Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

EMEarth1D.cpp 37KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "EMEarth1D.h"
  11. #include "FieldPoints.h"
  12. #include "WireAntenna.h"
  13. #include "PolygonalWireAntenna.h"
  14. #ifdef LEMMAUSEOMP
  15. #include "omp.h"
  16. #endif
  17. namespace Lemma {
  18. std::ostream &operator << (std::ostream &stream, const EMEarth1D &ob) {
  19. stream << ob.Serialize() << "\n";
  20. return stream;
  21. }
  22. #ifdef KIHALEE_EM1D
  23. // Wrapper function for Fortran subroutine Em1D bi kihand
  24. // Returns E or H fields (SLOW)
  25. extern "C" { void em1dcall_(int &itype, // source
  26. int &ipol, // source
  27. int &nlay, // Earth
  28. int &nfreq, // source
  29. int &nfield, // Calculator
  30. int &nres, // Receivers
  31. int &jtype, // N/A
  32. int &jgamma, // Controller
  33. double &acc, // Controller
  34. double *dep, // Earth
  35. std::complex<double> *sig, // Earth
  36. double *susl, // Earth
  37. double *sush, // Earth
  38. double *sustau, // Earth
  39. double *susalp, // Earth
  40. double *eprl, // Earth
  41. double *eprh, // Earth
  42. double *eprtau, // Earth
  43. double *epralp, // Earth
  44. double &finit, // N/A
  45. double &flimit, // N/A
  46. double &dlimit, // N/A
  47. double &lfinc, // N/A
  48. double &tx, // Source
  49. double &ty, // Source
  50. double &tz, // Source
  51. double *rxx, // Receivers
  52. double *rxy, // Receivers
  53. double *rxz, // Receivers
  54. std::complex<double> *ex, // Receivers
  55. std::complex<double> *ey, // |
  56. std::complex<double> *ez, // |
  57. std::complex<double> *hx, // |
  58. std::complex<double> *hy, // V
  59. std::complex<double> *hz ); // ___
  60. }
  61. #endif
  62. // ==================== LIFECYCLE ===================================
  63. // TODO init large arrays here.
  64. EMEarth1D::EMEarth1D( const ctor_key& key ) : LemmaObject( key ),
  65. Dipole(nullptr), Earth(nullptr), Receivers(nullptr), Antenna(nullptr),
  66. FieldsToCalculate(BOTH), HankelType(ANDERSON801), icalcinner(0), icalc(0)
  67. //#ifdef HAVE_BOOST_PROGRESS
  68. // , disp(0)
  69. //#endif
  70. {
  71. }
  72. EMEarth1D::~EMEarth1D() {
  73. }
  74. std::shared_ptr<EMEarth1D> EMEarth1D::NewSP() {
  75. return std::make_shared<EMEarth1D>(ctor_key());
  76. }
  77. YAML::Node EMEarth1D::Serialize() const {
  78. YAML::Node node = LemmaObject::Serialize();
  79. node["FieldsToCalculate"] = enum2String(FieldsToCalculate);
  80. node["HankelType"] = enum2String(HankelType);
  81. //if (Dipole != nullptr) node["Dipole"] = Dipole->Serialize();
  82. if (Earth != nullptr) node["Earth"] = Earth->Serialize();
  83. //if (Receivers != nullptr) node["Receivers"] = Receivers->Serialize(); Can be huge?
