Lemma is an Electromagnetics API
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

EMEarth1D.cpp 37KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "EMEarth1D.h"
  11. #include "FieldPoints.h"
  12. #include "WireAntenna.h"
  13. #include "PolygonalWireAntenna.h"
  14. #ifdef LEMMAUSEOMP
  15. #include "omp.h"
  16. #endif
  17. namespace Lemma {
  18. std::ostream &operator << (std::ostream &stream, const EMEarth1D &ob) {
  19. stream << ob.Serialize() << "\n";
  20. return stream;
  21. }
  22. #ifdef KIHALEE_EM1D
  23. // Wrapper function for Fortran subroutine Em1D bi kihand
  24. // Returns E or H fields (SLOW)
  25. extern "C" { void em1dcall_(int &itype, // source
  26. int &ipol, // source
  27. int &nlay, // Earth
  28. int &nfreq, // source
  29. int &nfield, // Calculator
  30. int &nres, // Receivers
  31. int &jtype, // N/A
  32. int &jgamma, // Controller
  33. double &acc, // Controller
  34. double *dep, // Earth
  35. std::complex<double> *sig, // Earth
  36. double *susl, // Earth
  37. double *sush, // Earth
  38. double *sustau, // Earth
  39. double *susalp, // Earth
  40. double *eprl, // Earth
  41. double *eprh, // Earth
  42. double *eprtau, // Earth
  43. double *epralp, // Earth
  44. double &finit, // N/A
  45. double &flimit, // N/A
  46. double &dlimit, // N/A
  47. double &lfinc, // N/A
  48. double &tx, // Source
  49. double &ty, // Source
  50. double &tz, // Source
  51. double *rxx, // Receivers
  52. double *rxy, // Receivers
  53. double *rxz, // Receivers
  54. std::complex<double> *ex, // Receivers
  55. std::complex<double> *ey, // |
  56. std::complex<double> *ez, // |
  57. std::complex<double> *hx, // |
  58. std::complex<double> *hy, // V
  59. std::complex<double> *hz ); // ___
  60. }
  61. #endif
  62. // ==================== LIFECYCLE ===================================
  63. // TODO init large arrays here.
  64. EMEarth1D::EMEarth1D( const ctor_key& key ) : LemmaObject( key ),
  65. Dipole(nullptr), Earth(nullptr), Receivers(nullptr), Antenna(nullptr),
  66. FieldsToCalculate(BOTH), HankelType(ANDERSON801), icalcinner(0), icalc(0)
  67. //#ifdef HAVE_BOOST_PROGRESS
  68. // , disp(0)
  69. //#endif
  70. {
  71. }
  72. EMEarth1D::~EMEarth1D() {
  73. }
  74. std::shared_ptr<EMEarth1D> EMEarth1D::NewSP() {
  75. return std::make_shared<EMEarth1D>(ctor_key());
  76. }
  77. YAML::Node EMEarth1D::Serialize() const {
  78. YAML::Node node = LemmaObject::Serialize();
  79. node["FieldsToCalculate"] = enum2String(FieldsToCalculate);
  80. node["HankelType"] = enum2String(HankelType);
  81. //if (Dipole != nullptr) node["Dipole"] = Dipole->Serialize();
  82. if (Earth != nullptr) node["Earth"] = Earth->Serialize();
  83. //if (Receivers != nullptr) node["Receivers"] = Receivers->Serialize(); Can be huge?
