Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

PolygonalWireAntenna.cpp 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 05/18/2010
  9. @version $Id: PolygonalWireAntenna.cpp 211 2015-02-27 05:43:26Z tirons $
  10. **/
  11. #include "PolygonalWireAntenna.h"
  12. namespace Lemma {
  13. std::ostream &operator << (std::ostream &stream, const PolygonalWireAntenna &ob) {
  14. stream << ob.Serialize() << "\n";
  15. return stream;
  16. }
  17. // ==================== LIFECYCLE =======================
  18. PolygonalWireAntenna::PolygonalWireAntenna( const ctor_key& key ) :
  19. WireAntenna( key ), minDipoleRatio(.15),
  20. minDipoleMoment(1e-6), maxDipoleMoment(1e1), rRepeat(1e10,1e10,1e10) {
  21. Points.setZero();
  22. //rRepeat.setOnes();
  23. }
  24. PolygonalWireAntenna::PolygonalWireAntenna( const YAML::Node& node, const ctor_key& key) : WireAntenna(node, key ) {
  25. minDipoleRatio = node["minDipoleRatio"].as<Real>();
  26. maxDipoleMoment = node["maxDipoleMoment"].as<Real>();
  27. minDipoleMoment = node["minDipoleMoment"].as<Real>();
  28. }
  29. PolygonalWireAntenna::~PolygonalWireAntenna() {
  30. }
  31. //--------------------------------------------------------------------------------------
  32. // Class: PolygonalWireAntenna
  33. // Method: Serialize
  34. //--------------------------------------------------------------------------------------
  35. YAML::Node PolygonalWireAntenna::Serialize ( ) const {
  36. YAML::Node node = WireAntenna::Serialize();
  37. node.SetTag( this->GetName() );
  38. node["minDipoleRatio"] = minDipoleRatio;
  39. node["maxDipoleMoment"] = maxDipoleMoment;
  40. node["minDipoleMoment"] = minDipoleMoment;
  41. return node;
  42. } // ----- end of method PolygonalWireAntenna::Serialize -----
  43. //--------------------------------------------------------------------------------------
  44. // Class: WireAntenna
  45. // Method: DeSerialize
  46. //--------------------------------------------------------------------------------------
  47. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::DeSerialize ( const YAML::Node& node ) {
  48. if (node.Tag() != "PolygonalWireAntenna") {
  49. throw DeSerializeTypeMismatch( "PolygonalWireAntenna", node.Tag());
  50. }
  51. return std::make_shared<PolygonalWireAntenna> ( node, ctor_key() );
  52. } // ----- end of method WireAntenna::DeSerialize -----
  53. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::NewSP() {
  54. return std::make_shared<PolygonalWireAntenna>( ctor_key() );
  55. }
  56. std::shared_ptr<WireAntenna> PolygonalWireAntenna::Clone() const {
  57. auto copy = PolygonalWireAntenna::NewSP();
  58. copy->minDipoleRatio = this->minDipoleRatio;
  59. copy->minDipoleMoment = this->minDipoleMoment;
  60. copy->maxDipoleMoment = this->maxDipoleMoment;
  61. copy->NumberOfPoints = this->NumberOfPoints;
  62. copy->Freqs = this->Freqs;
  63. copy->Current = this->Current;
  64. copy->NumberOfTurns = this->NumberOfTurns;
  65. copy->Points = this->Points;
  66. //copy->Dipoles = this->Dipoles; // no, disaster
  67. return copy;
  68. }
  69. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::ClonePA() const {
  70. auto copy = PolygonalWireAntenna::NewSP();
  71. copy->minDipoleRatio = this->minDipoleRatio;
  72. copy->minDipoleMoment = this->minDipoleMoment;
  73. copy->maxDipoleMoment = this->maxDipoleMoment;
  74. copy->NumberOfPoints = this->NumberOfPoints;
  75. copy->Freqs = this->Freqs;
  76. copy->Current = this->Current;
  77. copy->NumberOfTurns = this->NumberOfTurns;
  78. copy->Points = this->Points;
  79. //copy->Dipoles = this->Dipoles; // no, disaster
  80. return copy;
  81. }
  82. //--------------------------------------------------------------------------------------
  83. // Class: PolygonalWireAntenna
  84. // Method: GetName
  85. // Description: Class identifier
