123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
-
- /**
- @file
- @author Trevor Irons
- @date 01/02/2010
- @version $Id: hankeltransformgaussianquadrature.h 199 2014-12-29 19:25:20Z tirons $
- **/
-
- #ifndef _HANKELTRANSFORMGAUSSIANQUADRATURE_h_INC
- #define _HANKELTRANSFORMGAUSSIANQUADRATURE_h_INC
-
- #include "hankeltransform.h"
- #include "kernelem1dbase.h"
-
- #ifdef HAVEBOOSTCYLBESSEL
- #include "boost/math/special_functions.hpp"
- #endif
-
- namespace Lemma {
-
-
- // =======================================================================
- // Class: HankelTransformGaussianQuadrature
- /// \brief Calculates hankel transform using gaussian quadrature.
- /// \details Accurate but slow, this is a port of Alan Chave's public domain
- /// fortran code
- // =======================================================================
- class HankelTransformGaussianQuadrature : public HankelTransform {
-
- friend std::ostream &operator<<(std::ostream &stream,
- const HankelTransformGaussianQuadrature &ob);
-
- public:
-
- // ==================== LIFECYCLE ===========================
-
- /**
- * Returns pointer to new HankelTransformGaussianQuadrature.
- * Location is
- * initialized to (0,0,0) type and polarization are
- * initialized to nonworking values that will throw
- * exceptions if used.
- */
- static HankelTransformGaussianQuadrature* New();
-
- /**
- * @copybrief LemmaObject::Delete()
- * @copydetails LemmaObject::Delete()
- */
- void Delete();
-
- // ==================== OPERATORS ===========================
-
- // ==================== OPERATIONS ===========================
-
- /// Performs numerical integration using Gaussian quadrature
- /// ikk: type of kernel depending on source and receiver couple
- /// imode: a switch for TE(0) and TM(1) mode
- /// itype: order of Bessel function
- /// rho is argument to integral
- /// wavef is the propogation constant of free space
- /// = omega * sqrt( EP*AMU ) amu = 4 pi e-7 ep = 8.85e-12
- //template <EMMODE T>
- Complex Zgauss(const int &ikk, const EMMODE &imode,
- const int &itype, const Real &rho,
- const Real &wavef, KernelEm1DBase *Kernel);
-
- // ==================== ACCESS ============================
-
- // ==================== INQUIRY ============================
-
- // ==================== DATA MEMBERS ============================
-
- protected:
-
- // ==================== LIFECYCLE ============================
-
- /// Default protected constructor.
- HankelTransformGaussianQuadrature (const std::string &name);
-
- /// Default protected constructor.
- ~HankelTransformGaussianQuadrature ();
-
- /**
- * @copybrief LemmaObject::Release()
- * @copydetails LemmaObject::Release()
- */
- void Release();
-
- // ==================== OPERATIONS ============================
-
- /// Modified by Yoonho Song to branch cut, June, 1996
- /// Separate Gaussian quarature integral by two interval
- /// first: integal from 0 to wavenumber of free space
- /// second: integral from wavenunmber of free space to infinity
- /// for large arguments, it uses continued fraction also
- /// It is recommended to use nl = 1 to 6, nu =7
- /// PERFORMS AUTOMATIC CALCULATION OF BESSEL TRANSFORM TO SPECIFIED
- /// RELATIVportisheadE AND ABSOLUTE ERROR
- ///
- /// ARGUMENT LIST:
- ///
- /// BESR,BESI-REAL AND IMAGINARY PARTS RETURNED BY BESAUX
- /// iorder-ORDER OF THE BESSEL FUNCTION
- /// NL-LOWER LIMIT FOR GAUSS ORDER TO START COMPUTATION
- /// NU-UPPER LIMIT FOR GAUSS ORDER
- /// NU,NL=1,...7 SELECTS 3,7,15,31,63,127,AND 255 POINT GAUSS
- /// QUADRATURE BETWEEN THE ZERO CROSSINGS OF THE BESSEL FUNCTION
- /// R-ARGUMENT OF THE BESSEL FUNCTION
- /// RERR,AERR-RELATIVE AND ABSOLUTE ERROR FOR TERMINATION
- /// BESAUX TERMINATES WHEN INCREASING THE GAUSS ORDER DOES NOT
- /// CHANGE THE RESULT BY MORE THAN RERR OR WHEN THE ABSOLUTE ERROR
- /// IS LESS THAN AERR OR WHEN A GAUSS ORDER OF NU IS REACHED.
- /// NPCS-NUMBER OF PIECES INTO WHICH EACH PARTIAL INTEGRAND
- /// IS DIVIDED,
- /// ORDINARILY SET TO ONE. FOR VERY SMALL VALUES OF R WHERE
- /// THE KERNEL FUNCTION IS APPRECIABLE ONLY OVER THE FIRST FEW
- /// LOOPS OF THE BESSEL FUNCTION, NPCS MAY BE INCREASED TO ACHIEVE
- /// REASONABLE ACCURACY.
