123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- /* This file is part of Lemma, a geophysical modelling and inversion API.
- * More information is available at http://lemmasoftware.org
- */
-
- /* This Source Code Form is subject to the terms of the Mozilla Public
- * License, v. 2.0. If a copy of the MPL was not distributed with this
- * file, You can obtain one at http://mozilla.org/MPL/2.0/.
- */
-
- /**
- * @file
- * @date 22/04/19 14:06:32
- * @version $Id$
- * @author Trevor Irons (ti)
- * @email Trevor.Irons@utah.edu
- * @copyright Copyright (c) 2019, University of Utah
- * @copyright Copyright (c) 2019, Lemma Software, LLC
- */
-
- #include <pybind11/pybind11.h>
- #include <pybind11/iostream.h>
- #include <pybind11/eigen.h>
- #include "FDEM1D"
-
- namespace py = pybind11;
-
- PYBIND11_MODULE(FDEM1D, m) {
-
- py::add_ostream_redirect(m, "ostream_redirect");
-
- m.doc() = "Python binding of Lemma::FDEM1D, additional details can be found at https://lemmasoftware.org";
-
-
- py::class_<Lemma::WireAntenna, std::shared_ptr<Lemma::WireAntenna> > WireAntenna(m, "WireAntenna");
-
- // lifecycle
- WireAntenna.def(py::init(&Lemma::WireAntenna::NewSP))
- .def_static("DeSerialize", py::overload_cast<const std::string&>(&Lemma::WireAntenna::DeSerialize),
- "Construct object from yaml representation")
-
- // print
- .def("Serialize", &Lemma::WireAntenna::Print, "YAML representation of the class")
- .def("__repr__", &Lemma::WireAntenna::Print)
-
- // modifiers
- .def("SetNumberOfPoints", &Lemma::WireAntenna::SetNumberOfPoints, "Sets the number of points comprising the antenna")
- .def("SetPoint", py::overload_cast<const int&, const Lemma::Real&, const Lemma::Real&, const Lemma::Real&>(&Lemma::WireAntenna::SetPoint),
- "Sets a point in the antenna")
- .def("SetPoint", py::overload_cast<const int&, const Lemma::Vector3r&>(&Lemma::WireAntenna::SetPoint),
- "Sets a point in the antenna")
- .def("SetNumberOfTurns", &Lemma::WireAntenna::SetNumberOfTurns, "Sets the number of turns of the antenna")
- .def("SetNumberOfFrequencies", &Lemma::WireAntenna::SetNumberOfFrequencies,
- "Sets the number of frequencies of the transmitter")
- .def("SetFrequency", &Lemma::WireAntenna::SetFrequency, "Sets a single frequency of the transmitter")
- .def("SetCurrent", &Lemma::WireAntenna::SetCurrent, "Sets the current of the transmitter in amps")
-
- // accessors
- .def("GetCurrent", &Lemma::WireAntenna::GetCurrent, "Returns the current of the transmitter in amps")
- .def("GetPoints", &Lemma::WireAntenna::GetPoints, "Returns the points defining the transmitter")
- .def("GetNumberOfDipoles", &Lemma::WireAntenna::GetNumberOfDipoles, "Returns the number of dipoles defining the transmitter")
- .def("GetNumberOfFrequencies", &Lemma::WireAntenna::GetNumberOfFrequencies,
- "Returns the number of frequencies for the transmitter")
- .def("IsHorizontallyPlanar", &Lemma::WireAntenna::IsHorizontallyPlanar, "Returns true if the transmitter is flat")
- .def("GetName", &Lemma::WireAntenna::GetName, "Returns the class name of the object")
-
- // operations
- .def("ApproximateWithElectricDipoles", &Lemma::WireAntenna::ApproximateWithElectricDipoles,
- "Approximates loop with electric dipoles")
-
- ;
-
- py::class_<Lemma::PolygonalWireAntenna, std::shared_ptr<Lemma::PolygonalWireAntenna> > PolygonalWireAntenna(m,
- "PolygonalWireAntenna", WireAntenna);
-
- // lifecycle
- PolygonalWireAntenna.def(py::init(&Lemma::PolygonalWireAntenna::NewSP))
- .def_static("DeSerialize", py::overload_cast<const std::string&>(&Lemma::PolygonalWireAntenna::DeSerialize),
- "Construct object from yaml representation")
-
- // print
- .def("__repr__", &Lemma::PolygonalWireAntenna::Print)
- .def("Serialize", &Lemma::PolygonalWireAntenna::Print, "YAML representation of the class")
-
- // accessors
- .def("GetName", &Lemma::PolygonalWireAntenna::GetName, "Returns the name of the class")
-
- // operations
- .def("ApproximateWithElectricDipoles", &Lemma::PolygonalWireAntenna::ApproximateWithElectricDipoles,