  84. if (Antenna != nullptr) node["Antenna"] = Antenna->Serialize();
  85. node.SetTag( this->GetName() );
  86. return node;
  87. }
  88. //--------------------------------------------------------------------------------------
  89. // Class: EMEarth1D
  90. // Method: GetName
  91. // Description: Class identifier
  92. //--------------------------------------------------------------------------------------
  93. inline std::string EMEarth1D::GetName ( ) const {
  94. return CName;
  95. } // ----- end of method EMEarth1D::GetName -----
  96. // ==================== ACCESS ===================================
  97. void EMEarth1D::AttachDipoleSource( std::shared_ptr<DipoleSource> dipoleptr) {
  98. Dipole = dipoleptr;
  99. }
  100. void EMEarth1D::AttachLayeredEarthEM( std::shared_ptr<LayeredEarthEM> earthptr) {
  101. Earth = earthptr;
  102. }
  103. void EMEarth1D::AttachFieldPoints( std::shared_ptr<FieldPoints> recptr) {
  104. Receivers = recptr;
  105. if (Receivers == nullptr) {
  106. std::cout << "nullptr Receivers in emearth1d.cpp " << std::endl;
  107. return;
  108. }
  109. // This has an implicid need to first set a source before receivers, users
  110. // will not expect this. Fix
  111. if (Dipole != nullptr) {
  112. switch (FieldsToCalculate) {
  113. case E:
  114. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  115. break;
  116. case H:
  117. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  118. break;
  119. case BOTH:
  120. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  121. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  122. break;
  123. }
  124. } else if (Antenna != nullptr) {
  125. switch (FieldsToCalculate) {
  126. case E:
  127. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  128. break;
  129. case H:
  130. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  131. break;
  132. case BOTH:
  133. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  134. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  135. break;
  136. }
  137. }
  138. }
  139. void EMEarth1D::AttachWireAntenna(std::shared_ptr<WireAntenna> antennae) {
  140. this->Antenna = antennae;
  141. }
  142. void EMEarth1D::SetFieldsToCalculate(const FIELDCALCULATIONS &calc) {
  143. FieldsToCalculate = calc;
  144. }
  145. void EMEarth1D::SetHankelTransformMethod( const HANKELTRANSFORMTYPE &type) {
  146. HankelType = type;
  147. }
  148. void EMEarth1D::Query() {
  149. std::cout << "EmEarth1D::Query()" << std::endl;
  150. std::cout << "Dipole " << Dipole;
  151. if (Dipole) std::cout << *Dipole << std::endl;
  152. std::cout << "Earth " << Earth;
  153. if (Earth) std::cout << *Earth << std::endl;
  154. std::cout << "Receivers " << Earth;
  155. if (Earth) std::cout << *Receivers << std::endl;
  156. std::cout << "Antenna " << Earth;
  157. if (Antenna) std::cout << *Antenna << std::endl;
  158. std::cout << "icalc " << icalc << std::endl;
  159. std::cout << "icalcinner " << icalcinner << std::endl;
  160. }
  161. // ==================== OPERATIONS ===================================
  162. void EMEarth1D::CalculateWireAntennaFields(bool progressbar) {
  163. #ifdef HAVE_BOOST_PROGRESS
  164. boost::progress_display *disp;
  165. #endif
  166. if (Earth == nullptr) {
  167. throw NullEarth();
  168. }
  169. if (Receivers == nullptr) {
  170. throw NullReceivers();
  171. }
  172. if (Antenna == nullptr) {
  173. throw NullAntenna();
  174. }
  175. if (Dipole != nullptr) {
  176. throw DipoleSourceSpecifiedForWireAntennaCalc();
  177. }
  178. Receivers->ClearFields();
  179. // Check to make sure Receivers are set up for all calculations
  180. switch(FieldsToCalculate) {
  181. case E:
  182. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  183. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  184. break;
  185. case H:
  186. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  187. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  188. break;
  189. case BOTH:
  190. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  191. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  192. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  193. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  194. break;
