACK[ie])[SPLIT], 'o', markersize=6, color=COLOUR)
- #plt.plot( TAUE*DT*ie + TIMES, np.real(DATASTACK[ie]), color=COLOUR[::-1])
-
- ##################################################################
- # do frequency domain workflow
- # fold to DC
- ND = np.append( DATASTACKZPF[ie,:][SPLIT::], DATASTACKZPF[ie,:][0:SPLIT] )
- #X = 1e-2*((self.RL/2.)/self.NR) * np.fft.fft(ND, n=self.NRS) # Why 1e-2?
- X = 1e4*(( (self.DT*self.NRS) /2.)/self.NRS) * np.fft.fft(ND, n=self.NRS) # Why 1e-2?
- #X = (self.DT) * np.fft.fft(ND, n=self.NRS) # Why 1e-2?
-
- if (self.NS > 1):
- NND = np.append( NOISEZPF[ie,:][SPLIT::], NOISEZPF[ie,:][0:SPLIT] )
- #XN = 1e-2*((self.RL/2.)/self.NR) * np.fft.fft(NND, n=self.NRS) # Why 1e-2?
- XN = 1e4*(( (self.DT*self.NRS) /2.)/self.NRS) * np.fft.fft(NND, n=self.NRS) # Why 1e-2?
- self.T2N[ie] = XN[0] #complex( np.real(X[0]), np.imag(X[0]) )
-
- ##################################################################
- # Save T2 records
- self.T2D[ie] = X[0] #complex( np.real(X[0]), np.imag(X[0]) )
- self.T2T[ie] = (1.+ie)*(self.TAUE)
- self.emit(SIGNAL("updateProgress(int)"), (int)(1e2*ie/self.NE))
-
- self.computeSTD()
-
- self.emit(SIGNAL("plotENV()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("enableINV()"))
- self.emit(SIGNAL("doneStatus()"))
-
- def CorrectedAmplitude(self, joe=0, frank=0):
- """ Phase corrects the record, joe and Frank are empty (ignored) and are workarounds for threading.
- """
- #[E0,df,phi,T2] = quadratureDetect(Q, I, tt)
-
- # mask first few echoes, just for detection
- NM = 2
- #[conv,E0,df,phi,T2] = quadratureDetect(np.imag(self.T2D[NM::]), np.real(self.T2D[NM::]), self.T2T[NM::], False, False, False)
- #[conv,E0,df,phi,T2] = quadratureDetect(np.imag(self.T2D[NM::]), np.real(self.T2D[NM::]), self.T2T[NM::], False, False, True)
- # #CorrectFreq=False, BiExp=False, CorrectDC=False)
-
- [conv,E0,df,phi,T2] = quadratureDetect2(np.imag(self.T2D[NM::]), np.real(self.T2D[NM::]), self.T2T[NM::])
- print("df", df, "phi", phi)
- self.zeta1 = phi
-
- #if conv: # failed convergence
- # [conv,E0,df,phi,T2] = quadratureDetect(np.imag(self.T2D[NM::]), np.real(self.T2D[NM::]), self.T2T[NM::], False, False, False)
- self.T2D = self.RotateAmplitude(np.real(self.T2D), np.imag(self.T2D), phi, df, self.T2T)
- self.computeSTD()
- #print(str(conv) + "\t" + str(phi)) #, file = "phase.dat")
-
- if self.burst:
- #[conv,E0,df,phi,T2] = quadratureDetect(np.imag(self.T2Db), np.real(self.T2Db), self.T2Tb, False, False, False)
- [conv,E0,df,phi,T2] = quadratureDetect2(np.imag(self.T2Db), np.real(self.T2Db), self.T2Tb) #, False, False, False)
- #if conv: # failed convergence
- # [conv,E0,df,phi,T2] = quadratureDetect(np.imag(self.T2Db), np.real(self.T2Db), self.T2Tb, False, False, False)
- env = E0*np.exp(-np.array(self.T2Tb)/T2)
- self.T2Db = self.RotateAmplitude(np.real(self.T2Db), np.imag(self.T2Db), phi, df, self.T2Tb)
- self.computeSTDBurst()
-
- self.emit(SIGNAL("plotENV()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("enableINV()"))
- self.emit(SIGNAL("doneStatus()"))
-
- def RotateAmplitude(self, X, Y, zeta, df, t):
- self.zeta = zeta
- self.df = df
- V = X + 1j*Y
- return np.abs(V) * np.exp(1j * (np.angle(V) - zeta - 2.*np.pi*df*t))
-
- def MonoFit(self, mask=2, intercept="False"):