  84. if (Antenna != nullptr) node["Antenna"] = Antenna->Serialize();
  85. node.SetTag( this->GetName() );
  86. return node;
  87. }
  88. //--------------------------------------------------------------------------------------
  89. // Class: EMEarth1D
  90. // Method: GetName
  91. // Description: Class identifier
  92. //--------------------------------------------------------------------------------------
  93. inline std::string EMEarth1D::GetName ( ) const {
  94. return CName;
  95. } // ----- end of method EMEarth1D::GetName -----
  96. // ==================== ACCESS ===================================
  97. void EMEarth1D::AttachDipoleSource( std::shared_ptr<DipoleSource> dipoleptr) {
  98. Dipole = dipoleptr;
  99. }
  100. void EMEarth1D::AttachLayeredEarthEM( std::shared_ptr<LayeredEarthEM> earthptr) {
  101. Earth = earthptr;
  102. }
  103. void EMEarth1D::AttachFieldPoints( std::shared_ptr<FieldPoints> recptr) {
  104. Receivers = recptr;
  105. if (Receivers == nullptr) {
  106. std::cout << "nullptr Receivers in emearth1d.cpp " << std::endl;
  107. return;
  108. }
  109. // This has an implicid need to first set a source before receivers, users
  110. // will not expect this. Fix
  111. if (Dipole != nullptr) {
  112. switch (FieldsToCalculate) {
  113. case E:
  114. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  115. break;
  116. case H:
  117. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  118. break;
  119. case BOTH:
  120. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  121. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  122. break;
  123. }
  124. } else if (Antenna != nullptr) {
  125. switch (FieldsToCalculate) {
  126. case E:
  127. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  128. break;
  129. case H:
  130. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  131. break;
  132. case BOTH:
  133. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  134. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  135. break;
  136. }
  137. }
  138. }
  139. void EMEarth1D::AttachWireAntenna(std::shared_ptr<WireAntenna> antennae) {
  140. this->Antenna = antennae;
  141. }
  142. void EMEarth1D::SetFieldsToCalculate(const FIELDCALCULATIONS &calc) {
  143. FieldsToCalculate = calc;
  144. }
  145. void EMEarth1D::SetHankelTransformMethod( const HANKELTRANSFORMTYPE &type) {
  146. HankelType = type;
  147. }
  148. void EMEarth1D::Query() {
  149. std::cout << "EmEarth1D::Query()" << std::endl;
  150. std::cout << "Dipole " << Dipole;
  151. if (Dipole) std::cout << *Dipole << std::endl;
  152. std::cout << "Earth " << Earth;
  153. if (Earth) std::cout << *Earth << std::endl;
  154. std::cout << "Receivers " << Earth;
  155. if (Earth) std::cout << *Receivers << std::endl;
  156. std::cout << "Antenna " << Earth;
  157. if (Antenna) std::cout << *Antenna << std::endl;
  158. std::cout << "icalc " << icalc << std::endl;
  159. std::cout << "icalcinner " << icalcinner << std::endl;
  160. }
  161. // ==================== OPERATIONS ===================================
  162. void EMEarth1D::CalculateWireAntennaFields(bool progressbar) {
  163. #ifdef HAVE_BOOST_PROGRESS
  164. boost::progress_display *disp;
  165. #endif
  166. if (Earth == nullptr) {
  167. throw NullEarth();
  168. }
  169. if (Receivers == nullptr) {
  170. throw NullReceivers();
  171. }
  172. if (Antenna == nullptr) {
  173. throw NullAntenna();
  174. }
  175. if (Dipole != nullptr) {
  176. throw DipoleSourceSpecifiedForWireAntennaCalc();
  177. }
  178. Receivers->ClearFields();
  179. // Check to make sure Receivers are set up for all calculations
  180. switch(FieldsToCalculate) {
  181. case E:
  182. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  183. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  184. break;
  185. case H:
  186. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  187. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  188. break;
  189. case BOTH:
  190. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  191. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  192. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  193. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  194. break;
  195. }
  196. if (Antenna->GetName() == std::string("PolygonalWireAntenna") || Antenna->GetName() == std::string("TEMTransmitter") ) {
  197. icalc += 1;
  198. // Check to see if they are all on a plane? If so we can do this fast
  199. if (Antenna->IsHorizontallyPlanar() && 1==2 && ( HankelType == ANDERSON801 || HankelType== FHTKEY201 )) {
  200. #ifdef HAVE_BOOST_PROGRESS
  201. if (progressbar) {
  202. disp = new boost::progress_display( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  203. }
  204. #endif
  205. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies();++ifreq) {
  206. Real wavef = 2.*PI* Antenna->GetFrequency(ifreq);
  207. #ifdef LEMMAUSEOMP
  208. #pragma omp parallel
  209. {
  210. #endif
  211. //if (HankelType == ANDERSON801) {
  212. auto Hankel = FHTAnderson801::NewSP();
  213. //}
  214. //else if(HankelType == FHTKEY201) {
  215. // auto Hankel = FHTKey201::NewSP();
  216. //}
  217. #ifdef LEMMAUSEOMP
  218. #pragma omp for schedule(static, 1)
  219. #endif
  220. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  221. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  222. SolveLaggedTxRxPair(irec, Hankel.get(), wavef, ifreq, AntCopy.get());
  223. #ifdef HAVE_BOOST_PROGRESS
  224. if (progressbar) ++(*disp);
  225. #endif
  226. }
  227. #pragma omp barrier
  228. #ifdef LEMMAUSEOMP
  229. }
  230. #endif
  231. }
  232. } else
  233. if (Receivers->GetNumberOfPoints() > Antenna->GetNumberOfFrequencies()) {
  234. //std::cout << "freq parallel #1" << std::endl;
  235. //** Progress display bar for long calculations */
  236. #ifdef HAVE_BOOST_PROGRESS
  237. if (progressbar) {
  238. disp = new boost::progress_display( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  239. }
  240. #endif
  241. // parallelise across receivers
  242. #ifdef LEMMAUSEOMP
  243. #pragma omp parallel
  244. #endif
  245. { // OpenMP Parallel Block
  246. // Since these antennas change we need a local copy for each
  247. // thread.