  195. }
  196. if (Antenna->GetName() == std::string("PolygonalWireAntenna") || Antenna->GetName() == std::string("TEMTransmitter") ) {
  197. icalc += 1;
  198. // Check to see if they are all on a plane? If so we can do this fast
  199. if (Antenna->IsHorizontallyPlanar() && ( HankelType == ANDERSON801 || HankelType== FHTKEY201 )) {
  200. #ifdef HAVE_BOOST_PROGRESS
  201. if (progressbar) {
  202. disp = new boost::progress_display( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  203. }
  204. #endif
  205. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies();++ifreq) {
  206. Real wavef = 2.*PI* Antenna->GetFrequency(ifreq);
  207. #ifdef LEMMAUSEOMP
  208. #pragma omp parallel
  209. {
  210. #endif
  211. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  212. #ifdef LEMMAUSEOMP
  213. #pragma omp for schedule(static, 1)
  214. #endif
  215. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  216. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  217. SolveLaggedTxRxPair(irec, Hankel.get(), wavef, ifreq, AntCopy.get());
  218. #ifdef HAVE_BOOST_PROGRESS
  219. if (progressbar) ++(*disp);
  220. #endif
  221. }
  222. #pragma omp barrier
  223. #ifdef LEMMAUSEOMP
  224. }
  225. #endif
  226. }
  227. } else
  228. if (Receivers->GetNumberOfPoints() > Antenna->GetNumberOfFrequencies()) {
  229. //std::cout << "freq parallel #1" << std::endl;
  230. //** Progress display bar for long calculations */
  231. #ifdef HAVE_BOOST_PROGRESS
  232. if (progressbar) {
  233. disp = new boost::progress_display( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  234. }
  235. #endif
  236. // parallelise across receivers
  237. #ifdef LEMMAUSEOMP
  238. #pragma omp parallel
  239. #endif
  240. { // OpenMP Parallel Block
  241. // Since these antennas change we need a local copy for each
  242. // thread.
  243. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  244. std::shared_ptr<HankelTransform> Hankel;
  245. switch (HankelType) {
  246. case ANDERSON801:
  247. Hankel = FHTAnderson801::NewSP();
  248. break;
  249. case CHAVE:
  250. Hankel = GQChave::NewSP();
  251. break;
  252. case FHTKEY201:
  253. Hankel = FHTKey201::NewSP();
  254. break;
  255. case FHTKEY101:
  256. Hankel = FHTKey101::NewSP();
  257. break;
  258. case FHTKEY51:
  259. Hankel = FHTKey51::NewSP();
  260. break;
  261. case QWEKEY:
  262. Hankel = QWEKey::NewSP();
  263. break;
  264. default:
  265. std::cerr << "Hankel transform cannot be created\n";
  266. exit(EXIT_FAILURE);
  267. }
  268. //for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  269. #ifdef LEMMAUSEOMP
  270. #pragma omp for schedule(static, 1) //nowait
  271. #endif
  272. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  273. if (!Receivers->GetMask(irec)) {
  274. AntCopy->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  275. for (int idip=0; idip<AntCopy->GetNumberOfDipoles(); ++idip) {
  276. auto tDipole = AntCopy->GetDipoleSource(idip);
  277. //#ifdef LEMMAUSEOMP
  278. //#pragma omp for schedule(static, 1)
  279. //#endif
  280. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies();
  281. ++ifreq) {
  282. // Propogation constant in free space
  283. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  284. std::sqrt(MU0*EPSILON0);
  285. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  286. } // freq loop
  287. } // dipole loop
  288. } // mask
  289. //std::cout << "Normal Path\n";
  290. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  291. //if (irec == 1) exit(0);
  292. #ifdef HAVE_BOOST_PROGRESS
  293. if (progressbar) ++(*disp);
  294. #endif
  295. } // receiver loop
  296. } // OMP_PARALLEL BLOCK
  297. } else if (Antenna->GetNumberOfFrequencies() > 8) {
  298. // parallel across frequencies
  299. //std::cout << "freq parallel #2" << std::endl;
  300. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  301. if (!Receivers->GetMask(irec)) {
  302. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  303. #ifdef LEMMAUSEOMP
  304. #pragma omp parallel
