Lemma is an Electromagnetics API
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

DipoleSource.cpp 75KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "DipoleSource.h"
  11. #include "KernelEM1DManager.h"
  12. //#include "GroundedElectricDipole.h"
  13. //#include "UngroundedElectricDipole.h"
  14. //#include "MagneticDipole.h"
  15. #include "FieldPoints.h"
  16. #include "HankelTransform.h"
  17. namespace Lemma {
  18. // ==================== FRIENDS ======================
  19. std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) {
  20. stream << ob.Serialize() << "\n";
  21. return stream;
  22. }
  23. /*
  24. bool DipoleSource::operator == (DipoleSource& rhs) const {
  25. if (Location != rhs.Location) return false;
  26. return true;
  27. }
  28. */
  29. // ==================== LIFECYCLE ======================
  30. DipoleSource::DipoleSource( const ctor_key& key ) : LemmaObject( key ),
  31. Type(NOSOURCETYPE),
  32. irec(-1),
  33. Phase(0),
  34. Moment(1),
  35. KernelManager(nullptr),
  36. Receivers(nullptr),
  37. Earth(nullptr)
  38. {
  39. this->Location.setZero();
  40. this->Phat.setZero();
  41. }
  42. DipoleSource::DipoleSource( const YAML::Node& node, const ctor_key& key ) : LemmaObject( node, key ),
  43. Type(NOSOURCETYPE),
  44. irec(-1),
  45. Phase(0),
  46. Moment(1),
  47. KernelManager(nullptr),
  48. Receivers(nullptr),
  49. Earth(nullptr)
  50. {
  51. Type = string2Enum<DIPOLESOURCETYPE>(node["Type"].as<std::string>());
  52. this->Location = node["Location"].as<Vector3r>();
  53. this->Phat.setZero();
  54. }
  55. DipoleSource::~DipoleSource() {
  56. }
  57. std::shared_ptr<DipoleSource> DipoleSource::NewSP() {
  58. return std::make_shared<DipoleSource> ( ctor_key() );
  59. }
  60. YAML::Node DipoleSource::Serialize() const {
  61. YAML::Node node = LemmaObject::Serialize();
  62. node.SetTag( GetName() );
  63. node["Type"] = enum2String(Type);
  64. node["Location"] = Location;
  65. node["Phat"] = Phat;
  66. node["Freqs"] = Freqs;
  67. node["Phase"] = Phase;
  68. node["Moment"] = Moment;
  69. return node;
  70. }
  71. std::shared_ptr< DipoleSource > DipoleSource::DeSerialize(const YAML::Node& node) {
  72. if (node.Tag() != "DipoleSource") {
  73. throw DeSerializeTypeMismatch( "DipoleSource", node.Tag());
  74. }
  75. return std::make_shared<DipoleSource> ( node, ctor_key() );
  76. }
  77. std::shared_ptr<DipoleSource> DipoleSource::Clone() {
  78. auto Obj = DipoleSource::NewSP();
  79. // copy
  80. Obj->Type = Type;
  81. Obj->irec = irec;
  82. Obj->lays = lays;
  83. Obj->layr = layr;
  84. Obj->Phase = Phase;
  85. Obj->Moment = Moment;
  86. Obj->xxp = xxp;
  87. Obj->yyp = yyp;
  88. Obj->rho = rho;
  89. Obj->sp = sp;
  90. Obj->cp = cp;
  91. Obj->scp = scp;
  92. Obj->sps = sps;
  93. Obj->cps = cps;
  94. Obj->c2p = c2p;
  95. Obj->FieldsToCalculate = FieldsToCalculate;
  96. Obj->f = f;
  97. Obj->ik = ik;
  98. Obj->Location = Location;
  99. Obj->Phat = Phat;
  100. Obj->Freqs = Freqs;
  101. return Obj;
  102. }
  103. //--------------------------------------------------------------------------------------
  104. // Class: DipoleSource
  105. // Method: GetName
  106. // Description: Class identifier
  107. //--------------------------------------------------------------------------------------
  108. inline std::string DipoleSource::GetName ( ) const {
  109. return CName;
  110. } // ----- end of method DipoleSource::GetName -----
  111. // ==================== ACCESS ======================
  112. void DipoleSource::SetLocation(const Vector3r &posin) {
  113. this->Location = posin;
  114. }
  115. void DipoleSource::SetLocation(const Real &xp, const Real &yp,
  116. const Real &zp) {
  117. this->Location = Vector3r(xp, yp, zp);
  118. }
  119. void DipoleSource::SetPhase(const Real &phase) {
  120. this->Phase = phase;
  121. }
