123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- /* This file is part of Lemma, a geophysical modelling and inversion API.
- * More information is available at http://lemmasoftware.org
- */
-
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/.
- */
-
- /**
- * @file
- * @date 02/12/2014 10:20:18 AM
- * @version $Id$
- * @author Trevor Irons (ti)
- * @email Trevor.Irons@xri-geo.com
- * @copyright Copyright (c) 2014, XRI Geophysics, LLC
- * @copyright Copyright (c) 2014, Trevor Irons
- */
-
- #ifndef QWEKEY_INC
- #define QWEKEY_INC
-
- #include "hankeltransform.h"
- #include <Eigen/Eigenvalues>
- #ifdef HAVEBOOSTSPECIALFUNCTIONS
- #include "boost/math/special_functions.hpp"
- #include "boost/math/special_functions/bessel.hpp"
- #endif
-
- namespace Lemma {
-
- /** breakpoint to use in division of domain, based on zeros of bessel function or
- regular nPi spacing.
- */
- enum sZeroType{J0, J1, NPI};
-
- /**
- \brief Port of Key's quadrature with extrapolation Hankel transform algorithm.
- \details Details of the algorithm can be found in Key2011. This code is a port
- of the published algorithm, which contains the following notice:
- %------------------------------------------------------------------%
- % Copyright (c) 2012 by the Society of Exploration Geophysicists. %
- % For more information, go to http://software.seg.org/2012/0003 . %
- % You must read and accept usage terms at: %
- % http://software.seg.org/disclaimer.txt before use. %
- %------------------------------------------------------------------%
- */
- class QWEKey : public HankelTransform {
-
- friend std::ostream &operator<<(std::ostream &stream,
- const QWEKey &ob);
-
- public:
-
- // ==================== LIFECYCLE =======================
-
- /**
- * @copybrief LemmaObject::New()
- * @copydetails LemmaObject::New()
- */
- static QWEKey* New();
-
- /**
- * @copybrief LemmaObject::Delete()
- * @copydetails LemmaObject::Delete()
- */
- void Delete();
-
- // ==================== OPERATORS =======================
-
- void TestPrivate(const int& N);
-
- // ==================== OPERATIONS =======================
-
-
- Complex Zgauss(const int &ikk, const EMMODE &imode,
- const int &itype, const Real &rho,
- const Real &wavef, KernelEm1DBase *Kernel);
-
- /// Computes related kernels, if applicable, otherwise this is
- /// just a dummy function.
- void ComputeRelated(const Real& rho, KernelEm1DBase* Kernel);
-
- void ComputeRelated(const Real& rho, std::vector< KernelEm1DBase* > KernelVec);
-
- void ComputeRelated(const Real& rho, KernelEM1DManager* KernelManager);
-
- // ==================== ACCESS =======================
-
- // ==================== INQUIRY =======================
-
- protected:
-
- // ==================== LIFECYCLE =======================
-
- /** Default protected constructor, use New */
- QWEKey (const std::string& name);
-
- /** Default protected destructor, use Delete */
- ~QWEKey ();
-
- /**
- * @copybrief LemmaObject::Release()
- * @copydetails LemmaObject::Release()
- */
- void Release();
-
- /** Calculates Gauss quadrature weights of order N on the interval -1,1
- Algorithm from p 129 in:
- Trefethen, L. N., 2000, Spectral methods in MATLAB: Society for
- Industrial and Applied Mathematics (SIAM), volume 10 of Software,
- Environments, and Tools.
- */
- void GaussQuadWeights(const int& N);
-
- /** Returns the quadrature intervals and Bessel function weights used for the
- QWE method.
-
- */
- void BesselWeights( const sZeroType& sType);
-
- /** Computes an infinite integral using the partial sum of quadrature terms
- accelerated by sequence extrapolation using the Shanks transformation
- implemented with Wynn's epsilon algorithm.
- */
- void QWE(const Real& rho);
-
- /** Calls the underlying kernel functions evaluated as necessary
- */
- void getEyKernel(const int& i, const int& idx, const Real& rho);
-
- private:
-
- // ==================== DATA MEMBERS =========================
-
- /** Relative tolerance, default is 1e-6 */
- Real RelTol;
-
- /** Absolute tolerance, default is 1e-24 */
- Real AbsTol;
-
- /** Quadrature order, higher is more accurate but more expensive. Eefault is 9 */
- int nQuad;
-
- /** in QWE partial integrals before Shanks recurive algorithm. Defaults to 1 */
- int nDelay;
-
- /** Maximum number of intervals to integrate over . Defaults to 40 */
- int nIntervalsMax;
-
- /** Weighing of gaussian quadrature points */
- VectorXr GaussWeights;
-
- /** Abscissa locations of quadrature points */
- VectorXr GaussAbscissa;
-
- /** Breakpoints for dividing up the global integral */
- VectorXr xInt;
-
- /** All quadrature points between all breakpoints */
- VectorXr Bx;
-
- /** J0 weights */
- VectorXr BJ0;
-
- /** J1 weights */
- VectorXr BJ1;
-
- /** array of lambda arguments */
- VectorXr Lambda;
-
- /** array of lambda arguments */
- VectorXr Intervals;
-
- MatrixXcr TS;
- VectorXi Tn;
- MatrixXcr Textrap;
- MatrixXr TrelErr;
- MatrixXr TabsErr;
-
- /** Container to hold bessel arguments */
- Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic > Zwork;
-
- /** Container to hold bessel arguments */
- Eigen::Matrix<Complex, Eigen::Dynamic, Eigen::Dynamic > Zans;
-
- /** Manager for related kernels to evaluate */
- KernelEM1DManager* KernelManager;
-
- }; // ----- end of class QWEKey -----
-
-
- } // ----- end of Lemma name -----
-
- #endif // ----- #ifndef QWEKEY_INC -----
-
|