  305. #endif
  306. { // OpenMP Parallel Block
  307. std::shared_ptr<HankelTransform> Hankel;
  308. switch (HankelType) {
  309. case ANDERSON801:
  310. Hankel = FHTAnderson801::NewSP();
  311. break;
  312. case CHAVE:
  313. Hankel = GQChave::NewSP();
  314. break;
  315. case FHTKEY201:
  316. Hankel = FHTKey201::NewSP();
  317. break;
  318. case FHTKEY101:
  319. Hankel = FHTKey101::NewSP();
  320. break;
  321. case FHTKEY51:
  322. Hankel = FHTKey51::NewSP();
  323. break;
  324. case QWEKEY:
  325. Hankel = QWEKey::NewSP();
  326. break;
  327. default:
  328. std::cerr << "Hankel transform cannot be created\n";
  329. exit(EXIT_FAILURE);
  330. }
  331. #ifdef LEMMAUSEOMP
  332. #pragma omp for schedule(static, 1)
  333. #endif
  334. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  335. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  336. auto tDipole = Antenna->GetDipoleSource(idip);
  337. // Propogation constant in free space
  338. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  339. std::sqrt(MU0*EPSILON0);
  340. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  341. } // dipole loop
  342. } // frequency loop
  343. } // OMP_PARALLEL BLOCK
  344. } // mask loop
  345. #ifdef HAVE_BOOST_PROGRESS
  346. //if (Receivers->GetNumberOfPoints() > 100) {
  347. // ++ disp;
  348. //}
  349. #endif
  350. } // receiver loop
  351. //std::cout << "End freq parallel " << std::endl;
  352. } // Frequency Parallel
  353. else {
  354. //std::cout << "parallel across #3 " << std::endl;
  355. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  356. if (!Receivers->GetMask(irec)) {
  357. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  358. // std::cout << "Not Masked " << std::endl;
  359. // std::cout << "n Freqs " << Antenna->GetNumberOfFrequencies() << std::endl;
  360. // std::cout << "n Dipoles " << Antenna->GetNumberOfDipoles() << std::endl;
  361. // if ( !Antenna->GetNumberOfDipoles() ) {
  362. // std::cout << "NO DIPOLES!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
  363. // // std::cout << "rec location " << Receivers->GetLocation(irec) << std::endl;
  364. // // }
  365. #ifdef LEMMAUSEOMP
  366. #pragma omp parallel
  367. #endif
  368. { // OpenMP Parallel Block
  369. std::shared_ptr<HankelTransform> Hankel;
  370. switch (HankelType) {
  371. case ANDERSON801:
  372. Hankel = FHTAnderson801::NewSP();
  373. break;
  374. case CHAVE:
  375. Hankel = GQChave::NewSP();
  376. break;
  377. case FHTKEY201:
  378. Hankel = FHTKey201::NewSP();
  379. break;
  380. case FHTKEY101:
  381. Hankel = FHTKey101::NewSP();
  382. break;
  383. case FHTKEY51:
  384. Hankel = FHTKey51::NewSP();
  385. break;
  386. case QWEKEY:
  387. Hankel = QWEKey::NewSP();
  388. break;
  389. default:
  390. std::cerr << "Hankel transform cannot be created\n";
  391. exit(EXIT_FAILURE);
  392. }
  393. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  394. #ifdef LEMMAUSEOMP
  395. #pragma omp for schedule(static, 1)
  396. #endif
  397. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  398. //#pragma omp critical
  399. //{
  400. //cout << "idip=" << idip << "\tthread num=" << omp_get_thread_num() << '\n';
  401. //}
  402. auto tDipole = Antenna->GetDipoleSource(idip);
  403. // Propogation constant in free space
  404. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  405. std::sqrt(MU0*EPSILON0);
  406. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  407. } // dipole loop
  408. } // frequency loop
  409. } // OMP_PARALLEL BLOCK
  410. } // mask loop
  411. #ifdef HAVE_BOOST_PROGRESS
  412. //if (Receivers->GetNumberOfPoints() > 100) {
  413. // ++ disp;
  414. //}
  415. #endif
  416. } // receiver loop
  417. } // Polygonal parallel logic
  418. } else {
  419. std::cerr << "Lemma with WireAntenna class is currently broken"
  420. << " fix or use PolygonalWireAntenna\n" << std::endl;
  421. exit(EXIT_FAILURE);
  422. // TODO, getting wrong answer, curiously worKernel->GetKs() with MakeCalc, maybe
  423. // a threading issue, use SolveSingleTxRxPair maype instead of call
  424. // to MakeCalc3? !!!