  122. void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) {
  123. static bool called = false;
  124. if (!called) {
  125. std::cerr << "\n\n=================================================================\n"
  126. << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n"
  127. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  128. << "This method will be removed in future versions of Lemma"
  129. << "\n=================================================================\n";
  130. called = true;
  131. }
  132. // Polarity = pol;
  133. // switch (Polarity) {
  134. // case POSITIVE:
  135. // Moment = std::abs(Moment);
  136. // break;
  137. // case NEGATIVE:
  138. // Moment = -std::abs(Moment);
  139. // break;
  140. // default:
  141. // throw NonValidDipolePolarity();
  142. // };
  143. }
  144. void DipoleSource::SetType(const DIPOLESOURCETYPE & stype) {
  145. switch (stype) {
  146. case (GROUNDEDELECTRICDIPOLE):
  147. this->Type = stype;
  148. break;
  149. case (UNGROUNDEDELECTRICDIPOLE):
  150. this->Type = stype;
  151. break;
  152. case (MAGNETICDIPOLE):
  153. this->Type = stype;
  154. break;
  155. default:
  156. throw NonValidDipoleTypeAssignment();
  157. }
  158. }
  159. void DipoleSource::SetPolarisation(const Vector3r& pol) {
  160. this->Phat = pol / pol.norm();
  161. }
  162. void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) {
  163. Vector3r pol = (VectorXr(3) << x, y, z).finished();
  164. this->Phat = pol / pol.norm();
  165. }
  166. Vector3r DipoleSource::GetPolarisation() {
  167. return Phat;
  168. }
  169. DIPOLESOURCETYPE DipoleSource::GetType() {
  170. return Type;
  171. }
  172. void DipoleSource::SetPolarisation(const
  173. DipoleSourcePolarisation &pol) {
  174. static bool called = false;
  175. if (!called) {
  176. std::cout << "\n\n========================================================================================\n"
  177. << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n"
  178. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  179. << "This method will be removed in future versions of Lemma"
  180. << "\n========================================================================================\n";
  181. called = true;
  182. }
  183. switch (pol) {
  184. case (XPOLARISATION):
  185. this->Phat = (VectorXr(3) << 1, 0, 0).finished();
  186. break;
  187. case (YPOLARISATION):
  188. this->Phat = (VectorXr(3) << 0, 1, 0).finished();
  189. break;
  190. case (ZPOLARISATION):
  191. this->Phat = (VectorXr(3) << 0, 0, 1).finished();
  192. break;
  193. default:
  194. throw NonValidDipolePolarisationAssignment();
  195. }
  196. }
  197. void DipoleSource::SetMoment(const Real &moment) {
  198. this->Moment = moment;
  199. }
  200. // ==================== OPERATIONS =====================
  201. void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> ReceiversIn, const int& irecin,
  202. std::shared_ptr<LayeredEarthEM> EarthIn ) {
  203. if (Receivers != ReceiversIn) {
  204. Receivers = ReceiversIn;
  205. }
  206. if (Earth != EarthIn) {
  207. Earth = EarthIn;
  208. }
  209. if (irecin != irec) {
  210. irec = irecin;
  211. }
  212. if (FieldsToCalculate != Fields) {
  213. FieldsToCalculate = Fields;
  214. }
  215. xxp = Receivers->GetLocation(irec)[0] - Location[0];
  216. yyp = Receivers->GetLocation(irec)[1] - Location[1];
  217. rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm();
  218. sp = yyp/rho;
  219. cp = xxp/rho;
  220. scp = sp*cp;
  221. sps = sp*sp;
  222. cps = cp*cp;
  223. c2p = cps-sps;
  224. f = VectorXcr::Zero(13);
  225. ik = VectorXi::Zero(13);
  226. lays = Earth->GetLayerAtThisDepth(Location[2]);
  227. layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]);
  228. KernelManager = KernelEM1DManager::NewSP();
  229. KernelManager->SetEarth(Earth);
  230. // alternative is to use weak_ptr here, this is deep and internal, and we are safe.