- "Approximates loop with series of electric dipoles around loop")
-
- ;
-
- py::class_<Lemma::DipoleSource, std::shared_ptr<Lemma::DipoleSource> > DipoleSource(m, "DipoleSource");
-
- // lifecycle
- DipoleSource.def(py::init(&Lemma::DipoleSource::NewSP))
- .def_static("DeSerialize", py::overload_cast<const std::string&>(&Lemma::DipoleSource::DeSerialize),
- "Construct object from yaml representation")
-
- // print
- .def("Serialize", &Lemma::DipoleSource::Print, "YAML representation of the class")
- .def("__repr__", &Lemma::DipoleSource::Print)
-
- // accessors
- .def("GetName", &Lemma::DipoleSource::GetName, "Returns the name of the class")
- .def("GetNumberOfFrequencies", &Lemma::DipoleSource::GetNumberOfFrequencies,
- "Returns the number of frequencies")
- .def("GetFrequencies", &Lemma::DipoleSource::GetFrequencies, "Returns an array of frequencies")
- .def("GetFrequency", &Lemma::DipoleSource::GetFrequency, "Returns the frequency of the argument index")
- .def("GetAngularFrequency", &Lemma::DipoleSource::GetAngularFrequency,
- "Returns the angular frequency of the argument index")
- .def("GetPhase", &Lemma::DipoleSource::GetPhase, "Returns the phase of the dipole")
- .def("GetMoment", &Lemma::DipoleSource::GetMoment, "Returns the moment of the dipole")
- .def("GetLocation", py::overload_cast< >(&Lemma::DipoleSource::GetLocation), "Returns the location of the dipole")
- .def("GetPolarisation", &Lemma::DipoleSource::GetPolarisation, "Returns the polarisation of the dipole")
-
- // modifiers
- .def("SetLocation", py::overload_cast<const Lemma::Vector3r&> (&Lemma::DipoleSource::SetLocation),
- "Sets the location of the dipole")
- .def("SetPolarisation", py::overload_cast<const Lemma::Vector3r&> (&Lemma::DipoleSource::SetPolarisation),
- "Sets the polarisation of the dipole")
- .def("SetType", &Lemma::DipoleSource::SetType, "Sets the type")
- .def("SetMoment", &Lemma::DipoleSource::SetMoment, "Sets the moment of the dipole")
- .def("SetPhase", &Lemma::DipoleSource::SetPhase, "Sets the phase of the dipole")
- .def("SetNumberOfFrequencies", &Lemma::DipoleSource::SetNumberOfFrequencies,
- "Sets the number of frequencies to calculate for the dipole")
- .def("SetFrequency", &Lemma::DipoleSource::SetFrequency,
- "Sets a single frequency, first argument is index, second argument is frequency")
- .def("SetFrequencies", &Lemma::DipoleSource::SetFrequencies,
- "Sets all frequencies, argument is numpy array of frequencies")
- ;
-
- py::class_<Lemma::LayeredEarthEM, std::shared_ptr<Lemma::LayeredEarthEM> > LayeredEarthEM(m, "LayeredEarthEM");
-
- // lifecycle
- LayeredEarthEM.def(py::init(&Lemma::LayeredEarthEM::NewSP))
- .def_static("DeSerialize", py::overload_cast<const std::string&>(&Lemma::LayeredEarthEM::DeSerialize),
- "Construct object from yaml representation")
-
- // print
- .def("Serialize", &Lemma::LayeredEarthEM::Print, "YAML representation of the class")
- .def("__repr__", &Lemma::LayeredEarthEM::Print)
-
- // accessors
- .def("GetName", &Lemma::LayeredEarthEM::GetName, "Returns the name of the class")
-
- // modifiers
- .def("SetNumberOfLayers", &Lemma::LayeredEarthEM::SetNumberOfLayers, "Sets the number of layers in the model")
- .def("SetLayerConductivity", py::overload_cast< const Lemma::VectorXcr& >(&Lemma::LayeredEarthEM::SetLayerConductivity),
- "Sets the conductivity of the layers, the input is a complex array of conductivity")
- .def("SetLayerConductivity1", py::overload_cast< const int&, const Lemma::Complex& >(&Lemma::LayeredEarthEM::SetLayerConductivity),
- "Sets the conductivity of a single layer, the first input is the layer index, and the secondinput is a complex conductivity")
- .def("SetLayerThickness", &Lemma::LayeredEarthEM::SetLayerThickness,
- "Sets the thickness of layers, excluding the air and bottom which are infinite")
-
- // methods
- .def("EvaluateColeColeModel", &Lemma::LayeredEarthEM::EvaluateColeColeModel,
- "Calculates complex resistivity based on cole-cole parameters")
-
-
- ;
-
- }
-
|