  86. //--------------------------------------------------------------------------------------
  87. inline std::string PolygonalWireAntenna::GetName ( ) const {
  88. return CName;
  89. } // ----- end of method PolygonalWireAntenna::GetName -----
  90. void PolygonalWireAntenna::SetMinDipoleRatio (const Real& ratio) {
  91. minDipoleRatio = ratio;
  92. }
  93. void PolygonalWireAntenna::SetMinDipoleMoment (const Real& m) {
  94. minDipoleMoment = m;
  95. }
  96. void PolygonalWireAntenna::SetMaxDipoleMoment (const Real& m) {
  97. maxDipoleMoment = m;
  98. }
  99. // ==================== OPERATIONS =======================
  100. void PolygonalWireAntenna::ApproximateWithElectricDipoles(const Vector3r &rp) {
  101. // Only resplit if necessary. Save a few cycles if repeated
  102. if ( (rRepeat-rp).norm() > 1e-16 ) {
  103. Dipoles.clear();
  104. // loop over all segments
  105. for (int iseg=0; iseg<NumberOfPoints-1; ++iseg) {
  106. InterpolateLineSegment(Points.col(iseg), Points.col(iseg+1), rp);
  107. }
  108. rRepeat = rp;
  109. } else {
  110. for (unsigned int id=0; id<Dipoles.size(); ++id) {
  111. Dipoles[id]->SetFrequencies(Freqs);
  112. }
  113. }
  114. }
  115. Vector3r PolygonalWireAntenna::ClosestPointOnLine(const Vector3r &p1,
  116. const Vector3r &p2, const Vector3r &tp) {
  117. Vector3r v1 = p2 - p1;
  118. Vector3r v2 = p1 - tp;
  119. Vector3r v3 = p1 - p2;
  120. Vector3r v4 = p2 - tp;
  121. Real dot1 = v2.dot(v1);
  122. Real dot2 = v1.dot(v1);
  123. Real dot3 = v4.dot(v3);
  124. Real dot4 = v3.dot(v3);
  125. Real t1 = -1.*dot1/dot2;
  126. Real t2 = -1.*dot3/dot4;
  127. Vector3r pos = p1+v1*t1 ;
  128. // check if on line
  129. // else give back the closest end point
  130. if ( t1>=0 && t2>=0. ) {
  131. return pos;
  132. } else if (t1<0) {
  133. return p1;
  134. } else {
  135. return p2;
  136. }
  137. }
  138. void PolygonalWireAntenna::PushXYZDipoles(const Vector3r &step,
  139. const Vector3r &cp, const Vector3r &dir,
  140. std::vector< std::shared_ptr<DipoleSource> > &xDipoles) {
  141. Real scale = (Real)(NumberOfTurns)*Current;
  142. auto tx = DipoleSource::NewSP();
  143. tx->SetLocation(cp);
  144. tx->SetType(UNGROUNDEDELECTRICDIPOLE);
  145. tx->SetPolarisation(dir);
  146. tx->SetFrequencies(Freqs);
  147. tx->SetMoment(scale*step.norm());
  148. xDipoles.push_back(tx);
  149. }
  150. void PolygonalWireAntenna::CorrectOverstepXYZDipoles(const Vector3r &step,
  151. const Vector3r &cp, const Vector3r &dir,
  152. std::vector< std::shared_ptr<DipoleSource> > &xDipoles ) {
  153. Real scale = (Real)(NumberOfTurns)*Current;
  154. // X oriented dipoles
  155. if (step.norm() > minDipoleMoment) {
  156. xDipoles[xDipoles.size()-1]->SetLocation(cp);
  157. xDipoles[xDipoles.size()-1]->SetMoment(scale*step.norm());
  158. }
  159. }
  160. void PolygonalWireAntenna::InterpolateLineSegment(const Vector3r &p1,
  161. const Vector3r &p2, const Vector3r & tp) {
  162. Vector3r phat = (p1-p2).array() / (p1-p2).norm();
  163. Vector3r c = this->ClosestPointOnLine(p1, p2, tp);
  164. Real dtp = (tp-c).norm(); // distance to point at c
  165. Real dc1 = (p1-c).norm(); // distance to c from p1
  166. Real dc2 = (p2-c).norm(); // distance to c from p1
  167. // unit vector
  168. Vector3r cdir = (p2-p1).array() / (p2-p1).norm();
  169. ///////////////////
  170. // dipoles for this segment
  171. std::vector< std::shared_ptr<DipoleSource> > xDipoles;
  172. // go towards p1
  173. if ( ((c-p1).array().abs() > minDipoleMoment).any() ) {
  174. // cp = current pos, lp = last pos
  175. Vector3r cp = c + phat*(dtp*minDipoleRatio)*.5;
  176. Vector3r lp = c;
  177. Real dist = (cp-p1).norm();
  178. Real dist_old = dist+1.;
  179. // check that we didn't run past the end, or that we aren't starting at
  180. // the end, or that initial step runs over!