  231. //KernelManager->SetDipoleSource( shared_from_this().get() , ifreq, Receivers->GetLocation(irec)[2]);
  232. KernelManager->SetDipoleSource( this, ifreq, Receivers->GetLocation(irec)[2]);
  233. //KernelManager->SetDipoleSource( this.get() , ifreq, Receivers->GetLocation(irec)[2] );
  234. kernelFreq = Freqs(ifreq); // this is never used
  235. ReSetKernels( ifreq, Fields, Receivers, irec, Earth );
  236. return;
  237. }
  238. // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably
  239. // not the most critical piece though
  240. void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields ,
  241. std::shared_ptr<FieldPoints> Receivers, const int& irec,
  242. std::shared_ptr<LayeredEarthEM> Earth ) {
  243. Vector3r Pol = Phat;
  244. switch (Type) {
  245. case (GROUNDEDELECTRICDIPOLE):
  246. if (std::abs(Pol[2]) > 0) { // z dipole
  247. switch(FieldsToCalculate) {
  248. case E:
  249. if (lays == 0 && layr == 0) {
  250. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  251. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  252. } else if (lays == 0 && layr > 0) {
  253. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  254. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  255. } else if (lays > 0 && layr == 0) {
  256. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  257. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  258. } else {
  259. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  260. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  261. }
  262. break;
  263. case H:
  264. if (lays == 0 && layr == 0) {
  265. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  266. } else if (lays == 0 && layr > 0) {
  267. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  268. } else if (lays > 0 && layr == 0) {
  269. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  270. } else {
  271. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  272. }
  273. break;
  274. case BOTH:
  275. if ( lays == 0 && layr == 0) {
  276. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  277. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  278. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  279. } else if (lays == 0 && layr > 0) {
  280. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  281. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  282. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  283. } else if (lays > 0 && layr == 0) {
  284. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  285. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  286. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  287. } else {
  288. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  289. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  290. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  291. }
  292. }
  293. }
  294. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  295. switch(FieldsToCalculate) {
  296. case E:
  297. if ( lays == 0 && layr == 0) {
  298. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  299. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  300. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  301. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  302. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  303. } else if (lays == 0 && layr > 0) {
  304. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  305. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  306. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  307. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  308. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  309. } else if (lays > 0 && layr == 0) {
  310. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  311. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  312. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  313. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  314. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  315. } else {
  316. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  317. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  318. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  319. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  320. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  321. }
  322. break;
  323. case H:
  324. if (lays == 0 && layr == 0) {
  325. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  326. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  327. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  328. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  329. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  330. } else if (lays == 0 && layr > 0) {
  331. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  332. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  333. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  334. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  335. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  336. } else if (lays > 0 && layr == 0) {
  337. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  338. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  339. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  340. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  341. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  342. } else {
  343. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  344. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  345. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  346. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  347. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  348. }
  349. break;
  350. case BOTH:
  351. if (lays == 0 && layr == 0) {
  352. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  353. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  354. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  355. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  356. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  357. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  358. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  359. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  360. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  361. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  362. } else if (lays == 0 && layr > 0) {
  363. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  364. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  365. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  366. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  367. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  368. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  369. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  370. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  371. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  372. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  373. } else if (lays > 0 && layr == 0) {
