Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

EMEarth1D.cpp 37KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "EMEarth1D.h"
  11. #include "FieldPoints.h"
  12. #include "WireAntenna.h"
  13. #include "PolygonalWireAntenna.h"
  14. #ifdef LEMMAUSEOMP
  15. #include "omp.h"
  16. #endif
  17. namespace Lemma {
  18. std::ostream &operator << (std::ostream &stream, const EMEarth1D &ob) {
  19. stream << ob.Serialize() << "\n";
  20. return stream;
  21. }
  22. #ifdef KIHALEE_EM1D
  23. // Wrapper function for Fortran subroutine Em1D bi kihand
  24. // Returns E or H fields (SLOW)
  25. extern "C" { void em1dcall_(int &itype, // source
  26. int &ipol, // source
  27. int &nlay, // Earth
  28. int &nfreq, // source
  29. int &nfield, // Calculator
  30. int &nres, // Receivers
  31. int &jtype, // N/A
  32. int &jgamma, // Controller
  33. double &acc, // Controller
  34. double *dep, // Earth
  35. std::complex<double> *sig, // Earth
  36. double *susl, // Earth
  37. double *sush, // Earth
  38. double *sustau, // Earth
  39. double *susalp, // Earth
  40. double *eprl, // Earth
  41. double *eprh, // Earth
  42. double *eprtau, // Earth
  43. double *epralp, // Earth
  44. double &finit, // N/A
  45. double &flimit, // N/A
  46. double &dlimit, // N/A
  47. double &lfinc, // N/A
  48. double &tx, // Source
  49. double &ty, // Source
  50. double &tz, // Source
  51. double *rxx, // Receivers
  52. double *rxy, // Receivers
  53. double *rxz, // Receivers
  54. std::complex<double> *ex, // Receivers
  55. std::complex<double> *ey, // |
  56. std::complex<double> *ez, // |
  57. std::complex<double> *hx, // |
  58. std::complex<double> *hy, // V
  59. std::complex<double> *hz ); // ___
  60. }
  61. #endif
  62. // ==================== LIFECYCLE ===================================
  63. // TODO init large arrays here.
  64. EMEarth1D::EMEarth1D( const ctor_key& key ) : LemmaObject( key ),
  65. Dipole(nullptr), Earth(nullptr), Receivers(nullptr), Antenna(nullptr),
  66. FieldsToCalculate(BOTH), HankelType(ANDERSON801), icalcinner(0), icalc(0)
  67. //#ifdef HAVEBOOSTPROGRESS
  68. // , disp(0)
  69. //#endif
  70. {
  71. }
  72. EMEarth1D::~EMEarth1D() {
  73. }
  74. std::shared_ptr<EMEarth1D> EMEarth1D::NewSP() {
  75. return std::make_shared<EMEarth1D>(ctor_key());
  76. }
  77. YAML::Node EMEarth1D::Serialize() const {
  78. YAML::Node node = LemmaObject::Serialize();
  79. node["FieldsToCalculate"] = enum2String(FieldsToCalculate);
  80. node["HankelType"] = enum2String(HankelType);
  81. //if (Dipole != nullptr) node["Dipole"] = Dipole->Serialize();
  82. if (Earth != nullptr) node["Earth"] = Earth->Serialize();
  83. //if (Receivers != nullptr) node["Receivers"] = Receivers->Serialize(); Can be huge?