  248. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  249. std::shared_ptr<HankelTransform> Hankel;
  250. switch (HankelType) {
  251. case ANDERSON801:
  252. Hankel = FHTAnderson801::NewSP();
  253. break;
  254. case CHAVE:
  255. Hankel = GQChave::NewSP();
  256. break;
  257. case FHTKEY201:
  258. Hankel = FHTKey201::NewSP();
  259. break;
  260. case FHTKEY101:
  261. Hankel = FHTKey101::NewSP();
  262. break;
  263. case FHTKEY51:
  264. Hankel = FHTKey51::NewSP();
  265. break;
  266. case QWEKEY:
  267. Hankel = QWEKey::NewSP();
  268. break;
  269. default:
  270. std::cerr << "Hankel transform cannot be created\n";
  271. exit(EXIT_FAILURE);
  272. }
  273. //for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  274. #ifdef LEMMAUSEOMP
  275. #pragma omp for schedule(static, 1) //nowait
  276. #endif
  277. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  278. if (!Receivers->GetMask(irec)) {
  279. AntCopy->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  280. for (int idip=0; idip<AntCopy->GetNumberOfDipoles(); ++idip) {
  281. auto tDipole = AntCopy->GetDipoleSource(idip);
  282. //#ifdef LEMMAUSEOMP
  283. //#pragma omp for schedule(static, 1)
  284. //#endif
  285. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies();
  286. ++ifreq) {
  287. // Propogation constant in free space
  288. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  289. std::sqrt(MU0*EPSILON0);
  290. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  291. } // freq loop
  292. } // dipole loop
  293. } // mask
  294. //std::cout << "Normal Path\n";
  295. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  296. //if (irec == 1) exit(0);
  297. #ifdef HAVE_BOOST_PROGRESS
  298. if (progressbar) ++(*disp);
  299. #endif
  300. } // receiver loop
  301. } // OMP_PARALLEL BLOCK
  302. } else if (Antenna->GetNumberOfFrequencies() > 8) {
  303. // parallel across frequencies
  304. //std::cout << "freq parallel #2" << std::endl;
  305. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  306. if (!Receivers->GetMask(irec)) {
  307. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  308. #ifdef LEMMAUSEOMP
  309. #pragma omp parallel
  310. #endif
  311. { // OpenMP Parallel Block
  312. std::shared_ptr<HankelTransform> Hankel;
  313. switch (HankelType) {
  314. case ANDERSON801:
  315. Hankel = FHTAnderson801::NewSP();
  316. break;
  317. case CHAVE:
  318. Hankel = GQChave::NewSP();
  319. break;
  320. case FHTKEY201:
  321. Hankel = FHTKey201::NewSP();
  322. break;
  323. case FHTKEY101:
  324. Hankel = FHTKey101::NewSP();
  325. break;
  326. case FHTKEY51:
  327. Hankel = FHTKey51::NewSP();
  328. break;
  329. case QWEKEY:
  330. Hankel = QWEKey::NewSP();
  331. break;
  332. default:
  333. std::cerr << "Hankel transform cannot be created\n";
  334. exit(EXIT_FAILURE);
  335. }
  336. #ifdef LEMMAUSEOMP
  337. #pragma omp for schedule(static, 1)
  338. #endif
  339. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  340. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  341. auto tDipole = Antenna->GetDipoleSource(idip);
  342. // Propogation constant in free space