  374. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  375. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  376. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  377. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  378. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  379. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  380. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  381. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  382. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  383. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  384. } else {
  385. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  386. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  387. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  388. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  389. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  390. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  391. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  392. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  393. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  394. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  395. }
  396. break;
  397. }
  398. }
  399. break;
  400. case (UNGROUNDEDELECTRICDIPOLE):
  401. if (std::abs(Pol[2]) > 0) { // z dipole
  402. switch(FieldsToCalculate) {
  403. case E:
  404. if (lays == 0 && layr == 0) {
  405. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  406. } else if (lays == 0 && layr > 0) {
  407. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  408. } else if (lays > 0 && layr == 0) {
  409. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  410. } else {
  411. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  412. }
  413. break;
  414. case H:
  415. if (lays == 0 && layr == 0) {
  416. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  417. } else if (lays == 0 && layr > 0) {
  418. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  419. } else if (lays > 0 && layr == 0) {
  420. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  421. } else {
  422. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  423. }
  424. break;
  425. case BOTH:
  426. if ( lays == 0 && layr == 0) {
  427. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  428. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  429. } else if (lays == 0 && layr > 0) {
  430. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  431. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  432. } else if (lays > 0 && layr == 0) {
  433. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  434. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  435. } else {
  436. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  437. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  438. }
  439. }
  440. }
  441. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  442. switch(FieldsToCalculate) {
  443. case E:
  444. if ( lays == 0 && layr == 0) {
  445. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  446. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  447. } else if (lays == 0 && layr > 0) {
  448. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  449. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  450. } else if (lays > 0 && layr == 0) {
  451. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  452. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  453. } else {
  454. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  455. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  456. }
  457. break;
  458. case H:
  459. if (lays == 0 && layr == 0) {
  460. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  461. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  462. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  463. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  464. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  465. } else if (lays == 0 && layr > 0) {
  466. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  467. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  468. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  469. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  470. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  471. } else if (lays > 0 && layr == 0) {
  472. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  473. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  474. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  475. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  476. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  477. } else {
  478. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  479. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  480. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  481. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  482. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  483. }
  484. break;
  485. case BOTH:
  486. if (lays == 0 && layr == 0) {
  487. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  488. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  489. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  490. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  491. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  492. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  493. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  494. } else if (lays == 0 && layr > 0) {
  495. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  496. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  497. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  498. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  499. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  500. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  501. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  502. } else if (lays > 0 && layr == 0) {
  503. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  504. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  505. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  506. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  507. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  508. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  509. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  510. } else {