  84. if (Antenna != nullptr) node["Antenna"] = Antenna->Serialize();
  85. node.SetTag( this->GetName() );
  86. return node;
  87. }
  88. //--------------------------------------------------------------------------------------
  89. // Class: EMEarth1D
  90. // Method: GetName
  91. // Description: Class identifier
  92. //--------------------------------------------------------------------------------------
  93. inline std::string EMEarth1D::GetName ( ) const {
  94. return CName;
  95. } // ----- end of method EMEarth1D::GetName -----
  96. // ==================== ACCESS ===================================
  97. void EMEarth1D::AttachDipoleSource( std::shared_ptr<DipoleSource> dipoleptr) {
  98. Dipole = dipoleptr;
  99. }
  100. void EMEarth1D::AttachLayeredEarthEM( std::shared_ptr<LayeredEarthEM> earthptr) {
  101. Earth = earthptr;
  102. }
  103. void EMEarth1D::AttachFieldPoints( std::shared_ptr<FieldPoints> recptr) {
  104. Receivers = recptr;
  105. if (Receivers == nullptr) {
  106. std::cout << "nullptr Receivers in emearth1d.cpp " << std::endl;
  107. return;
  108. }
  109. // This has an implicid need to first set a source before receivers, users
  110. // will not expect this. Fix
  111. if (Dipole != nullptr) {
  112. switch (FieldsToCalculate) {
  113. case E:
  114. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  115. break;
  116. case H:
  117. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  118. break;
  119. case BOTH:
  120. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  121. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  122. break;
  123. }
  124. } else if (Antenna != nullptr) {
  125. switch (FieldsToCalculate) {
  126. case E:
  127. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  128. break;
  129. case H:
  130. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  131. break;
  132. case BOTH:
  133. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  134. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  135. break;
  136. }
  137. }
  138. }
  139. void EMEarth1D::AttachWireAntenna(std::shared_ptr<WireAntenna> antennae) {
  140. this->Antenna = antennae;
  141. }
  142. void EMEarth1D::SetFieldsToCalculate(const FIELDCALCULATIONS &calc) {
  143. FieldsToCalculate = calc;
  144. }
  145. void EMEarth1D::SetHankelTransformMethod( const HANKELTRANSFORMTYPE &type) {
  146. HankelType = type;
  147. }
  148. void EMEarth1D::Query() {
  149. std::cout << "EmEarth1D::Query()" << std::endl;
  150. std::cout << "Dipole " << Dipole;
  151. if (Dipole) std::cout << *Dipole << std::endl;
  152. std::cout << "Earth " << Earth;
  153. if (Earth) std::cout << *Earth << std::endl;
  154. std::cout << "Receivers " << Earth;
  155. if (Earth) std::cout << *Receivers << std::endl;
  156. std::cout << "Antenna " << Earth;
  157. if (Antenna) std::cout << *Antenna << std::endl;
  158. std::cout << "icalc " << icalc << std::endl;
  159. std::cout << "icalcinner " << icalcinner << std::endl;
  160. }
  161. // ==================== OPERATIONS ===================================
  162. void EMEarth1D::CalculateWireAntennaFields(bool progressbar) {
  163. #ifdef HAVEBOOSTPROGRESS
  164. boost::progress_display *disp;
  165. #endif
  166. if (Earth == nullptr) {
  167. throw NullEarth();
  168. }
  169. if (Receivers == nullptr) {
  170. throw NullReceivers();
  171. }
  172. if (Antenna == nullptr) {
  173. throw NullAntenna();
  174. }
  175. if (Dipole != nullptr) {
  176. throw DipoleSourceSpecifiedForWireAntennaCalc();
  177. }
  178. Receivers->ClearFields();
  179. // Check to make sure Receivers are set up for all calculations
  180. switch(FieldsToCalculate) {
  181. case E:
  182. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  183. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  184. break;
  185. case H:
  186. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  187. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  188. break;
  189. case BOTH:
  190. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  191. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  192. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  193. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  194. break;