  425. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  426. this->Dipole = Antenna->GetDipoleSource(idip);
  427. MakeCalc3();
  428. //++disp;
  429. }
  430. this->Dipole = nullptr;
  431. }
  432. #ifdef HAVE_BOOST_PROGRESS
  433. if (progressbar) {
  434. delete disp;
  435. }
  436. #endif
  437. }
  438. #ifdef KIHALEE_EM1D
  439. void EMEarth1D::MakeCalc() {
  440. int itype; // 1 = elec, 2 = mag
  441. switch (this->Dipole->GetDipoleSourceType()) {
  442. case (GROUNDEDELECTRICDIPOLE) :
  443. itype = 1;
  444. break;
  445. case (MAGNETICDIPOLE) :
  446. itype = 2;
  447. break;
  448. case (UNGROUNDEDELECTRICDIPOLE) :
  449. std::cerr << "Fortran routine cannot calculate ungrounded"
  450. "electric dipole\n";
  451. default:
  452. throw NonValidDipoleType();
  453. }
  454. int ipol ;
  455. Vector3r Pol = this->Dipole->GetPolarisation();
  456. if (std::abs(Pol[0]-1) < 1e-5) {
  457. ipol = 1;
  458. } else if (std::abs(Pol[1]-1) < 1e-5) {
  459. ipol = 2;
  460. } else if (std::abs(Pol[2]-1) < 1e-5) {
  461. ipol = 3;
  462. } else {
  463. std::cerr << "Fortran routine cannot calculate arbitrary "
  464. "dipole polarisation, set to x, y, or z\n";
  465. }
  466. int nlay = Earth->GetNumberOfNonAirLayers();
  467. if (nlay > MAXLAYERS) {
  468. std::cerr << "FORTRAN CODE CAN ONLY HANDLE " << MAXLAYERS
  469. << " LAYERS\n";
  470. throw EarthModelWithMoreThanMaxLayers();
  471. }
  472. int nfreq = 1; // number of freqs
  473. int nfield; // field output 1 = elec, 2 = mag, 3 = both
  474. switch (FieldsToCalculate) {
  475. case E:
  476. nfield = 1;
  477. break;
  478. case H:
  479. nfield = 2;
  480. break;
  481. case BOTH:
  482. nfield = 3;
  483. break;
  484. default:
  485. throw 7;
  486. }
  487. int nres = Receivers->GetNumberOfPoints();
  488. int jtype = 3; // form ouf output,
  489. // 1 = horizontal,
  490. // 2 = down hole,
  491. // 3 = freq sounding
  492. // 4 = down hole logging
  493. int jgamma = 0; // Units 0 = MKS (H->A/m and E->V/m)
  494. // 1 = h->Gammas E->V/m
  495. double acc = 0.; // Tolerance
  496. // TODO, fix FORTRAN calls so these arrays can be nlay long, not
  497. // MAXLAYERS.