  511. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  512. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  513. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  514. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  515. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  516. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  517. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  518. }
  519. break;
  520. }
  521. }
  522. break;
  523. case (MAGNETICDIPOLE):
  524. if (std::abs(Pol[2]) > 0) { // z dipole
  525. switch (FieldsToCalculate) {
  526. case E:
  527. if (lays == 0 && layr == 0) {
  528. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  529. } else if (lays == 0 && layr > 0) {
  530. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  531. } else if (lays > 0 && layr == 0) {
  532. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  533. } else {
  534. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  535. }
  536. break;
  537. case H:
  538. if (lays == 0 && layr == 0) {
  539. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  540. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  541. } else if (lays == 0 && layr > 0) {
  542. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  543. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  544. } else if (lays > 0 && layr == 0) {
  545. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  546. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  547. } else {
  548. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  549. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  550. }
  551. break;
  552. case BOTH:
  553. if (lays == 0 && layr == 0) {
  554. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  555. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  556. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  557. } else if (lays == 0 && layr > 0) {
  558. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  559. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  560. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  561. } else if (lays > 0 && layr == 0) {
  562. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  563. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  564. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  565. } else {
  566. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  567. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  568. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  569. }
  570. }
  571. }
  572. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  573. switch (FieldsToCalculate) {
  574. case E:
  575. if ( lays == 0 && layr == 0) {
  576. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  577. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  578. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  579. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  580. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  581. } else if (lays == 0 && layr > 0) {
  582. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  583. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  584. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  585. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  586. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  587. } else if (lays > 0 && layr == 0) {
  588. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INAIR>( );
  589. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INAIR>( );
  590. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INAIR>( );
  591. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INAIR>( );
  592. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INAIR>( );
  593. } else {
  594. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  595. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  596. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  597. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  598. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  599. }
  600. break;
  601. case H:
  602. if ( lays == 0 && layr == 0) {
  603. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  604. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  605. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  606. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  607. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  608. } else if (lays == 0 && layr > 0) {
  609. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  610. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  611. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  612. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  613. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  614. } else if (lays > 0 && layr == 0) {
  615. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INAIR>( );
  616. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INAIR>( );
  617. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INAIR>( );
  618. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INAIR>( );
  619. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INAIR>( );
  620. } else {
  621. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  622. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  623. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  624. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  625. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  626. }
  627. break;
  628. case BOTH:
  629. if ( lays == 0 && layr == 0) {
  630. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  631. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  632. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  633. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  634. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  635. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  636. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  637. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  638. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  639. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  640. } else if (lays == 0 && layr > 0) {
  641. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  642. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  643. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  644. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  645. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  646. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  647. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  648. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  649. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  650. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  651. } else {