  195. }
  196. if (Antenna->GetName() == std::string("PolygonalWireAntenna") || Antenna->GetName() == std::string("TEMTransmitter") ) {
  197. icalc += 1;
  198. // Check to see if they are all on a plane? If so we can do this fast
  199. /* TODO FIX THIS ISSUES */
  200. if (Antenna->IsHorizontallyPlanar() && HankelType == ANDERSON801) {
  201. //std::cout << "Lag baby lag" << std::endl;
  202. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies();++ifreq) {
  203. //std::cout << "Num Recs" << Receivers->GetNumberOfPoints() << std::endl;
  204. Real wavef = 2.*PI* Antenna->GetFrequency(ifreq);
  205. #ifdef LEMMAUSEOMP
  206. #pragma omp parallel
  207. {
  208. #endif
  209. auto Hankel = FHTAnderson801::NewSP();
  210. #ifdef LEMMAUSEOMP
  211. #pragma omp for schedule(static, 1)
  212. #endif
  213. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  214. //for (int irec=0; irec<2; ++irec) { // TODO FIXME BELO
  215. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  216. SolveLaggedTxRxPair(irec, Hankel.get(), wavef, ifreq, AntCopy.get());
  217. //exit(0);
  218. }
  219. //Receivers->ClearFields(); // FIXME DEBUG TODO
  220. #ifdef LEMMAUSEOMP
  221. }
  222. #endif
  223. }
  224. } else
  225. if (Receivers->GetNumberOfPoints() > Antenna->GetNumberOfFrequencies()) {
  226. //std::cout << "freq parallel #1" << std::endl;
  227. //** Progress display bar for long calculations */
  228. #ifdef HAVEBOOSTPROGRESS
  229. if (progressbar) {
  230. disp = new boost::progress_display( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  231. }
  232. #endif
  233. // parallelise across receivers
  234. #ifdef LEMMAUSEOMP
  235. #pragma omp parallel
  236. #endif
  237. { // OpenMP Parallel Block
  238. // Since these antennas change we need a local copy for each
  239. // thread.
  240. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  241. std::shared_ptr<HankelTransform> Hankel;
  242. switch (HankelType) {
  243. case ANDERSON801:
  244. Hankel = FHTAnderson801::NewSP();
  245. break;
  246. case CHAVE:
  247. Hankel = GQChave::NewSP();
  248. break;
  249. case FHTKEY201:
  250. Hankel = FHTKey201::NewSP();
  251. break;
  252. case FHTKEY101:
  253. Hankel = FHTKey101::NewSP();
  254. break;
  255. case FHTKEY51:
  256. Hankel = FHTKey51::NewSP();
  257. break;
  258. case QWEKEY:
  259. Hankel = QWEKey::NewSP();
  260. break;
  261. default:
  262. std::cerr << "Hankel transform cannot be created\n";
  263. exit(EXIT_FAILURE);
  264. }
  265. //for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  266. #ifdef LEMMAUSEOMP
  267. #pragma omp for schedule(static, 1) //nowait
  268. #endif
  269. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  270. if (!Receivers->GetMask(irec)) {
  271. AntCopy->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  272. for (int idip=0; idip<AntCopy->GetNumberOfDipoles(); ++idip) {
  273. auto tDipole = AntCopy->GetDipoleSource(idip);
  274. //#ifdef LEMMAUSEOMP
  275. //#pragma omp for schedule(static, 1)
  276. //#endif
  277. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies();
  278. ++ifreq) {
  279. // Propogation constant in free space
  280. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  281. std::sqrt(MU0*EPSILON0);
  282. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  283. } // freq loop
  284. } // dipole loop
  285. } // mask
  286. //std::cout << "Normal Path\n";
  287. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  288. //if (irec == 1) exit(0);
  289. #ifdef HAVEBOOSTPROGRESS
  290. if (progressbar) ++(*disp);
  291. #endif
  292. } // receiver loop
  293. } // OMP_PARALLEL BLOCK
  294. } else if (Antenna->GetNumberOfFrequencies() > 8) {
  295. // parallel across frequencies
  296. //std::cout << "freq parallel #2" << std::endl;
  297. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  298. if (!Receivers->GetMask(irec)) {
  299. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  300. #ifdef LEMMAUSEOMP
  301. #pragma omp parallel