  498. // Model Parameters
  499. double *dep = new double[MAXLAYERS];
  500. dep[0] = 0.; // We always say air starts at 0
  501. for (int ilay=1; ilay<Earth->GetNumberOfLayers(); ++ilay) {
  502. dep[ilay] = dep[ilay-1] + Earth->GetLayerThickness(ilay);
  503. //std::cout << "Depth " << dep[ilay] << std::endl;
  504. }
  505. std::complex<double> *sig = new std::complex<double> [MAXLAYERS];
  506. for (int ilay=1; ilay<=nlay; ++ilay) {
  507. sig[ilay-1] = (std::complex<double>)(Earth->GetLayerConductivity(ilay));
  508. }
  509. // TODO, pass these into Fortran call, and return Cole-Cole model
  510. // parameters. Right now this does nothing
  511. //std::complex<double> *sus = new std::complex<double>[MAXLAYERS];
  512. //std::complex<double> *epr = new std::complex<double>[MAXLAYERS];
  513. // Cole-Cole model stuff
  514. double *susl = new double[MAXLAYERS];
  515. for (int ilay=1; ilay<=nlay; ++ilay) {
  516. susl[ilay-1] = Earth->GetLayerLowFreqSusceptibility(ilay);
  517. }
  518. double *sush = new double[MAXLAYERS];
  519. for (int ilay=1; ilay<=nlay; ++ilay) {
  520. sush[ilay-1] = Earth->GetLayerHighFreqSusceptibility(ilay);
  521. }
  522. double *sustau = new double[MAXLAYERS];
  523. for (int ilay=1; ilay<=nlay; ++ilay) {
  524. sustau[ilay-1] = Earth->GetLayerTauSusceptibility(ilay);
  525. }
  526. double *susalp = new double[MAXLAYERS];
  527. for (int ilay=1; ilay<=nlay; ++ilay) {
  528. susalp[ilay-1] = Earth->GetLayerBreathSusceptibility(ilay);
  529. }
  530. double *eprl = new double[MAXLAYERS];
  531. for (int ilay=1; ilay<=nlay; ++ilay) {
  532. eprl[ilay-1] = Earth->GetLayerLowFreqPermitivity(ilay);
  533. }
  534. double *eprh = new double[MAXLAYERS];
  535. for (int ilay=1; ilay<=nlay; ++ilay) {
  536. eprh[ilay-1] = Earth->GetLayerHighFreqPermitivity(ilay);
  537. }
  538. double *eprtau = new double[MAXLAYERS];
  539. for (int ilay=1; ilay<=nlay; ++ilay) {
  540. eprtau[ilay-1] = Earth->GetLayerTauPermitivity(ilay);
  541. }
  542. double *epralp = new double[MAXLAYERS];
  543. for (int ilay=1; ilay<=nlay; ++ilay) {
  544. epralp[ilay-1] = Earth->GetLayerBreathPermitivity(ilay);
  545. }
  546. // Freq stuff
  547. double finit = Dipole->GetFrequency(0); //(1000); // Starting freq
  548. double flimit = Dipole->GetFrequency(0); //(1000); // max freq
  549. double dlimit = Dipole->GetFrequency(0); //(1000); // difusion limit
  550. double lfinc(1); // no. freq per decade
  551. // tx location jtype != 4
  552. double txx = Dipole->GetLocation(0); // (0.);
  553. double txy = Dipole->GetLocation(1); // (0.);
  554. double txz = Dipole->GetLocation(2); // (0.);
  555. // rx position
  556. // TODO, fix Fortran program to not waste this memory
  557. // maybe
  558. const int MAXREC = 15;
  559. double *rxx = new double [MAXREC];
  560. double *rxy = new double [MAXREC];
  561. double *rxz = new double [MAXREC];
  562. std::complex<double> *ex = new std::complex<double>[MAXREC];
  563. std::complex<double> *ey = new std::complex<double>[MAXREC];
  564. std::complex<double> *ez = new std::complex<double>[MAXREC];
  565. std::complex<double> *hx = new std::complex<double>[MAXREC];
  566. std::complex<double> *hy = new std::complex<double>[MAXREC];
  567. std::complex<double> *hz = new std::complex<double>[MAXREC];
  568. int nres2 = MAXREC;
  569. int ii=0;
  570. for (ii=0; ii<nres-MAXREC; ii+=MAXREC) {
  571. for (int ir=0; ir<MAXREC; ++ir) {
  572. //Vector3r pos = Receivers->GetLocation(ii+ir);
  573. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  574. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  575. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  576. }
  577. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  578. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  579. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  580. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  581. hx, hy, hz);
  582. // Scale By Moment
  583. for (int ir=0; ir<MAXREC; ++ir) {
  584. ex[ir] *= Dipole->GetMoment();
  585. ey[ir] *= Dipole->GetMoment();
  586. ez[ir] *= Dipole->GetMoment();