- /// NEW IF NEW=1, THE INTEGRANDS ARE COMPUTED AND SAVED AT EACH
- /// GAUSS
- /// ORDER. IF NEW=2, PREVIOUSLY COMPUTED INTEGRANDS ARE USED. NOTE
- /// THAT ORDER,R, AND NPCS MUST NOT BE CHANGED WHEN SETTING NEW=2.
- /// IERR-ERROR PARAMETER
- /// IERR=0--NORMAL RETURN
- /// IERR=1--RESULT NOT ACCURATE TO RERR DUE TO TOO LOW A GAUSS
- /// ORDER OR CONVERGENCE NOT ACHIEVED IN BESTRX
- //template <EMMODE T>
- void Besautn(Real &besr, Real &besi, const int &iorder,
- const int &nl, const int &nu, const Real &rho,
- const Real &rerr, const Real &aerr,
- const int &npcs, int &inew, const Real &aorb,
- KernelEm1DBase *Kernel);
-
- /// COMPUTES BESSEL TRANSFORM OF SPECIFIED ORDER DEFINED AS
- /// INTEGRAL(FUNCT(X)*J-SUB-ORDER(X*R)*DX) FROM X=0 TO INFINITY
- /// COMPUTATION IS ACHIEVED BY INTEGRATION BETWEEN THE ASYMPTOTIC
- /// ZERO CROSSINGS OF THE BESSEL FUNCTION USING GAUSS QUADRATURE.
- /// THE RESULTING SERIES OF PARTIAL INTEGRANDS IS SUMMED BY
- /// CALCULATING THE PADE APPROXIMANTS TO SPEED UP CONVERGENCE.
- /// ARGUMENT LIST:
- /// BESR,BESI REAL AND IMAGINARY PARTS RETURNED BY BESTRN
- /// iorder ORDER OF THE BESSEL FUNCTIONC NG NUMBER OF GAUSS
- /// POINTS TO USE IN THE QUADRATURE ROUTINE.
- /// NG=1 THROUGH 7 SELECTS 3,7,15,31,63,126,AND 255 TERMS.
- /// R ARGUMENT OF THE BESSEL FUNCTION
- /// RERR,AERR SPECIFIED RELATIVE AND ABSOLUTE ERROR FOR THE
- /// CALCULATION. THE INTEGRATION
- /// TERMINATES WHEN AN ADDITIONAL TERM DOES NOT CHANGE THE
- /// RESULT BY MORE THAN RERR*RESULT+AERR
- /// NPCS NUMBER OF PIECES INTO WHICH EACH PARTIAL I
- /// NTEGRAND IS DIVIDED,
- /// ORDINARILY SET TO ONE. FOR VERY SMALL VALUES OF RANGE
- /// WHERE THE KERNEL FUNCTION IS APPRECIABLE ONLY OVER THE
- /// FIRST FEW LOOPS OF THE BESSEL FUNCTION, NPCS MAY BE
- /// INCREASED TO ACHIEVE REASONABLE ACCURACY. NOTE THAT
- /// NPCS AFFECTS ONLY THE PADE
- /// SUM PORTION OF THE INTEGRATION, OVER X(NSUM) TO INFINITY.
- /// XSUM VECTOR OF VALUES OF THE KERNEL ARGUMENT OF FUNCT FOR WHICH
- /// EXPLICIT CALCULATION OF THE INTEGRAL IS DESIRED, SO THAT THE
- /// INTEGRAL OVER 0 TO XSUM(NSUM) IS ADDED TO THE INTEGRAL OVER
- /// XSUM(NSUM) TO INFINITY WITH THE PADE METHOD INVOKED ONLY FOR
- /// THE LATTER. THIS ALLOWS THE PADE SUMMATION METHOD TO BE
- /// OVERRIDDEN AND SOME TYPES OF SINGULARITIES TO BE HANDLED.
- /// NSUM NUMBER OF VALUES IN XSUM, MAY BE ZERO.
- /// NEW DETERMINES METHOD OF KERNEL CALCULATION
- /// NEW=0 MEANS CALCULATE BUT DO NOT SAVE INTEGRANDS
- /// NEW=1 MEANS CALCULATE KERNEL BY CALLING FUNCT-SAVE KERNEL
- /// TIMES BESSEL FUNCTION
- /// NEW=2 MEANS USE SAVED KERNELS TIMES BESSEL FUNCTIONS IN
- /// COMMON /BESINT/. NOTE THAT ORDER,R,NPCS,XSUM, AND
- /// NSUM MAY NOT BE CHANGED WHEN SETTING NEW=2.