  652. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  653. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  654. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  655. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  656. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  657. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  658. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  659. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  660. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  661. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  662. }
  663. break;
  664. }
  665. }
  666. break;
  667. default:
  668. std::cerr << "Dipole type incorrect, in dipolesource.cpp";
  669. exit(EXIT_FAILURE);
  670. }
  671. }
  672. void DipoleSource::UpdateFields( const int& ifreq, HankelTransform* Hankel, const Real& wavef) {
  673. Vector3r Pol = Phat;
  674. switch (Type) {
  675. case (GROUNDEDELECTRICDIPOLE):
  676. //Hankel->ComputeRelated(rho, KernelManager);
  677. if (std::abs(Pol[2]) > 0) { // z dipole
  678. switch(FieldsToCalculate) {
  679. case E:
  680. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  681. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  682. this->Receivers->AppendEfield(ifreq, irec,
  683. -Pol[2]*QPI*cp*f(10)*Moment,
  684. -Pol[2]*QPI*sp*f(10)*Moment,
  685. Pol[2]*QPI*f(11)*Moment);
  686. break;
  687. case H:
  688. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  689. this->Receivers->AppendHfield(ifreq, irec,
  690. -Pol[2]*QPI*sp*f(12)*Moment,
  691. Pol[2]*QPI*cp*f(12)*Moment,
  692. 0. );
  693. break;
  694. case BOTH:
  695. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  696. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  697. this->Receivers->AppendEfield(ifreq, irec,
  698. -Pol[2]*QPI*cp*f(10)*Moment,
  699. -Pol[2]*QPI*sp*f(10)*Moment,
  700. Pol[2]*QPI*f(11)*Moment );
  701. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  702. this->Receivers->AppendHfield(ifreq, irec,
  703. -Pol[2]*QPI*sp*f(12)*Moment,
  704. Pol[2]*QPI*cp*f(12)*Moment,
  705. 0. );
  706. } // Fields to calculate Z polarity Electric dipole
  707. }
  708. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole
  709. switch(FieldsToCalculate) {
  710. case E:
  711. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  712. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  713. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  714. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  715. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  716. if (std::abs(Pol[1]) > 0) {
  717. this->Receivers->AppendEfield(ifreq, irec,
  718. Pol[1]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  719. Pol[1]*Moment*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho)),
  720. Pol[1]*Moment*QPI*sp*f(4));
  721. }
  722. if (std::abs(Pol[0]) > 0) {
  723. this->Receivers->AppendEfield(ifreq, irec,
  724. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  725. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  726. Pol[0]*Moment*QPI*cp*f(4) );
  727. }
  728. break;
  729. case H:
  730. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  731. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  732. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  733. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  734. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  735. if (std::abs(Pol[1]) > 0) {
  736. this->Receivers->AppendHfield(ifreq, irec,
  737. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  738. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  739. -Pol[1]*QPI*cp*f(9)*Moment );
  740. }
  741. if (std::abs(Pol[0]) > 0) {
  742. this->Receivers->AppendHfield(ifreq, irec,
  743. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  744. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  745. Pol[0]*Moment*QPI*sp*f(9) );
  746. }
  747. break;
  748. case BOTH:
  749. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  750. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  751. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  752. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  753. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  754. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  755. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  756. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  757. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  758. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  759. if (std::abs(Pol[1]) > 0) {
  760. this->Receivers->AppendEfield(ifreq, irec,
  761. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  762. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  763. Pol[1]*QPI*sp*f(4)*Moment);
  764. this->Receivers->AppendHfield(ifreq, irec,
  765. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  766. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  767. -Pol[1]*QPI*cp*f(9)*Moment );
  768. }
  769. if (std::abs(Pol[0]) > 0) {
  770. this->Receivers->AppendEfield(ifreq, irec,
  771. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  772. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  773. Pol[0]*Moment*QPI*cp*f(4) );
  774. this->Receivers->AppendHfield(ifreq, irec,
  775. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  776. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  777. Pol[0]*Moment*QPI*sp*f(9) );
  778. }
  779. break;
  780. }
  781. }
  782. break; // GROUNDEDELECTRICDIPOLE
  783. case UNGROUNDEDELECTRICDIPOLE:
  784. if (std::abs(Pol[2]) > 0) { // z dipole
  785. switch(FieldsToCalculate) {
  786. case E:
  787. f(10) = 0;
  788. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  789. this->Receivers->AppendEfield(ifreq, irec,
  790. -Pol[2]*QPI*cp*f(10)*Moment,
  791. -Pol[2]*QPI*sp*f(10)*Moment,
  792. Pol[2]*QPI*f(11)*Moment);
  793. break;
  794. case H:
  795. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  796. this->Receivers->AppendHfield(ifreq, irec,
  797. -Pol[2]*QPI*sp*f(12)*Moment,
  798. Pol[2]*QPI*cp*f(12)*Moment,
  799. 0. );
  800. break;
  801. case BOTH:
  802. f(10) = 0;
  803. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  804. this->Receivers->AppendEfield(ifreq, irec,
  805. -Pol[2]*QPI*cp*f(10)*Moment,
  806. -Pol[2]*QPI*sp*f(10)*Moment,
  807. Pol[2]*QPI*f(11)*Moment );
  808. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  809. this->Receivers->AppendHfield(ifreq, irec,
  810. -Pol[2]*QPI*sp*f(12)*Moment,
  811. Pol[2]*QPI*cp*f(12)*Moment,
  812. 0. );
  813. } // Fields to calculate Z polarity Electric dipole
  814. }
  815. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole
  816. switch(FieldsToCalculate) {
  817. case E:
  818. f(0) = 0;
  819. f(1) = 0;
  820. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  821. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  822. f(4) = 0;