  587. hx[ir] *= Dipole->GetMoment();
  588. hy[ir] *= Dipole->GetMoment();
  589. hz[ir] *= Dipole->GetMoment();
  590. // Append values instead of setting them
  591. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  592. (Complex)(ey[ir]),
  593. (Complex)(ez[ir]) );
  594. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  595. (Complex)(hy[ir]),
  596. (Complex)(hz[ir]) );
  597. }
  598. }
  599. //ii += MAXREC;
  600. nres2 = 0;
  601. // Perform last positions
  602. for (int ir=0; ir<nres-ii; ++ir) {
  603. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  604. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  605. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  606. ++nres2;
  607. }
  608. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  609. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  610. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  611. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  612. hx, hy, hz);
  613. // Scale By Moment
  614. for (int ir=0; ir<nres-ii; ++ir) {
  615. ex[ir] *= Dipole->GetMoment();
  616. ey[ir] *= Dipole->GetMoment();
  617. ez[ir] *= Dipole->GetMoment();
  618. hx[ir] *= Dipole->GetMoment();
  619. hy[ir] *= Dipole->GetMoment();
  620. hz[ir] *= Dipole->GetMoment();
  621. // Append values instead of setting them
  622. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  623. (Complex)(ey[ir]),
  624. (Complex)(ez[ir]) );
  625. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  626. (Complex)(hy[ir]),
  627. (Complex)(hz[ir]) );
  628. }
  629. delete [] sig;
  630. delete [] dep;
  631. //delete [] sus;
  632. //delete [] epr;
  633. delete [] susl;
  634. delete [] sush;
  635. delete [] susalp;
  636. delete [] sustau;
  637. delete [] eprl;
  638. delete [] eprh;
  639. delete [] epralp;
  640. delete [] eprtau;
  641. delete [] rxx;
  642. delete [] rxy;
  643. delete [] rxz;
  644. delete [] ex;
  645. delete [] ey;
  646. delete [] ez;
  647. delete [] hx;
  648. delete [] hy;
  649. delete [] hz;
  650. }
  651. #endif
  652. void EMEarth1D::SolveSingleTxRxPair (const int &irec, HankelTransform *Hankel, const Real &wavef, const int &ifreq,
  653. DipoleSource *tDipole) {
  654. ++icalcinner;
  655. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  656. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  657. Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  658. tDipole->UpdateFields( ifreq, Hankel, wavef );
  659. }
  660. // void EMEarth1D::SolveSingleTxRxPair (const int &irec, std::shared_ptr<HankelTransform> Hankel, const Real &wavef, const int &ifreq,
  661. // std::shared_ptr<DipoleSource> tDipole) {
  662. // ++icalcinner;
  663. // Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  664. // tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  665. // //Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  666. // //tDipole->UpdateFields( ifreq, Hankel, wavef );
  667. // }
  668. void EMEarth1D::SolveLaggedTxRxPair(const int &irec, HankelTransform* Hankel,
  669. const Real &wavef, const int &ifreq, PolygonalWireAntenna* antenna) {
  670. antenna->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  671. // Determine the min and max arguments
  672. Real rhomin = 1e9;
  673. Real rhomax = 1e-9;
  674. for (int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  675. auto tDipole = antenna->GetDipoleSource(idip);
  676. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  677. rhomin = std::min(rhomin, rho);
  678. rhomax = std::max(rhomax, rho);
  679. }
  680. // Determine number of lagged convolutions to do
  681. // TODO, can Hankel2 adjust the lagg spacing safely?
  682. int nlag = 1; // We need an extra for some reason for stability
  683. Real lrho ( 1.01* rhomax );
  684. while ( lrho > rhomin ) {
  685. nlag += 1;
  686. lrho *= Hankel->GetABSER();
  687. }
  688. //int nlag = rhomin
  689. auto tDipole = antenna->GetDipoleSource(0);
  690. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  691. // Instead we should pass the antenna into this so that Hankel hass all the rho arguments...