  343. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  344. std::sqrt(MU0*EPSILON0);
  345. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  346. } // dipole loop
  347. } // frequency loop
  348. } // OMP_PARALLEL BLOCK
  349. } // mask loop
  350. #ifdef HAVE_BOOST_PROGRESS
  351. //if (Receivers->GetNumberOfPoints() > 100) {
  352. // ++ disp;
  353. //}
  354. #endif
  355. } // receiver loop
  356. //std::cout << "End freq parallel " << std::endl;
  357. } // Frequency Parallel
  358. else {
  359. //std::cout << "parallel across #3 " << std::endl;
  360. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  361. if (!Receivers->GetMask(irec)) {
  362. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  363. // std::cout << "Not Masked " << std::endl;
  364. // std::cout << "n Freqs " << Antenna->GetNumberOfFrequencies() << std::endl;
  365. // std::cout << "n Dipoles " << Antenna->GetNumberOfDipoles() << std::endl;
  366. // if ( !Antenna->GetNumberOfDipoles() ) {
  367. // std::cout << "NO DIPOLES!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
  368. // // std::cout << "rec location " << Receivers->GetLocation(irec) << std::endl;
  369. // // }
  370. #ifdef LEMMAUSEOMP
  371. #pragma omp parallel
  372. #endif
  373. { // OpenMP Parallel Block
  374. std::shared_ptr<HankelTransform> Hankel;
  375. switch (HankelType) {
  376. case ANDERSON801:
  377. Hankel = FHTAnderson801::NewSP();
  378. break;
  379. case CHAVE:
  380. Hankel = GQChave::NewSP();
  381. break;
  382. case FHTKEY201:
  383. Hankel = FHTKey201::NewSP();
  384. break;
  385. case FHTKEY101:
  386. Hankel = FHTKey101::NewSP();
  387. break;
  388. case FHTKEY51:
  389. Hankel = FHTKey51::NewSP();
  390. break;
  391. case QWEKEY:
  392. Hankel = QWEKey::NewSP();
  393. break;
  394. default:
  395. std::cerr << "Hankel transform cannot be created\n";
  396. exit(EXIT_FAILURE);
  397. }
  398. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  399. #ifdef LEMMAUSEOMP
  400. #pragma omp for schedule(static, 1)
  401. #endif
  402. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  403. //#pragma omp critical
  404. //{
  405. //cout << "idip=" << idip << "\tthread num=" << omp_get_thread_num() << '\n';
  406. //}
  407. auto tDipole = Antenna->GetDipoleSource(idip);
  408. // Propogation constant in free space
  409. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  410. std::sqrt(MU0*EPSILON0);
  411. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  412. } // dipole loop
  413. } // frequency loop
  414. } // OMP_PARALLEL BLOCK
  415. } // mask loop
  416. #ifdef HAVE_BOOST_PROGRESS
  417. //if (Receivers->GetNumberOfPoints() > 100) {
  418. // ++ disp;
  419. //}
  420. #endif
  421. } // receiver loop
  422. } // Polygonal parallel logic
  423. } else {
  424. std::cerr << "Lemma with WireAntenna class is currently broken"
  425. << " fix or use PolygonalWireAntenna\n" << std::endl;
  426. exit(EXIT_FAILURE);
  427. // TODO, getting wrong answer, curiously worKernel->GetKs() with MakeCalc, maybe
  428. // a threading issue, use SolveSingleTxRxPair maype instead of call
  429. // to MakeCalc3? !!!