- component='imag'
- #print "MonoRes", component, mask, intercept
- a0 = 0
- if intercept=="True":
- if component == "imag":
- [a0,b0,rt20] = regressCurve(np.imag(self.T2D[mask::]), self.T2T[mask::], intercept=True)
- if component == "real":
- [a0,b0,rt20] = regressCurve(np.real(self.T2D[mask::]), self.T2T[mask::], intercept=True)
- rfit = r"$\tilde{T}_2$= %4d [ms]"%(1e3*rt20)
-
- else:
- if component == "imag":
- [b0,rt20] = regressCurve(np.imag(self.T2D[mask::]), self.T2T[mask::], intercept=False) #, intercept=True) #
- if component == "real":
- [b0,rt20] = regressCurve(np.real(self.T2D[mask::]), self.T2T[mask::], intercept=False) #, intercept=True) #
- rfit = r"$\tilde{T}_2$= %4d [ms]"%(1e3*rt20)
-
-
- extrapolate = False #False #True #False
- if extrapolate:
- Textr = 3
- nede = np.log10(Textr/self.T2T[-1]) #np.log10(self.T2T[-1]) - np.log10(self.T2T[-1])
- tex = np.logspace( np.log10(self.T2T[-1]), np.log10(Textr), (int)(self.gpd*nede)+1, base=10, endpoint=True)
- dex = 1j* (a0 + b0*np.exp(-np.array(tex)/rt20))
- self.T2T = np.concatenate( (self.T2T, tex) )
- self.T2D = np.concatenate( (self.T2D, dex) )
- self.sigma = np.concatenate( (self.sigma, self.sigma[-1]*np.ones(len(dex)) ) )
-
- #env = b0*np.exp(-np.array(self.T2T)/rt20)
- #self.MonoRes = { 'env':env, 'rfit':rfit, 'b0':b0, 'rt20' :rt20 } #[a0,b0,rt20] }
- env = a0 + b0*np.exp(-np.array(self.T2T)/rt20)
- self.MonoRes = { 'env':env, 'rfit':rfit, 'a0':a0, 'b0':b0, 'rt20' :rt20, 't':self.T2T } #[a0,b0,rt20] }
-
-
- self.emit(SIGNAL("plotMONO()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("enableINV()"))
- self.emit(SIGNAL("doneStatus()"))
-
- def BiFit(self, mask=2, intercept="False"):
- component='imag'
- #print "MonoRes", component, mask, intercept
- a0 = 0
- if intercept=="True":
- if component == "imag":
- [a0,b0,rt20,bb0,rrt20] = regressCurve2(np.imag(self.T2D[mask::]), self.T2T[mask::], sigma2=self.sigma[mask::], intercept=True)
- if component == "real":
- [a0,b0,rt20,bb0,rrt20] = regressCurve2(np.real(self.T2D[mask::]), self.T2T[mask::], sigma2=self.sigma[mask::], intercept=True)
- rfit = r"$\tilde{T}_2$= %4d [ms]"%(1e3*rt20)
-
- else:
- if component == "imag":
- [b0,rt20,bb0,rrt20] = regressCurve2(np.imag(self.T2D[mask::]), self.T2T[mask::], sigma2=self.sigma[mask::], intercept=False) #, intercept=True) #
- if component == "real":
- [b0,rt20,bb0,rrt20] = regressCurve2(np.real(self.T2D[mask::]), self.T2T[mask::], sigma2=self.sigma[mask::], intercept=False) #, intercept=True) #
- rfit = r"$\tilde{T}_2$= %4d [ms]"%(1e3*rt20)
-
-
- extrapolate = True # True #True
- if extrapolate:
- Textr = 3
- nede = np.log10(Textr/self.T2T[-1]) #np.log10(self.T2T[-1]) - np.log10(self.T2T[-1])
- tex = np.logspace( np.log10(self.T2T[-1]), np.log10(Textr), (int)(self.gpd*nede)+1, base=10, endpoint=True)
- dex = 1j* (a0 + b0*np.exp(-np.array(tex)/rt20) + bb0*np.exp(-np.array(tex)/rrt20) )
- self.T2T = np.concatenate( (self.T2T, tex) )
- self.T2D = np.concatenate( (self.T2D, dex) )
- self.sigma = np.concatenate( (self.sigma, self.sigma[-1]*np.ones(len(dex)) ) )
-
- #env = b0*np.exp(-np.array(self.T2T)/rt20)
- #self.MonoRes = { 'env':env, 'rfit':rfit, 'b0':b0, 'rt20' :rt20 } #[a0,b0,rt20] }
- env = a0 + b0*np.exp(-np.array(self.T2T)/rt20) + bb0*np.exp(-np.array(self.T2T)/rrt20)
