Lemma is an Electromagnetics API
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

helper.h 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /* This file is part of Lemma, a geophysical modelling and inversion API.
  2. * More information is available at http://lemmasoftware.org
  3. */
  4. /* This Source Code Form is subject to the terms of the Mozilla Public
  5. * License, v. 2.0. If a copy of the MPL was not distributed with this
  6. * file, You can obtain one at http://mozilla.org/MPL/2.0/.
  7. */
  8. /**
  9. * @file
  10. * @date 10/02/2014 02:49:55 PM
  11. * @version $Id$
  12. * @author Trevor Irons (ti)
  13. * @email Trevor.Irons@xri-geo.com
  14. * @copyright Copyright (c) 2017, University of Utah
  15. * @copyright Copyright (c) 2014, XRI Geophysics, LLC
  16. * @copyright Copyright (c) 2014, Trevor Irons
  17. */
  18. #pragma once
  19. #ifndef HELPER_INC
  20. #define HELPER_INC
  21. #include "lemma.h"
  22. #include "yaml-cpp/yaml.h"
  23. namespace Lemma {
  24. /** \addtogroup LemmaCore
  25. * @{
  26. */
  27. /**
  28. * Convenience function for string conversion
  29. * @param[in] t input value to be converted to string
  30. * @return string representation of input value
  31. */
  32. template <class T>
  33. inline std::string to_string (const T& t) {
  34. std::stringstream ss;
  35. ss << t;
  36. return ss.str();
  37. }
  38. /// convert enums to string saves repeated code useful for YAML serializing
  39. std::string enum2String(const FREQUENCYUNITS& Units);
  40. /// convert enums to string saves repeated code useful for YAML serializing
  41. std::string enum2String(const TIMEUNITS& Units);
  42. /// convert enums to string saves repeated code useful for YAML serializing
  43. std::string enum2String(const MAGUNITS& Units);
  44. /// convert enums to string saves repeated code useful for YAML serializing
  45. std::string enum2String(const TEMPUNITS& Units);
  46. /// convert enums to string saves repeated code useful for YAML serializing
  47. std::string enum2String(const FEMCOILORIENTATION& Units);
  48. /// convert enums to string saves repeated code useful for YAML serializing
  49. std::string enum2String(const ORIENTATION& Units);
  50. /// convert enums to string saves repeated code useful for YAML serializing
  51. std::string enum2String(const FIELDCOMPONENT& Comp);
  52. /// convert enums to string saves repeated code useful for YAML serializing
  53. std::string enum2String(const HANKELTRANSFORMTYPE& Htype);
  54. /// convert enums to string saves repeated code useful for YAML serializing
  55. std::string enum2String(const FIELDCALCULATIONS& Htype);
  56. /// convert enums to string saves repeated code useful for YAML serializing
  57. std::string enum2String(const WINDOWTYPE& Wtype);
  58. /// convert enums to string saves repeated code useful for YAML serializing
  59. std::string enum2String(const DIPOLESOURCETYPE& Wtype);
  60. // other way around is a template, where template argument lets us know
  61. // which specialisation to use.
  62. template <typename T>
  63. T string2Enum( const std::string& str );
  64. // Handy little class that indents a stream.
  65. // Based on solution provided here, todo may need to add to some managing class which keeps
  66. // track of nesting levels? But perhaps not. A Lemma class will contain pointers to other Lemma
  67. // classes. But those are not specifically listed out.
  68. // http://stackoverflow.com/questions/9599807/how-to-add-indention-to-the-stream-operator
  69. class IndentingOStreambuf : public std::streambuf {
  70. std::streambuf* myDest;
  71. bool myIsAtStartOfLine;
  72. std::string myIndent;
  73. std::ostream* myOwner;
  74. protected:
  75. virtual int overflow( int ch )
  76. {
  77. if ( myIsAtStartOfLine && ch != '\n' ) {
  78. myDest->sputn( myIndent.data(), myIndent.size() );
  79. }
  80. myIsAtStartOfLine = ch == '\n';
  81. return myDest->sputc( ch );
  82. }
  83. public:
  84. explicit IndentingOStreambuf(
  85. std::streambuf* dest, int indent = 4 )
  86. : myDest( dest )
  87. , myIsAtStartOfLine( true )
  88. , myIndent( indent, ' ' )
  89. , myOwner( NULL )
  90. {
  91. }
  92. explicit IndentingOStreambuf(
  93. std::ostream& dest, int indent = 4 )
  94. : myDest( dest.rdbuf() )
  95. , myIsAtStartOfLine( true )
  96. , myIndent( indent, ' ' )
  97. , myOwner( &dest )
  98. {
  99. myOwner->rdbuf( this );
  100. }
  101. virtual ~IndentingOStreambuf()
  102. {
  103. if ( myOwner != NULL ) {
  104. myOwner->rdbuf( myDest );
  105. }
  106. }
  107. };
  108. /** @}*/
  109. } // end namespace Lemma
  110. ///////////////////////////////////////////////////////
  111. // YAML Serializing helper functions.