  823. if (std::abs(Pol[1]) > 0) {
  824. this->Receivers->AppendEfield(ifreq, irec,
  825. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  826. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  827. Pol[1]*QPI*sp*f(4)*Moment);
  828. }
  829. if (std::abs(Pol[0]) > 0) {
  830. this->Receivers->AppendEfield(ifreq, irec,
  831. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  832. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  833. Pol[0]*Moment*QPI*cp*f(4) );
  834. }
  835. break;
  836. case H:
  837. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  838. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  839. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  840. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  841. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  842. if (std::abs(Pol[1]) > 0) {
  843. this->Receivers->AppendHfield(ifreq, irec,
  844. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  845. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  846. -Pol[1]*QPI*cp*f(9)*Moment );
  847. // Analytic whole space solution could go here
  848. }
  849. if (std::abs(Pol[0]) > 0) {
  850. this->Receivers->AppendHfield(ifreq, irec,
  851. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  852. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  853. Pol[0]*Moment*QPI*sp*f(9) );
  854. // Analytic whole space solution
  855. }
  856. break;
  857. case BOTH:
  858. f(0) = 0;
  859. f(1) = 0;
  860. f(4) = 0;
  861. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(0)->GetZs();
  862. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(1)->GetZs();
  863. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  864. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  865. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  866. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  867. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  868. if (std::abs(Pol[1]) > 0) {
  869. this->Receivers->AppendEfield(ifreq, irec,
  870. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  871. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  872. Pol[1]*QPI*sp*f(4)*Moment);
  873. this->Receivers->AppendHfield(ifreq, irec,
  874. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  875. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  876. -Pol[1]*QPI*cp*f(9)*Moment );
  877. }
  878. if (std::abs(Pol[0]) > 0) {
  879. this->Receivers->AppendEfield(ifreq, irec,
  880. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  881. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  882. Pol[0]*Moment*QPI*cp*f(4) );
  883. this->Receivers->AppendHfield(ifreq, irec,
  884. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  885. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  886. Pol[0]*Moment*QPI*sp*f(9) );
  887. }
  888. break;
  889. }
  890. }
  891. break; // UNGROUNDEDELECTRICDIPOLE
  892. case MAGNETICDIPOLE:
  893. //Hankel->ComputeRelated(rho, KernelManager);
  894. if (std::abs(Pol[2]) > 0) { // z dipole
  895. switch(FieldsToCalculate) {
  896. case E:
  897. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  898. this->Receivers->AppendEfield(ifreq, irec,
  899. Pol[2]*Moment*QPI*sp*f(12),
  900. -Pol[2]*Moment*QPI*cp*f(12),
  901. 0);
  902. break;
  903. case H:
  904. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  905. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  906. this->Receivers->AppendHfield(ifreq, irec,
  907. -Pol[2]*Moment*QPI*cp*f(10),
  908. -Pol[2]*Moment*QPI*sp*f(10),
  909. Pol[2]*Moment*QPI*f(11) );
  910. break;
  911. case BOTH:
  912. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  913. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  914. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  915. this->Receivers->AppendEfield(ifreq, irec,
  916. Pol[2]*Moment*QPI*sp*f(12),
  917. -Pol[2]*Moment*QPI*cp*f(12),
  918. 0);
  919. this->Receivers->AppendHfield(ifreq, irec,
  920. -Pol[2]*Moment*QPI*cp*f(10),
  921. -Pol[2]*Moment*QPI*sp*f(10),
  922. Pol[2]*Moment*QPI*f(11) );
  923. break;
  924. }
  925. }
  926. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  927. switch (FieldsToCalculate) {
  928. case E:
  929. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  930. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  931. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  932. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  933. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  934. if (std::abs(Pol[0]) > 0) {
  935. this->Receivers->AppendEfield(ifreq, irec,
  936. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  937. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  938. Pol[0]*Moment*QPI*sp*f(9));
  939. }
  940. if (std::abs(Pol[1]) > 0) {
  941. this->Receivers->AppendEfield(ifreq, irec,
  942. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  943. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  944. -Pol[1]*Moment*QPI*cp*f(9) );
  945. }
  946. break;
  947. case H:
  948. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  949. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  950. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  951. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  952. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  953. if (std::abs(Pol[0]) > 0) {
  954. this->Receivers->AppendHfield(ifreq, irec,
  955. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  956. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  957. Pol[0]*Moment*QPI*cp*f(4) );
  958. }
  959. if (std::abs(Pol[1]) > 0) {
  960. this->Receivers->AppendHfield(ifreq, irec,
  961. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  962. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  963. Pol[1]*Moment*QPI*sp*f(4));
  964. }
  965. break;
  966. case BOTH:
  967. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  968. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  969. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  970. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  971. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  972. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  973. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  974. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  975. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  976. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  977. if (std::abs(Pol[0]) > 0) {
  978. this->Receivers->AppendEfield(ifreq, irec,
  979. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  980. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  981. Pol[0]*Moment*QPI*sp*f(9));