-
- #print ("bi fits", a0, b0, rt20, bb0, rrt20)
-
- self.BiRes = { 'env':env, 'rfit':rfit, 'a0':a0, 'b0':b0, 'rt20' :rt20, 'bb0':bb0, 'rrt20':rrt20, 't':self.T2T } #[a0,b0,rt20] }
-
- self.emit(SIGNAL("plotBI()"))
- self.emit(SIGNAL("enableDSP()"))
- self.emit(SIGNAL("enableINV()"))
- self.emit(SIGNAL("doneStatus()"))
-
-
- def DistFit(self, dc=0, mask=0, nT2=30, lowT2=.005, hiT2=3.25, spacing="Log_10", Smooth="Smallest", betaScale=1):
-
- Time = pwcTime()
- Time.setT2(lowT2, hiT2, nT2, spacing)
- Time.setSampling( self.T2T[mask:] )
- Time.generateGenv()
-
- #self.burst = False
- #print ("MRProc.py ~~ DistFit self.burst override for publication ", self.burst)
- if self.burst:
- # fit burst data first
- Timeb = pwcTime()
- #Timeb.setT2(lowT2, hiT2, nT2, spacing)
- Timeb.T2Bins = np.copy(Time.T2Bins)
- #if len(Timeb.T2Bins) > 20:
- # Timeb.T2Bins = Timeb.T2Bins[0:20] # Subset
- Timeb.setSampling( self.T2Tb )
- Timeb.generateGenv()
-
- # invert burst data, always use smooth to encourage fast time inversion
- modelb = logBarrier(Timeb.Genv, np.imag(self.T2Db)-dc, Timeb.T2Bins, "lcurve", MAXITER=500, sigma=betaScale*self.sigmaBurst, alpha=1e6, smooth=Smooth)[0]
- modelb2 = np.zeros(nT2)
- modelb2[0:len(modelb)] += modelb
- #model = modelb2 # TODO remove
-
- # invert regular data independently, sum inversions
- #model = logBarrier(Time.Genv, np.imag(self.T2D[mask:])-dc, MAXITER=500, x_0=modelb, sigma=betaScale*self.sigma[mask:], alpha=1e10, smooth=Smooth)
- #model += modelb
-
- # Pass burt result as reference model
- model = logBarrier(Time.Genv, np.imag(self.T2D[mask:])-dc, Time.T2Bins, "lcurve", MAXITER=500, xr=modelb2, sigma=betaScale*self.sigma[mask:], alpha=1e6, smooth=Smooth)[0]
-
- else:
- model = logBarrier(Time.Genv, np.imag(self.T2D[mask:])-dc, Time.T2Bins, "lcurve", MAXITER=500, sigma=betaScale*self.sigma[mask:], alpha=1e6, smooth=Smooth)[0] #, smooth=True) #
-
- # forward model
- env = np.dot(Time.Genv, model)
- # NOTE this is not thread safe or even thread aware. Need to use MPI style message passing
- self.DistRes = { 'env':env, 'mod':model, 'Time':Time } #[a0,b0,rt20] } no dice
-
- def DistFitMP(self, q, tag, dc=0, mask=0, nT2=30, lowT2=.005, hiT2=3.25, spacing="Log_10", Smooth="Smallest", betaScale=1):
- """ Multi-processor version of DistFit using Queue. Note that Queue doesn't
- tolerate large messages. So instead we write them to file, using pickle!
- It's semi-absurd. But seems to function fast enough.
- """
- import pickle
- self.DistFit(dc, mask, nT2, lowT2, hiT2, spacing, Smooth, betaScale)
- self.DistRes['tag'] = tag
- pickle.dump( self.DistRes, open( str(tag)+".p", "wb" ) )
- q.put( tag )
-
-
- if __name__ == "__main__":
-
- fileName, fileExtension = os.path.splitext(sys.argv[1])
- if fileExtension == ".ors":
-
- ORS = MRProc()
- ORS.loadORSFile(sys.argv[1])
- ORS.WindowAndStack()
- ORS.T2EnvelopeDetect()
-
- #ORS.ResampleEnvelopeData(200, Mask=2, GatesPD=20) # resample size
-
- #print (len(ORS.T2D))
- #exit()
- #mono, rfit, [a0,b0,mt2] = ORS.MonoFit()
- mono, rfit, [b0,mt2] = ORS.MonoFit()
- #ca, caEnv, CAS = ORS.CorrectedAmplitude()
- mymask = 2
- env, mod, Time = ORS.DistFit(0, mymask) #a0)
-
- # Subtract DC term before 2D fit? Kind of kludgy but I don't see a way around it right now.