  302. #endif
  303. { // OpenMP Parallel Block
  304. std::shared_ptr<HankelTransform> Hankel;
  305. switch (HankelType) {
  306. case ANDERSON801:
  307. Hankel = FHTAnderson801::NewSP();
  308. break;
  309. case CHAVE:
  310. Hankel = GQChave::NewSP();
  311. break;
  312. case FHTKEY201:
  313. Hankel = FHTKey201::NewSP();
  314. break;
  315. case FHTKEY101:
  316. Hankel = FHTKey101::NewSP();
  317. break;
  318. case FHTKEY51:
  319. Hankel = FHTKey51::NewSP();
  320. break;
  321. case QWEKEY:
  322. Hankel = QWEKey::NewSP();
  323. break;
  324. default:
  325. std::cerr << "Hankel transform cannot be created\n";
  326. exit(EXIT_FAILURE);
  327. }
  328. #ifdef LEMMAUSEOMP
  329. #pragma omp for schedule(static, 1)
  330. #endif
  331. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  332. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  333. auto tDipole = Antenna->GetDipoleSource(idip);
  334. // Propogation constant in free space
  335. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  336. std::sqrt(MU0*EPSILON0);
  337. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  338. } // dipole loop
  339. } // frequency loop
  340. } // OMP_PARALLEL BLOCK
  341. } // mask loop
  342. #ifdef HAVEBOOSTPROGRESS
  343. //if (Receivers->GetNumberOfPoints() > 100) {
  344. // ++ disp;
  345. //}
  346. #endif
  347. } // receiver loop
  348. //std::cout << "End freq parallel " << std::endl;
  349. } // Frequency Parallel
  350. else {
  351. //std::cout << "parallel across #3 " << std::endl;
  352. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  353. if (!Receivers->GetMask(irec)) {
  354. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  355. // std::cout << "Not Masked " << std::endl;
  356. // std::cout << "n Freqs " << Antenna->GetNumberOfFrequencies() << std::endl;
  357. // std::cout << "n Dipoles " << Antenna->GetNumberOfDipoles() << std::endl;
  358. // if ( !Antenna->GetNumberOfDipoles() ) {
  359. // std::cout << "NO DIPOLES!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
  360. // // std::cout << "rec location " << Receivers->GetLocation(irec) << std::endl;
  361. // // }
  362. #ifdef LEMMAUSEOMP
  363. #pragma omp parallel
  364. #endif
  365. { // OpenMP Parallel Block
  366. std::shared_ptr<HankelTransform> Hankel;
  367. switch (HankelType) {
  368. case ANDERSON801:
  369. Hankel = FHTAnderson801::NewSP();
  370. break;
  371. case CHAVE:
  372. Hankel = GQChave::NewSP();
  373. break;
  374. case FHTKEY201:
  375. Hankel = FHTKey201::NewSP();
  376. break;
  377. case FHTKEY101:
  378. Hankel = FHTKey101::NewSP();
  379. break;
  380. case FHTKEY51:
  381. Hankel = FHTKey51::NewSP();
  382. break;
  383. case QWEKEY:
  384. Hankel = QWEKey::NewSP();
  385. break;
  386. default:
  387. std::cerr << "Hankel transform cannot be created\n";
  388. exit(EXIT_FAILURE);
  389. }
  390. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  391. #ifdef LEMMAUSEOMP
  392. #pragma omp for schedule(static, 1)
  393. #endif
  394. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  395. //#pragma omp critical
  396. //{
  397. //cout << "idip=" << idip << "\tthread num=" << omp_get_thread_num() << '\n';
  398. //}
  399. auto tDipole = Antenna->GetDipoleSource(idip);
  400. // Propogation constant in free space
  401. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  402. std::sqrt(MU0*EPSILON0);
  403. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  404. } // dipole loop
  405. } // frequency loop
  406. } // OMP_PARALLEL BLOCK
  407. } // mask loop
  408. #ifdef HAVEBOOSTPROGRESS
  409. //if (Receivers->GetNumberOfPoints() > 100) {
  410. // ++ disp;
  411. //}
  412. #endif
  413. } // receiver loop
  414. } // Polygonal parallel logic
  415. } else {
  416. std::cerr << "Lemma with WireAntenna class is currently broken"
  417. << " fix or use PolygonalWireAntenna\n" << std::endl;
  418. exit(EXIT_FAILURE);
  419. // TODO, getting wrong answer, curiously worKernel->GetKs() with MakeCalc, maybe
  420. // a threading issue, use SolveSingleTxRxPair maype instead of call
  421. // to MakeCalc3? !!!