  430. for (int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  431. this->Dipole = Antenna->GetDipoleSource(idip);
  432. MakeCalc3();
  433. //++disp;
  434. }
  435. this->Dipole = nullptr;
  436. }
  437. #ifdef HAVE_BOOST_PROGRESS
  438. if (progressbar) {
  439. delete disp;
  440. }
  441. #endif
  442. }
  443. #ifdef KIHALEE_EM1D
  444. void EMEarth1D::MakeCalc() {
  445. int itype; // 1 = elec, 2 = mag
  446. switch (this->Dipole->GetDipoleSourceType()) {
  447. case (GROUNDEDELECTRICDIPOLE) :
  448. itype = 1;
  449. break;
  450. case (MAGNETICDIPOLE) :
  451. itype = 2;
  452. break;
  453. case (UNGROUNDEDELECTRICDIPOLE) :
  454. std::cerr << "Fortran routine cannot calculate ungrounded"
  455. "electric dipole\n";
  456. default:
  457. throw NonValidDipoleType();
  458. }
  459. int ipol ;
  460. Vector3r Pol = this->Dipole->GetPolarisation();
  461. if (std::abs(Pol[0]-1) < 1e-5) {
  462. ipol = 1;
  463. } else if (std::abs(Pol[1]-1) < 1e-5) {
  464. ipol = 2;
  465. } else if (std::abs(Pol[2]-1) < 1e-5) {
  466. ipol = 3;
  467. } else {
  468. std::cerr << "Fortran routine cannot calculate arbitrary "
  469. "dipole polarisation, set to x, y, or z\n";
  470. }
  471. int nlay = Earth->GetNumberOfNonAirLayers();
  472. if (nlay > MAXLAYERS) {
  473. std::cerr << "FORTRAN CODE CAN ONLY HANDLE " << MAXLAYERS
  474. << " LAYERS\n";
  475. throw EarthModelWithMoreThanMaxLayers();
  476. }
  477. int nfreq = 1; // number of freqs
  478. int nfield; // field output 1 = elec, 2 = mag, 3 = both
  479. switch (FieldsToCalculate) {
  480. case E:
  481. nfield = 1;
  482. break;
  483. case H:
  484. nfield = 2;
  485. break;
  486. case BOTH:
  487. nfield = 3;
  488. break;
  489. default:
  490. throw 7;
  491. }
  492. int nres = Receivers->GetNumberOfPoints();
  493. int jtype = 3; // form ouf output,
  494. // 1 = horizontal,
  495. // 2 = down hole,
  496. // 3 = freq sounding
  497. // 4 = down hole logging
  498. int jgamma = 0; // Units 0 = MKS (H->A/m and E->V/m)
  499. // 1 = h->Gammas E->V/m
  500. double acc = 0.; // Tolerance
  501. // TODO, fix FORTRAN calls so these arrays can be nlay long, not
  502. // MAXLAYERS.
  503. // Model Parameters
  504. double *dep = new double[MAXLAYERS];
  505. dep[0] = 0.; // We always say air starts at 0
  506. for (int ilay=1; ilay<Earth->GetNumberOfLayers(); ++ilay) {
  507. dep[ilay] = dep[ilay-1] + Earth->GetLayerThickness(ilay);
  508. //std::cout << "Depth " << dep[ilay] << std::endl;
  509. }
  510. std::complex<double> *sig = new std::complex<double> [MAXLAYERS];
  511. for (int ilay=1; ilay<=nlay; ++ilay) {
  512. sig[ilay-1] = (std::complex<double>)(Earth->GetLayerConductivity(ilay));
  513. }
  514. // TODO, pass these into Fortran call, and return Cole-Cole model
  515. // parameters. Right now this does nothing
  516. //std::complex<double> *sus = new std::complex<double>[MAXLAYERS];
  517. //std::complex<double> *epr = new std::complex<double>[MAXLAYERS];
  518. // Cole-Cole model stuff
  519. double *susl = new double[MAXLAYERS];
  520. for (int ilay=1; ilay<=nlay; ++ilay) {
  521. susl[ilay-1] = Earth->GetLayerLowFreqSusceptibility(ilay);
  522. }
  523. double *sush = new double[MAXLAYERS];
  524. for (int ilay=1; ilay<=nlay; ++ilay) {
  525. sush[ilay-1] = Earth->GetLayerHighFreqSusceptibility(ilay);
  526. }
  527. double *sustau = new double[MAXLAYERS];
  528. for (int ilay=1; ilay<=nlay; ++ilay) {
  529. sustau[ilay-1] = Earth->GetLayerTauSusceptibility(ilay);
  530. }
  531. double *susalp = new double[MAXLAYERS];
  532. for (int ilay=1; ilay<=nlay; ++ilay) {
  533. susalp[ilay-1] = Earth->GetLayerBreathSusceptibility(ilay);
  534. }
  535. double *eprl = new double[MAXLAYERS];