- plt.figure()
- #plt.plot(ORS.T2T, np.imag(ca), label='imag ca')
- #plt.plot(ORS.T2T, np.real(ca), label='real ca')
- #if ORS.NS < 2:
- # plt.plot(ORS.T2T, np.imag(ORS.T2D), label='imag')
- # plt.plot(ORS.T2T, np.real(ORS.T2D), label='real')
- #else:
- plt.errorbar(ORS.T2T, np.imag(ORS.T2D), fmt='o', yerr=ORS.sigma, label="data imag")
- plt.errorbar(ORS.T2T, np.real(ORS.T2D), fmt='o', yerr=np.std(ORS.T2D.real), label="data real")
- if ORS.NS > 2:
- plt.errorbar(ORS.T2T, np.imag(ORS.T2N), fmt='o', yerr=ORS.sigma, label="noise imag")
-
- plt.plot(ORS.T2T, mono, color='cyan', linewidth=3, label=rfit)
- #plt.plot(ORS.T2T, caEnv, label="car")
- plt.plot(ORS.T2T[mymask::], env, color='magenta', linewidth=3, label="dist")
- #plt.plot(ORS.T2T, a0+env)
- plt.legend()
- plt.savefig(sys.argv[1].strip(".ors")+"_caenv.pdf", facecolor='white', edgecolor='white', dpi=200)
-
-
- # Report RMS error of two results
- print("RMS error mono-exponential ", np.linalg.norm(np.imag(ORS.T2D) - mono) )
- print("RMS error dist-fit ", np.linalg.norm(np.imag(ORS.T2D[mymask::]) - env) )
- print("RMS error real channel ", np.linalg.norm(np.real(ORS.T2D) ) )
- if ORS.NS > 2:
- print("RMS error noise channel ", np.linalg.norm(np.imag(ORS.T2N) ) )
-
- plt.figure()
- plt.plot( ORS.T2T[mymask::], np.imag(ORS.T2D[mymask::]) - env )
- plt.title("residuals")
-
- #plt.show()
- #exit()
-
- plt.figure()
- plt.plot(Time.T2Bins, mod, color='purple', linewidth=2, label="recovered")
- #plt.plot(Time.T2Bins, guess, color='red', linewidth=2, label="guess")
-
- axmine = plt.gca()
- axmine.set_xlabel(r"$T_2$ [s]", color='black')
- axmine.set_ylabel(r"$A_0$ [rku]", color='black')
- axmine2 = plt.twinx()
- axmine2.set_ylabel(r"$A_0$ [rku]", color='black')
-
- theta = np.sum(mod)
- LogMeanT2 = np.exp(np.sum( mod * np.log(Time.T2Bins) ) / theta )
-
- #axmine2.plot(mt2, a0+b0, 'o', markersize=8, label="mono")
- axmine2.plot(mt2, b0, 'o', markersize=8, label="mono")
- #axmine2.plot(Time.T2Bins, guess, '-',color=colour[ic], linewidth=2, label="total")
- axmine2.plot(LogMeanT2, theta, 's', markersize=8, label="$T_{2ML}$")
- axmine2.set_ylim([0, axmine2.get_ylim()[1]])
- leg = plt.legend()
-
- plt.savefig(sys.argv[1].strip(".ors")+"_2DT2.pdf", facecolor='white', edgecolor='white', dpi=200)
-
-
- plt.figure(23)
- stats.probplot( np.imag(ORS.T2D) - mono , dist="norm", plot=plt) #, label="mono resid")
- stats.probplot( np.imag(ORS.T2D[mymask::]) - env , dist="norm", plot=plt) #, label="dist resid")
- if ORS.NS > 2:
- stats.probplot( np.imag(ORS.T2N), dist="norm", plot=plt) #, label="noise" )
-
- plt.savefig(sys.argv[1].strip(".ors")+"_qq.pdf")
-
- plt.show()
- exit()
-
|