- /// IERR ERROR PARAMETER
- /// 0 NORMAL RETURN-INTEGRAL CONVERGED
- /// 1 MEANS NO CONVERGENCE AFTER NSTOP TERMS IN THE PADE SUM
- ///
- /// SUBROUTINES REQUIRED:
- /// BESQUD,PADECF,CF,ZEROJ,DOT,JBESS
- /// A.CHAVE IGPP/UCSD
- /// NTERM IS MAXIMUM NUMBER OF BESSEL FUNCTION LOOPS STORED IF
- /// NEW.NE.0
- /// NSTOP IS MAXIMUM Number of Pade terms
- //template <EMMODE T>
- void Bestrn( Real &BESR, Real &BESI, const int &iorder,
- const int &NG, const Real &R,
- const Real &RERR, const Real &AERR, const int &npcs,
- VectorXi &XSUM, int &NSUM, int &NEW,
- int &IERR, int &NCNTRL, const Real &AORB,
- KernelEm1DBase *Kernel);
-
- /// CALCULATES THE INTEGRAL OF F(X)*J-SUB-N(X*R) OVER THE
- /// INTERVAL A TO B AT A SPECIFIED GAUSS ORDER THE RESULT IS
- /// OBTAINED USING A SEQUENCE OF 1, 3, 7, 15, 31, 63, 127, AND 255
- /// POINT INTERLACING GAUSS FORMULAE SO THAT NO INTEGRAND
- /// EVALUATIONS ARE WASTED. THE KERNEL FUNCTIONS MAY BE
- /// SAVED SO THAT BESSEL TRANSFORMS OF SIMILAR KERNELS ARE COMPUTED
- /// WITHOUT NEW EVALUATION OF THE KERNEL. DETAILS ON THE FORMULAE
- /// ARE GIVEN IN 'THE OPTIMUM ADDITION OF POINTS TO QUADRATURE
- /// FORMULAE' BY T.N.L. PATTERSON, MATHS.COMP. 22,847-856 (1968).
- /// GAUSS WEIGHTS TAKEN FROM COMM. A.C.M. 16,694-699 (1973)
- /// ARGUMENT LIST:
- /// A LOWER LIMIT OF INTEGRATION
- /// B UPPER LIMIT OF INTEGRATION
- /// BESR,BESI RETURNED INTEGRAL VALUE REAL AND IMAGINARY PARTS
- /// NG NUMBER OF POINTS IN THE GAUSS FORMULA. NG=1,...7
- /// SELECTS 3,7,15,31,63,127,AND 255 POINT QUADRATURE.
- /// NEW SELECTS METHOD OF KERNEL EVALUATION
- /// NEW=0 CALCULATES KERNELS BY CALLING F - NOTHING SAVED
- /// NEW=1 CALCULATES KERNELS BY CALLING F AND SAVES KERNEL TIMES
- /// BESSEL FUNCTION IN COMMON /BESINT/
- /// NEW=2 USES SAVED KERNEL TIMES BESSEL FUNCTIONS IN
- /// COMMON /BESINT/
- /// iorder ORDER OF THE BESSEL FUNCTION
- /// R ARGUMENT OF THE BESSEL FUNCTION
- /// F F(X) IS THE EXTERNAL INTEGRAND SUBROUTINE
- /// A.CHAVE IGPP/UCSDC
- /// MAXIMUM NUMBER OF BESSEL FUNCTION LOOPS THAT CAN BE SAVED
- //template <EMMODE T>
- void Besqud(const Real &A, const Real &B, Real &BESR, Real &BESI,
- const int &NG, const int &NEW, const int &iorder,
- const Real &R, KernelEm1DBase *Kernel);
-
- /// COMPUTES SUM(S(I)),I=1,...N BY COMPUTATION OF PADE APPROXIMANT
- /// USING CONTINUED FRACTION EXPANSION. FUNCTION IS DESIGNED TO BE
- /// CALLED SEQUENTIALLY AS N IS INCREMENTED FROM 1 TO ITS FINAL
- /// VALUE. THE NTH CONTINUED FRACTION COEFFICIENT IS CALCULATED AND
- /// STORED AND THE NTH CONVERGENT RETURNED. IT IS UP TO THE USER TO
- /// STOP THE CALCULATION WHEN THE DESIRED ACCURACY IS ACHIEVED.