  692. Hankel->ComputeLaggedRelated( 1.01* rhomax, nlag, tDipole->GetKernelManager() );
  693. //std::cout << Hankel->GetAnswer() << std::endl;
  694. //std::cout << Hankel->GetArg() << std::endl;
  695. // Sort the dipoles by rho
  696. for (int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  697. //for (int idip=0; idip<1; ++idip) {
  698. auto tDipole = antenna->GetDipoleSource(idip);
  699. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  700. // Pass Hankel2 a message here so it knows which one to return in Zgauss!
  701. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  702. //std::cout << " in Lagged " << rho << "\t" << rhomin << "\t" << rhomax << std::endl;
  703. Hankel->SetLaggedArg( rho );
  704. tDipole->UpdateFields( ifreq, Hankel, wavef );
  705. }
  706. //std::cout << "Spline\n";
  707. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  708. }
  709. //////////////////////////////////////////////////////////
  710. // Thread safe OO Reimplimentation of KiHand's
  711. // EM1DNEW.for programme
  712. void EMEarth1D::MakeCalc3() {
  713. if ( Dipole == nullptr ) throw NullDipoleSource();
  714. if (Earth == nullptr) throw NullEarth();
  715. if (Receivers == nullptr) throw NullReceivers();
  716. #ifdef LEMMAUSEOMP
  717. #pragma omp parallel
  718. #endif
  719. { // OpenMP Parallel Block
  720. #ifdef LEMMAUSEOMP
  721. int tid = omp_get_thread_num();
  722. int nthreads = omp_get_num_threads();
  723. #else
  724. int tid=0;
  725. int nthreads=1;
  726. #endif
  727. auto tDipole = Dipole->Clone();
  728. std::shared_ptr<HankelTransform> Hankel;
  729. switch (HankelType) {
  730. case ANDERSON801:
  731. Hankel = FHTAnderson801::NewSP();
  732. break;
  733. case CHAVE:
  734. Hankel = GQChave::NewSP();
  735. break;
  736. case FHTKEY201:
  737. Hankel = FHTKey201::NewSP();
  738. break;
  739. case FHTKEY101:
  740. Hankel = FHTKey101::NewSP();
  741. break;
  742. case FHTKEY51:
  743. Hankel = FHTKey51::NewSP();
  744. break;
  745. case QWEKEY:
  746. Hankel = QWEKey::NewSP();
  747. break;
  748. default:
  749. std::cerr << "Hankel transform cannot be created\n";
  750. exit(EXIT_FAILURE);
  751. }
  752. if ( tDipole->GetNumberOfFrequencies() < Receivers->GetNumberOfPoints() ) {
  753. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies(); ++ifreq) {
  754. // Propogation constant in free space being input to Hankel
  755. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  756. for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  757. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  758. }
  759. }
  760. } else {
  761. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  762. for (int ifreq=tid; ifreq<tDipole->GetNumberOfFrequencies(); ifreq+=nthreads) {
  763. // Propogation constant in free space being input to Hankel
  764. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  765. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  766. }
  767. }
  768. }
  769. } // OpenMP Parallel Block
  770. }
  771. NullReceivers::NullReceivers() :
  772. runtime_error("nullptr RECEIVERS") {}
  773. NullAntenna::NullAntenna() :
  774. runtime_error("nullptr ANTENNA") {}
  775. NullInstrument::NullInstrument(LemmaObject* ptr) :
  776. runtime_error("nullptr INSTRUMENT") {
  777. std::cout << "Thrown by instance of "
  778. << ptr->GetName() << std::endl;
  779. }
  780. DipoleSourceSpecifiedForWireAntennaCalc::
  781. DipoleSourceSpecifiedForWireAntennaCalc() :
  782. runtime_error("DIPOLE SOURCE SPECIFIED FOR WIRE ANTENNA CALC"){}
  783. } // end of Lemma Namespace