  422. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  423. this->Dipole = Antenna->GetDipoleSource(idip);
  424. MakeCalc3();
  425. //++disp;
  426. }
  427. this->Dipole = nullptr;
  428. }
  429. #ifdef HAVEBOOSTPROGRESS
  430. if (progressbar) {
  431. delete disp;
  432. }
  433. #endif
  434. }
  435. #ifdef KIHALEE_EM1D
  436. void EMEarth1D::MakeCalc() {
  437. int itype; // 1 = elec, 2 = mag
  438. switch (this->Dipole->GetDipoleSourceType()) {
  439. case (GROUNDEDELECTRICDIPOLE) :
  440. itype = 1;
  441. break;
  442. case (MAGNETICDIPOLE) :
  443. itype = 2;
  444. break;
  445. case (UNGROUNDEDELECTRICDIPOLE) :
  446. std::cerr << "Fortran routine cannot calculate ungrounded"
  447. "electric dipole\n";
  448. default:
  449. throw NonValidDipoleType();
  450. }
  451. int ipol ;
  452. Vector3r Pol = this->Dipole->GetPolarisation();
  453. if (std::abs(Pol[0]-1) < 1e-5) {
  454. ipol = 1;
  455. } else if (std::abs(Pol[1]-1) < 1e-5) {
  456. ipol = 2;
  457. } else if (std::abs(Pol[2]-1) < 1e-5) {
  458. ipol = 3;
  459. } else {
  460. std::cerr << "Fortran routine cannot calculate arbitrary "
  461. "dipole polarisation, set to x, y, or z\n";
  462. }
  463. int nlay = Earth->GetNumberOfNonAirLayers();
  464. if (nlay > MAXLAYERS) {
  465. std::cerr << "FORTRAN CODE CAN ONLY HANDLE " << MAXLAYERS
  466. << " LAYERS\n";
  467. throw EarthModelWithMoreThanMaxLayers();
  468. }
  469. int nfreq = 1; // number of freqs
  470. int nfield; // field output 1 = elec, 2 = mag, 3 = both
  471. switch (FieldsToCalculate) {
  472. case E:
  473. nfield = 1;
  474. break;
  475. case H:
  476. nfield = 2;
  477. break;
  478. case BOTH:
  479. nfield = 3;
  480. break;
  481. default:
  482. throw 7;
  483. }
  484. int nres = Receivers->GetNumberOfPoints();
  485. int jtype = 3; // form ouf output,
  486. // 1 = horizontal,
  487. // 2 = down hole,
  488. // 3 = freq sounding
  489. // 4 = down hole logging
  490. int jgamma = 0; // Units 0 = MKS (H->A/m and E->V/m)
  491. // 1 = h->Gammas E->V/m
  492. double acc = 0.; // Tolerance
  493. // TODO, fix FORTRAN calls so these arrays can be nlay long, not
  494. // MAXLAYERS.