- /// ALGORITHM FROM HANGGI ET AL., Z.NATURFORSCH. 33A,402-417 (1977)
- /// IN THEIR NOTATION, VECTORS CFCOR,CFCOI ARE LOWER CASE D,
- /// VECTORS DR, DI ARE UPPER CASE D, VECTORS XR,XI ARE X, AND
- /// VECTORS SR,SI ARE S
- /// A.CHAVE IGPP/UCSD
- void Padecf(Real &SUMR, Real &SUMI, const int &N);
-
- /// EVALUATES A COMPLEX CONTINUED FRACTION BY RECURSIVE DIVISION
- /// STARTING AT THE BOTTOM, AS USED BY PADECF
- /// RESR,RESI ARE REAL AND IMAGINARY PARTS RETURNED
- /// CFCOR,CFCOI ARE REAL AND IMAGINARY VECTORS OF CONTINUED FRACTION
- /// COEFFICIENTS
- void CF( Real& RESR, Real &RESI,
- Eigen::Matrix<Real, 100, 1> &CFCOR,
- Eigen::Matrix<Real, 100, 1> &CFCOI,
- const int &N);
-
-
- /// COMPUTES ZERO OF BESSEL FUNCTION OF THE FIRST KIND FROM
- /// MCMAHON'S ASYMPTOTIC EXPANSION
- /// NZERO-NUMBER OF THE ZERO
- /// iorder-ORDER OF THE BESSEL FUNCTION (0 OR 1)
- Real ZeroJ(const int &ZERO, const int &IORDER);
-
- /// COMPUTES BESSEL FUNCTION OF ORDER "ORDER" AND ARGUMENT X BY
- /// CALLING NBS ROUTINES J0X AND J1X (REAL*8 BUT APPROXIMATELY
- /// REAL*4 ACCURACY).
- /// FOR MORE ACCURACY JBESS COULD BE CHANGED TO CALL, FOR EXAMPLE,
- /// THE IMSL ROUTINES MMBSJ0,MMBSJ1 << SEE C// BELOW >>
- Real Jbess(const Real &X, const int &IORDER);
-
- /// COMPUTES DOT PRODUCT OF TWO D.P. VECTORS WITH NONUNIT
- /// INCREMENTING ALLOWED. REPLACEMENT FOR BLAS SUBROUTINE SDOT.
- /// Currently does no checking, kind of stupid.
- /// The fortran version will wrap around if (inc*N) > X1.size()
- /// but not in a nice way.
- Real _dot(const int&N,
- const Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic> &X1,
- const int &INC1,
- const Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic> &X2,
- const int &INC2);
-
- // ==================== DATA MEMBERS ============================
-
- static const Real PI2;
- static const Real X01P;
- static const Real XMAX;
- static const Real XSMALL;
- static const Real J0_X01;
- static const Real J0_X02;
- static const Real J0_X11;
- static const Real J0_X12;
- static const Real FUDGE;
- static const Real FUDGEX;
- static const Real TWOPI1;
- static const Real TWOPI2;
- static const Real RTPI2;
- static const Real XMIN;
- static const Real J1_X01;
- static const Real J1_X02;
- static const Real J1_X11;
- static const Real J1_X12;
-
- /// Highest gauss order used, Was NG
- int HighestGaussOrder;
-
- /// Total number of partial integrals on last call, was NI
- int NumberPartialIntegrals;
-
- /// Total number of function calls, was NF
- int NumberFunctionEvals;
-
- int np;
- int nps;
-
- /////////////////////////////////////////////////////////////
- // Eigen members
-
- // Shared constant values
- static const VectorXr WT;
- static const VectorXr WA;
-
- Eigen::Matrix<int, 100, 1> Nk;
- //Eigen::Matrix<Real, 255, 100> karg;
- //Eigen::Matrix<Real, 510, 100> kern;
- Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic> karg;
- Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic> kern;
-
- // Was Besval COMMON block
- Eigen::Matrix<Real, 100, 1> Xr;
- Eigen::Matrix<Real, 100, 1> Xi;
- Eigen::Matrix<Real, 100, 1> Dr;
- Eigen::Matrix<Real, 100, 1> Di;
- Eigen::Matrix<Real, 100, 1> Sr;
- Eigen::Matrix<Real, 100, 1> Si;
- Eigen::Matrix<Real, 100, 1> Cfcor;
- Eigen::Matrix<Real, 100, 1> Cfcoi;
-
- private:
-
- }; // ----- end of class HankelTransformGaussianQuadrature -----
-
- //////////////////////////////////////////////////////////////
- // Exception Classes
-
- /** If the lower integration limit is greater than the upper limit, throw this
- * error.
- */
- class LowerGaussLimitGreaterThanUpperGaussLimit :
- public std::runtime_error {
- /** Thrown when the LowerGaussLimit is greater than the upper limit.
- */
- public: LowerGaussLimitGreaterThanUpperGaussLimit();
- };
-
- } // ----- end of Lemma name -----
-
- #endif // ----- #ifndef _HANKELTRANSFORMGAUSSIANQUADRATURE_h_INC -----
|