  982. this->Receivers->AppendHfield(ifreq, irec,
  983. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  984. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  985. Pol[0]*Moment*QPI*cp*f(4) );
  986. }
  987. if (std::abs(Pol[1]) > 0) {
  988. this->Receivers->AppendEfield(ifreq, irec,
  989. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  990. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  991. -Pol[1]*Moment*QPI*cp*f(9) );
  992. this->Receivers->AppendHfield(ifreq, irec,
  993. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  994. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  995. Pol[1]*Moment*QPI*sp*f(4));
  996. }
  997. break;
  998. }
  999. }
  1000. break;
  1001. case NOSOURCETYPE:
  1002. throw NonValidDipoleType(this);
  1003. } // Source Type Switch
  1004. }
  1005. // ==================== INQUIRY ======================
  1006. std::shared_ptr<KernelEM1DManager> DipoleSource::GetKernelManager() {
  1007. return KernelManager;
  1008. }
  1009. Vector3r DipoleSource::GetLocation() {
  1010. return this->Location;
  1011. }
  1012. #ifdef LEMMAUSEVTK
  1013. vtkActor* DipoleSource::GetVtkActor() {
  1014. vtkActor* vActor;
  1015. vtkLineSource* vLineSource;
  1016. vtkTubeFilter* vTube;
  1017. vtkPolyDataMapper* vMapper;
  1018. vtkRegularPolygonSource* vCircleSource;
  1019. vLineSource = vtkLineSource::New();
  1020. vTube = vtkTubeFilter::New();
  1021. vMapper = vtkPolyDataMapper::New();
  1022. vCircleSource = vtkRegularPolygonSource::New();
  1023. VectorXr M0 = Location - .5*Moment*Phat;
  1024. VectorXr M1 = Location + .5*Moment*Phat;
  1025. vActor = vtkActor::New();
  1026. switch (Type) {
  1027. case GROUNDEDELECTRICDIPOLE:
  1028. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1029. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1030. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1031. vTube->SetRadius(.1 * std::abs(Moment));
  1032. vTube->SetNumberOfSides(6);
  1033. vTube->SetCapping(1);
  1034. vMapper->SetInputConnection(vTube->GetOutputPort());
  1035. vActor->SetMapper(vMapper);
  1036. vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1037. break;
  1038. case UNGROUNDEDELECTRICDIPOLE:
  1039. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1040. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1041. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1042. vTube->SetRadius(.1 * std::abs(Moment));
  1043. vTube->SetNumberOfSides(6);
  1044. vTube->SetCapping(1);
  1045. vMapper->SetInputConnection(vTube->GetOutputPort());
  1046. vActor->SetMapper(vMapper);
  1047. //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1048. vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX));
  1049. vActor->GetProperty()->SetOpacity(1.);
  1050. break;
  1051. case MAGNETICDIPOLE:
  1052. vCircleSource->SetCenter(Location(0), Location(1),
  1053. Location(2));
  1054. vCircleSource->SetNumberOfSides(360);
  1055. vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]);
  1056. vCircleSource->SetRadius(0.2); // .2 m radius
  1057. vCircleSource->SetGeneratePolygon(false);
  1058. vCircleSource->SetGeneratePolyline(true);
  1059. vCircleSource->Update();
  1060. vTube->SetInputConnection(vCircleSource->GetOutputPort());
  1061. //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)),
  1062. // (float)(*yCoords->GetTuple(ny))) / 100);
  1063. vTube->SetRadius(.1*std::abs(Moment));
  1064. vTube->SetNumberOfSides(6);
  1065. vTube->SetCapping(1);
  1066. vMapper->SetInputConnection(vTube->GetOutputPort());
  1067. vActor->SetMapper(vMapper);
  1068. vActor->GetProperty()->SetColor(.9,.2,.9);
  1069. break;
  1070. default:
  1071. throw NonValidDipoleType();
  1072. }
  1073. vLineSource->Delete();
  1074. vCircleSource->Delete();
  1075. vTube->Delete();
  1076. vMapper->Delete();
  1077. return vActor;
  1078. }
  1079. #endif
  1080. Real DipoleSource::GetLocation(const int& coordinate) {
  1081. switch (coordinate) {
  1082. case (0):
  1083. return this->Location.x();
  1084. //break; // implicit
  1085. case (1):
  1086. return this->Location.y();
  1087. //break; // implicit
  1088. case (2):
  1089. return this->Location.z();
  1090. //break; // implicit
  1091. default:
  1092. throw NonValidLocationCoordinate( );
  1093. }
  1094. }
  1095. DIPOLESOURCETYPE DipoleSource::GetDipoleSourceType() {
  1096. return this->Type;
  1097. }
  1098. //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() {
  1099. // return this->Polarisation;
  1100. //}
  1101. Real DipoleSource::GetAngularFrequency(const int& ifreq) {
  1102. return 2.*PI*this->Freqs(ifreq);
  1103. }
  1104. Real DipoleSource::GetFrequency(const int& ifreq) {
  1105. return this->Freqs(ifreq);
  1106. }
  1107. VectorXr DipoleSource::GetFrequencies( ) {
  1108. return this->Freqs;
  1109. }
  1110. Real DipoleSource::GetPhase() {
  1111. return this->Phase;
  1112. }
  1113. Real DipoleSource::GetMoment() {
  1114. return this->Moment;
  1115. }
  1116. int DipoleSource::GetNumberOfFrequencies() {
  1117. return (int)(this->Freqs.size());
  1118. }
  1119. void DipoleSource::SetNumberOfFrequencies(const int &nfreq){
  1120. Freqs.resize(nfreq);
  1121. Freqs.setZero();
  1122. }
  1123. void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){
  1124. Freqs(ifreq) = freq;
  1125. }
  1126. void DipoleSource::SetFrequencies(const VectorXr &freqs){
  1127. Freqs = freqs;
  1128. }
  1129. /////////////////////////////////////////////////////////////////
  1130. /////////////////////////////////////////////////////////////////
  1131. // Error classes
  1132. NullDipoleSource::NullDipoleSource() :
  1133. runtime_error( "NULL VALUED DIPOLE SOURCE") {}
  1134. NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) :
  1135. runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { }
  1136. NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) :
  1137. runtime_error( "NON VALID DIPOLE TYPE") {
  1138. std::cout << "Thrown by instance of "
  1139. << ptr->GetName() << std::endl;
  1140. }
  1141. NonValidDipoleType::NonValidDipoleType( ) :
  1142. runtime_error( "NON VALID DIPOLE TYPE") { }
  1143. NonValidDipolePolarity::NonValidDipolePolarity () :
  1144. runtime_error( "NON VALID DIPOLE POLARITY") { }
  1145. NonValidDipolePolarisation::NonValidDipolePolarisation( ) :
  1146. runtime_error( "NON VALID DIPOLE TYPE") { }
  1147. NonValidDipolePolarisationAssignment::
  1148. NonValidDipolePolarisationAssignment( ) :
  1149. runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { }
  1150. NonValidLocationCoordinate::NonValidLocationCoordinate( ) :
  1151. runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { }
  1152. }