  112. namespace YAML {
  113. template<>
  114. struct convert<Lemma::Complex> {
  115. static Node encode(const Lemma::Complex& rhs) {
  116. Node node;
  117. node["real"] = rhs.real();
  118. node["imag"] = rhs.imag();
  119. // No labels
  120. //node.push_back(rhs.real());
  121. //node.push_back(rhs.imag());
  122. node.SetTag( "Complex" ); // too verbose?
  123. return node;
  124. }
  125. static bool decode(const Node& node, Lemma::Complex& rhs) {
  126. // Disabled due to overly verbose output. Just believe...
  127. if( node.Tag() != "Complex" ) {
  128. return false;
  129. }
  130. rhs = Lemma::Complex( node["real"].as<Lemma::Real>(), node["imag"].as<Lemma::Real>() );
  131. // no label style
  132. //rhs = Lemma::Complex( node[0].as<Lemma::Real>(), node[1].as<Lemma::Real>() );
  133. return true;
  134. }
  135. };
  136. template<>
  137. struct convert<Lemma::Vector3Xr> {
  138. static Node encode(const Lemma::Vector3Xr& rhs) {
  139. Node node;
  140. node["size"] = rhs.cols();
  141. //node["rows"] = rhs.rows(); // == 3
  142. for (int ic=0; ic<rhs.cols(); ++ic) {
  143. node[ic].push_back( rhs(0, ic) );
  144. node[ic].push_back( rhs(1, ic) );
  145. node[ic].push_back( rhs(2, ic) );
  146. }
  147. node.SetTag( "Vector3Xr" );
  148. return node;
  149. }
  150. static bool decode(const Node& node, Lemma::Vector3Xr& rhs) {
  151. if( node.Tag() != "Vector3Xr" ) {
  152. return false;
  153. }
  154. rhs.resize( Eigen::NoChange, node["size"].as<int>() );
  155. for (unsigned int ic=0; ic<node.size(); ++ic) {
  156. int ir=0;
  157. for(YAML::const_iterator it=node[ic].begin();it!=node[ic].end();++it) {
  158. rhs(ir, ic) = it->as<Lemma::Real>();
  159. ++ir;
  160. }
  161. }
  162. return true;
  163. }
  164. };
  165. /**
  166. * \brief Serializes and Deserializes VectorXr arrays
  167. */
  168. template<>
  169. struct convert<Lemma::VectorXr> {
  170. static Node encode(const Lemma::VectorXr& rhs) {
  171. Node node;
  172. node["size"] = rhs.size();
  173. for (int ic=0; ic<rhs.size(); ++ic) {
  174. node["data"].push_back( rhs(ic) );
  175. }
  176. node.SetTag( "VectorXr" );
  177. return node;
  178. }
  179. static bool decode(const Node& node, Lemma::VectorXr& rhs) {
  180. if( node.Tag() != "VectorXr" ) {
  181. return false;
  182. }
  183. rhs.resize( node["size"].as<int>() );
  184. int ir=0;
  185. for(YAML::const_iterator it=node["data"].begin(); it!=node["data"].end(); ++it) {
  186. rhs(ir) = it->as<Lemma::Real>();
  187. ++ir;
  188. }
  189. return true;
  190. }
  191. };
  192. template<>
  193. struct convert<Lemma::VectorXcr> {
  194. static Node encode(const Lemma::VectorXcr& rhs) {
  195. Node node;
  196. node["size"] = rhs.size();
  197. for (int ic=0; ic<rhs.size(); ++ic) {
  198. node["data"].push_back( rhs(ic) );
  199. }
  200. node.SetTag( "VectorXcr" );
  201. return node;
  202. }
  203. static bool decode(const Node& node, Lemma::VectorXcr& rhs) {
  204. if( node.Tag() != "VectorXcr" ) {
  205. return false;
  206. }
  207. rhs.resize( node["size"].as<int>() );
  208. int ir=0;
  209. for(YAML::const_iterator it=node["data"].begin(); it!=node["data"].end(); ++it) {
  210. rhs(ir) = it->as<Lemma::Complex>();
  211. ++ir;
  212. }
  213. return true;
  214. }
  215. };
  216. template<>
  217. struct convert<Lemma::VectorXi> {
  218. static Node encode(const Lemma::VectorXi& rhs) {