  495. // Model Parameters
  496. double *dep = new double[MAXLAYERS];
  497. dep[0] = 0.; // We always say air starts at 0
  498. for (int ilay=1; ilay<Earth->GetNumberOfLayers(); ++ilay) {
  499. dep[ilay] = dep[ilay-1] + Earth->GetLayerThickness(ilay);
  500. //std::cout << "Depth " << dep[ilay] << std::endl;
  501. }
  502. std::complex<double> *sig = new std::complex<double> [MAXLAYERS];
  503. for (int ilay=1; ilay<=nlay; ++ilay) {
  504. sig[ilay-1] = (std::complex<double>)(Earth->GetLayerConductivity(ilay));
  505. }
  506. // TODO, pass these into Fortran call, and return Cole-Cole model
  507. // parameters. Right now this does nothing
  508. //std::complex<double> *sus = new std::complex<double>[MAXLAYERS];
  509. //std::complex<double> *epr = new std::complex<double>[MAXLAYERS];
  510. // Cole-Cole model stuff
  511. double *susl = new double[MAXLAYERS];
  512. for (int ilay=1; ilay<=nlay; ++ilay) {
  513. susl[ilay-1] = Earth->GetLayerLowFreqSusceptibility(ilay);
  514. }
  515. double *sush = new double[MAXLAYERS];
  516. for (int ilay=1; ilay<=nlay; ++ilay) {
  517. sush[ilay-1] = Earth->GetLayerHighFreqSusceptibility(ilay);
  518. }
  519. double *sustau = new double[MAXLAYERS];
  520. for (int ilay=1; ilay<=nlay; ++ilay) {
  521. sustau[ilay-1] = Earth->GetLayerTauSusceptibility(ilay);
  522. }
  523. double *susalp = new double[MAXLAYERS];
  524. for (int ilay=1; ilay<=nlay; ++ilay) {
  525. susalp[ilay-1] = Earth->GetLayerBreathSusceptibility(ilay);
  526. }
  527. double *eprl = new double[MAXLAYERS];
  528. for (int ilay=1; ilay<=nlay; ++ilay) {
  529. eprl[ilay-1] = Earth->GetLayerLowFreqPermitivity(ilay);
  530. }
  531. double *eprh = new double[MAXLAYERS];
  532. for (int ilay=1; ilay<=nlay; ++ilay) {
  533. eprh[ilay-1] = Earth->GetLayerHighFreqPermitivity(ilay);
  534. }
  535. double *eprtau = new double[MAXLAYERS];
  536. for (int ilay=1; ilay<=nlay; ++ilay) {
  537. eprtau[ilay-1] = Earth->GetLayerTauPermitivity(ilay);
  538. }
  539. double *epralp = new double[MAXLAYERS];
  540. for (int ilay=1; ilay<=nlay; ++ilay) {
  541. epralp[ilay-1] = Earth->GetLayerBreathPermitivity(ilay);
  542. }
  543. // Freq stuff
  544. double finit = Dipole->GetFrequency(0); //(1000); // Starting freq
  545. double flimit = Dipole->GetFrequency(0); //(1000); // max freq
  546. double dlimit = Dipole->GetFrequency(0); //(1000); // difusion limit
  547. double lfinc(1); // no. freq per decade
  548. // tx location jtype != 4
  549. double txx = Dipole->GetLocation(0); // (0.);
  550. double txy = Dipole->GetLocation(1); // (0.);
  551. double txz = Dipole->GetLocation(2); // (0.);
  552. // rx position
  553. // TODO, fix Fortran program to not waste this memory
  554. // maybe
  555. const int MAXREC = 15;
  556. double *rxx = new double [MAXREC];
  557. double *rxy = new double [MAXREC];
  558. double *rxz = new double [MAXREC];
  559. std::complex<double> *ex = new std::complex<double>[MAXREC];
  560. std::complex<double> *ey = new std::complex<double>[MAXREC];
  561. std::complex<double> *ez = new std::complex<double>[MAXREC];
  562. std::complex<double> *hx = new std::complex<double>[MAXREC];
  563. std::complex<double> *hy = new std::complex<double>[MAXREC];
  564. std::complex<double> *hz = new std::complex<double>[MAXREC];
  565. int nres2 = MAXREC;
  566. int ii=0;
  567. for (ii=0; ii<nres-MAXREC; ii+=MAXREC) {
  568. for (int ir=0; ir<MAXREC; ++ir) {
  569. //Vector3r pos = Receivers->GetLocation(ii+ir);
  570. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  571. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  572. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  573. }
  574. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  575. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  576. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  577. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  578. hx, hy, hz);
  579. // Scale By Moment
  580. for (int ir=0; ir<MAXREC; ++ir) {
  581. ex[ir] *= Dipole->GetMoment();
  582. ey[ir] *= Dipole->GetMoment();
  583. ez[ir] *= Dipole->GetMoment();
  584. hx[ir] *= Dipole->GetMoment();