  181. Vector3r dir = (p1-cp).array() / (p1-cp).norm(); // direction of movement
  182. Vector3r step = phat*(dtp*minDipoleRatio);
  183. Vector3r stepold = Vector3r::Zero();
  184. // (dir-phat) just shows if we are stepping towards or away from p1
  185. while (dist < dist_old && (dir-phat).norm() < 1e-8) {
  186. PushXYZDipoles(step, cp, cdir, xDipoles);
  187. // Make 1/2 of previous step, 1/2 of this step, store this step
  188. stepold = step;
  189. step = phat*( (cp-tp).norm()*minDipoleRatio );
  190. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  191. step *= .5;
  192. }
  193. lp = cp;
  194. cp += .5*stepold + .5*step;
  195. dist = (cp-p1).norm();
  196. dir = (p1-cp).array() / (p1-cp).norm();
  197. }
  198. // cp now points to end last of dipole moments
  199. cp -= .5*step;
  200. // Fix last dipole position, so that entire wire is represented,
  201. // and no more
  202. Real distLastSeg = (c - cp).norm();
  203. if (distLastSeg + minDipoleMoment < dc1) {
  204. // case 1: understep, add dipole
  205. step = (p1-cp).array();
  206. cp += .5*step;
  207. PushXYZDipoles(step, cp, cdir, xDipoles);
  208. } else if (distLastSeg > dc1 + minDipoleMoment) {
  209. // case 2: overstep, reposition dipole and size
  210. step = (p1 - (lp-.5*stepold));
  211. cp = (lp-.5*stepold) + (.5*step);
  212. CorrectOverstepXYZDipoles(step, cp, cdir, xDipoles);
  213. }
  214. // else case 0: nearly 'perfect' fit do nothing
  215. }
  216. // go towards p2
  217. if ( ( (c-p2).array().abs() > minDipoleMoment).any() ) {
  218. // cp = current pos, lp = last pos
  219. Vector3r step = -phat*(dtp*minDipoleRatio);
  220. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  221. step *= .5;
  222. }
  223. Vector3r cp = c + step*.5;
  224. Vector3r lp = c;
  225. Real dist = (p2-cp).norm();
  226. Real dist_old = dist+1e3;
  227. // check that we didn't run past the end, or that we aren't starting at
  228. // the end, or that initial step runs over!
  229. Vector3r dir = (p2-cp).array() / (p2-cp).norm(); // direction of movement
  230. Vector3r stepold = Vector3r::Zero();
  231. // (dir-phat) just shows if we are stepping towards or away from p1
  232. while (dist < dist_old && (dir+phat).norm() < 1e-8) {
  233. PushXYZDipoles(step, cp, cdir, xDipoles);
  234. // Make 1/2 of previous step, 1/2 of this step, store this step
  235. stepold = step;
  236. step = -phat*( (cp-tp).norm()*minDipoleRatio );
  237. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  238. step *= .5;
  239. }
  240. lp = cp;
  241. cp += .5*stepold + .5*step;
  242. dist = (cp-p2).norm();
  243. dir = (p2-cp).array() / (p2-cp).norm();
  244. }
  245. // cp now points to end last of dipole moments
  246. cp -= .5*step;
  247. // Fix last dipole position, so that entire wire is represented,
  248. // and no more
  249. Real distLastSeg = (c - cp).norm();
  250. if (distLastSeg + minDipoleMoment < dc2) {
  251. // case 1: understep, add dipole
  252. step = (p2-cp).array();
  253. cp += .5*step;
  254. PushXYZDipoles(step, cp, cdir, xDipoles);
  255. } else if (distLastSeg > dc2 + minDipoleMoment) {
  256. // case 2: overstep, reposition dipole and size
  257. step = (p2 - (lp-.5*stepold));
  258. cp = (lp-.5*stepold) + (.5*step);
  259. CorrectOverstepXYZDipoles(step, cp, cdir, xDipoles);
  260. }
  261. // else case 0: nearly 'perfect' fit do nothing
  262. }
  263. Dipoles.insert(Dipoles.end(), xDipoles.begin(), xDipoles.end());
  264. }
  265. }