  219. Node node;
  220. node["size"] = rhs.size();
  221. for (int ic=0; ic<rhs.size(); ++ic) {
  222. node["data"].push_back( rhs(ic) );
  223. }
  224. node.SetTag( "VectorXi" );
  225. return node;
  226. }
  227. static bool decode(const Node& node, Lemma::VectorXi& rhs) {
  228. if( node.Tag() != "VectorXi" ) {
  229. return false;
  230. }
  231. rhs.resize( node["size"].as<int>() );
  232. int ir=0;
  233. for(YAML::const_iterator it=node["data"].begin(); it!=node["data"].end(); ++it) {
  234. rhs(ir) = it->as<int>();
  235. ++ir;
  236. }
  237. return true;
  238. }
  239. };
  240. template<>
  241. struct convert<Lemma::Vector3r> {
  242. static Node encode(const Lemma::Vector3r& rhs) {
  243. Node node;
  244. for (int ic=0; ic<rhs.size(); ++ic) {
  245. node["data"].push_back( rhs(ic) );
  246. }
  247. node.SetTag( "Vector3r" );
  248. return node;
  249. }
  250. static bool decode(const Node& node, Lemma::Vector3r& rhs) {
  251. if( node.Tag() != "Vector3r" ) {
  252. return false;
  253. }
  254. int ir=0;
  255. for(YAML::const_iterator it=node["data"].begin(); it!=node["data"].end(); ++it) {
  256. rhs(ir) = it->as<Lemma::Real>();
  257. ++ir;
  258. }
  259. return true;
  260. }
  261. };
  262. template<>
  263. struct convert<Lemma::MatrixXr> {
  264. static Node encode(const Lemma::MatrixXr& rhs) {
  265. Node node;
  266. node["rows"] = rhs.rows();
  267. node["cols"] = rhs.cols();
  268. for (int ir=0; ir<rhs.rows(); ++ir) {
  269. for (int ic=0; ic<rhs.cols(); ++ic) {
  270. node["data"][ir][ic] = rhs(ir,ic);
  271. }
  272. node["data"][ir].SetStyle(YAML::EmitterStyle::Flow);
  273. }
  274. //node.SetStyle(YAML::EmitterStyle::Block);
  275. node.SetTag( "MatrixXr" );
  276. return node;
  277. }
  278. static bool decode(const Node& node, Lemma::MatrixXr& rhs) {
  279. if( node.Tag() != "MatrixXr" ) {
  280. return false;
  281. }
  282. int nc = node["cols"].as<int>();
  283. int nr = node["rows"].as<int>();
  284. rhs.resize(nr, nc);
  285. for (int ir=0; ir<nr; ++ir) {
  286. int ic=0;
  287. for(YAML::const_iterator it=node["data"][ir].begin(); it!=node["data"][ir].end(); ++it) {
  288. rhs(ir,ic) = it->as<Lemma::Real>();
  289. ++ic;
  290. }
  291. }
  292. return true;
  293. }
  294. };
  295. template<>
  296. struct convert<Lemma::MatrixXcr> {
  297. static Node encode(const Lemma::MatrixXcr& rhs) {
  298. Node node;
  299. node["rows"] = rhs.rows();
  300. node["cols"] = rhs.cols();
  301. for (int ir=0; ir<rhs.rows(); ++ir) {
  302. for (int ic=0; ic<rhs.cols(); ++ic) {
  303. node["data"][ir][ic] = rhs(ir,ic);
  304. }
  305. node["data"][ir].SetStyle(YAML::EmitterStyle::Flow);
  306. }
  307. //node.SetStyle(YAML::EmitterStyle::Block);
  308. node.SetTag( "MatrixXcr" );
  309. return node;
  310. }
  311. static bool decode(const Node& node, Lemma::MatrixXcr& rhs) {
  312. if( node.Tag() != "MatrixXcr" ) {
  313. return false;
  314. }
  315. int nc = node["cols"].as<int>();
  316. int nr = node["rows"].as<int>();
  317. rhs.resize(nr, nc);
  318. for (int ir=0; ir<nr; ++ir) {
  319. int ic=0;
  320. for(YAML::const_iterator it=node["data"][ir].begin(); it!=node["data"][ir].end(); ++it) {
  321. rhs(ir,ic) = it->as<Lemma::Complex>();
  322. ++ic;
  323. }
  324. }
  325. return true;
  326. }
  327. };
  328. }
  329. #endif // ----- #ifndef HELPER_INC -----