  585. hy[ir] *= Dipole->GetMoment();
  586. hz[ir] *= Dipole->GetMoment();
  587. // Append values instead of setting them
  588. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  589. (Complex)(ey[ir]),
  590. (Complex)(ez[ir]) );
  591. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  592. (Complex)(hy[ir]),
  593. (Complex)(hz[ir]) );
  594. }
  595. }
  596. //ii += MAXREC;
  597. nres2 = 0;
  598. // Perform last positions
  599. for (int ir=0; ir<nres-ii; ++ir) {
  600. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  601. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  602. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  603. ++nres2;
  604. }
  605. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  606. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  607. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  608. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  609. hx, hy, hz);
  610. // Scale By Moment
  611. for (int ir=0; ir<nres-ii; ++ir) {
  612. ex[ir] *= Dipole->GetMoment();
  613. ey[ir] *= Dipole->GetMoment();
  614. ez[ir] *= Dipole->GetMoment();
  615. hx[ir] *= Dipole->GetMoment();
  616. hy[ir] *= Dipole->GetMoment();
  617. hz[ir] *= Dipole->GetMoment();
  618. // Append values instead of setting them
  619. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  620. (Complex)(ey[ir]),
  621. (Complex)(ez[ir]) );
  622. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  623. (Complex)(hy[ir]),
  624. (Complex)(hz[ir]) );
  625. }
  626. delete [] sig;
  627. delete [] dep;
  628. //delete [] sus;
  629. //delete [] epr;
  630. delete [] susl;
  631. delete [] sush;
  632. delete [] susalp;
  633. delete [] sustau;
  634. delete [] eprl;
  635. delete [] eprh;
  636. delete [] epralp;
  637. delete [] eprtau;
  638. delete [] rxx;
  639. delete [] rxy;
  640. delete [] rxz;
  641. delete [] ex;
  642. delete [] ey;
  643. delete [] ez;
  644. delete [] hx;
  645. delete [] hy;
  646. delete [] hz;
  647. }
  648. #endif
  649. void EMEarth1D::SolveSingleTxRxPair (const int &irec, HankelTransform *Hankel, const Real &wavef, const int &ifreq,
  650. DipoleSource *tDipole) {
  651. ++icalcinner;
  652. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  653. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  654. Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  655. tDipole->UpdateFields( ifreq, Hankel, wavef );
  656. }
  657. // void EMEarth1D::SolveSingleTxRxPair (const int &irec, std::shared_ptr<HankelTransform> Hankel, const Real &wavef, const int &ifreq,
  658. // std::shared_ptr<DipoleSource> tDipole) {
  659. // ++icalcinner;
  660. // Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  661. // tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  662. // //Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  663. // //tDipole->UpdateFields( ifreq, Hankel, wavef );
  664. // }
  665. void EMEarth1D::SolveLaggedTxRxPair(const int &irec, FHTAnderson801* Hankel,
  666. const Real &wavef, const int &ifreq, PolygonalWireAntenna* antenna) {
  667. antenna->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  668. // Determine the min and max arguments
  669. Real rhomin = 1e9;
  670. Real rhomax = 1e-9;
  671. for (int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  672. auto tDipole = antenna->GetDipoleSource(idip);
  673. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  674. rhomin = std::min(rhomin, rho);
  675. rhomax = std::max(rhomax, rho);
  676. }
  677. //std::cout << "rhomin\t" << rhomin << "\trhomax" << rhomax << std::endl;
  678. // Determine number of lagged convolutions to do
  679. // TODO, can Hankel2 adjust the lagg spacing safely?
  680. int nlag = 1; // We need an extra for some reason for stability
  681. Real lrho ( 1.01* rhomax );
  682. while ( lrho > rhomin ) {
  683. nlag += 1;
  684. lrho *= Hankel->GetABSER();
  685. }
  686. //int nlag = rhomin
  687. auto tDipole = antenna->GetDipoleSource(0);
  688. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  689. // Instead we should pass the antenna into this so that Hankel hass all the rho arguments...
  690. Hankel->ComputeLaggedRelated( 1.01* rhomax, nlag, tDipole->GetKernelManager() );
  691. //std::cout << Hankel->GetAnswer() << std::endl;
  692. //std::cout << Hankel->GetArg() << std::endl;
  693. // Sort the dipoles by rho
  694. for (int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  695. //for (int idip=0; idip<1; ++idip) {
  696. auto tDipole = antenna->GetDipoleSource(idip);
  697. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  698. // Pass Hankel2 a message here so it knows which one to return in Zgauss!
  699. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  700. //std::cout << " in Lagged " << rho << "\t" << rhomin << "\t" << rhomax << std::endl;
  701. Hankel->SetLaggedArg( rho );
  702. //std::cout << "out Lagged" << std::endl;
  703. tDipole->UpdateFields( ifreq, Hankel, wavef );
  704. }
  705. //std::cout << "Spline\n";
  706. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  707. }
  708. //////////////////////////////////////////////////////////
  709. // Thread safe OO Reimplimentation of KiHand's
  710. // EM1DNEW.for programme
  711. void EMEarth1D::MakeCalc3() {
  712. if ( Dipole == nullptr ) throw NullDipoleSource();
  713. if (Earth == nullptr) throw NullEarth();
  714. if (Receivers == nullptr) throw NullReceivers();
  715. #ifdef LEMMAUSEOMP
  716. #pragma omp parallel
  717. #endif
  718. { // OpenMP Parallel Block
  719. #ifdef LEMMAUSEOMP
  720. int tid = omp_get_thread_num();
  721. int nthreads = omp_get_num_threads();
  722. #else
  723. int tid=0;
  724. int nthreads=1;
  725. #endif
  726. auto tDipole = Dipole->Clone();
  727. std::shared_ptr<HankelTransform> Hankel;
  728. switch (HankelType) {
  729. case ANDERSON801:
  730. Hankel = FHTAnderson801::NewSP();
  731. break;
  732. case CHAVE:
  733. Hankel = GQChave::NewSP();
  734. break;
  735. case FHTKEY201:
  736. Hankel = FHTKey201::NewSP();
  737. break;
  738. case FHTKEY101:
  739. Hankel = FHTKey101::NewSP();
  740. break;
  741. case FHTKEY51:
  742. Hankel = FHTKey51::NewSP();
  743. break;
  744. case QWEKEY:
  745. Hankel = QWEKey::NewSP();
  746. break;
  747. default:
  748. std::cerr << "Hankel transform cannot be created\n";
  749. exit(EXIT_FAILURE);
  750. }
  751. if ( tDipole->GetNumberOfFrequencies() < Receivers->GetNumberOfPoints() ) {
  752. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies(); ++ifreq) {
  753. // Propogation constant in free space being input to Hankel
  754. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  755. for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  756. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  757. }
  758. }
  759. } else {
  760. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  761. for (int ifreq=tid; ifreq<tDipole->GetNumberOfFrequencies(); ifreq+=nthreads) {
  762. // Propogation constant in free space being input to Hankel
  763. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  764. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  765. }
  766. }
  767. }
  768. } // OpenMP Parallel Block
  769. }
  770. NullReceivers::NullReceivers() :
  771. runtime_error("nullptr RECEIVERS") {}
  772. NullAntenna::NullAntenna() :
  773. runtime_error("nullptr ANTENNA") {}
  774. NullInstrument::NullInstrument(LemmaObject* ptr) :
  775. runtime_error("nullptr INSTRUMENT") {
  776. std::cout << "Thrown by instance of "
  777. << ptr->GetName() << std::endl;
  778. }
  779. DipoleSourceSpecifiedForWireAntennaCalc::
  780. DipoleSourceSpecifiedForWireAntennaCalc() :
  781. runtime_error("DIPOLE SOURCE SPECIFIED FOR WIRE ANTENNA CALC"){}
  782. } // end of Lemma Namespace