  536. for (int ilay=1; ilay<=nlay; ++ilay) {
  537. eprl[ilay-1] = Earth->GetLayerLowFreqPermitivity(ilay);
  538. }
  539. double *eprh = new double[MAXLAYERS];
  540. for (int ilay=1; ilay<=nlay; ++ilay) {
  541. eprh[ilay-1] = Earth->GetLayerHighFreqPermitivity(ilay);
  542. }
  543. double *eprtau = new double[MAXLAYERS];
  544. for (int ilay=1; ilay<=nlay; ++ilay) {
  545. eprtau[ilay-1] = Earth->GetLayerTauPermitivity(ilay);
  546. }
  547. double *epralp = new double[MAXLAYERS];
  548. for (int ilay=1; ilay<=nlay; ++ilay) {
  549. epralp[ilay-1] = Earth->GetLayerBreathPermitivity(ilay);
  550. }
  551. // Freq stuff
  552. double finit = Dipole->GetFrequency(0); //(1000); // Starting freq
  553. double flimit = Dipole->GetFrequency(0); //(1000); // max freq
  554. double dlimit = Dipole->GetFrequency(0); //(1000); // difusion limit
  555. double lfinc(1); // no. freq per decade
  556. // tx location jtype != 4
  557. double txx = Dipole->GetLocation(0); // (0.);
  558. double txy = Dipole->GetLocation(1); // (0.);
  559. double txz = Dipole->GetLocation(2); // (0.);
  560. // rx position
  561. // TODO, fix Fortran program to not waste this memory
  562. // maybe
  563. const int MAXREC = 15;
  564. double *rxx = new double [MAXREC];
  565. double *rxy = new double [MAXREC];
  566. double *rxz = new double [MAXREC];
  567. std::complex<double> *ex = new std::complex<double>[MAXREC];
  568. std::complex<double> *ey = new std::complex<double>[MAXREC];
  569. std::complex<double> *ez = new std::complex<double>[MAXREC];
  570. std::complex<double> *hx = new std::complex<double>[MAXREC];
  571. std::complex<double> *hy = new std::complex<double>[MAXREC];
  572. std::complex<double> *hz = new std::complex<double>[MAXREC];
  573. int nres2 = MAXREC;
  574. int ii=0;
  575. for (ii=0; ii<nres-MAXREC; ii+=MAXREC) {
  576. for (int ir=0; ir<MAXREC; ++ir) {
  577. //Vector3r pos = Receivers->GetLocation(ii+ir);
  578. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  579. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  580. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  581. }
  582. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  583. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  584. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  585. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  586. hx, hy, hz);
  587. // Scale By Moment
  588. for (int ir=0; ir<MAXREC; ++ir) {
  589. ex[ir] *= Dipole->GetMoment();
  590. ey[ir] *= Dipole->GetMoment();
  591. ez[ir] *= Dipole->GetMoment();
  592. hx[ir] *= Dipole->GetMoment();
  593. hy[ir] *= Dipole->GetMoment();
  594. hz[ir] *= Dipole->GetMoment();
  595. // Append values instead of setting them
  596. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  597. (Complex)(ey[ir]),
  598. (Complex)(ez[ir]) );
  599. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  600. (Complex)(hy[ir]),
  601. (Complex)(hz[ir]) );
  602. }
  603. }
  604. //ii += MAXREC;
  605. nres2 = 0;
  606. // Perform last positions
  607. for (int ir=0; ir<nres-ii; ++ir) {
  608. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  609. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  610. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  611. ++nres2;
  612. }
  613. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  614. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  615. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  616. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  617. hx, hy, hz);
  618. // Scale By Moment
  619. for (int ir=0; ir<nres-ii; ++ir) {
  620. ex[ir] *= Dipole->GetMoment();
  621. ey[ir] *= Dipole->GetMoment();
  622. ez[ir] *= Dipole->GetMoment();
  623. hx[ir] *= Dipole->GetMoment();
  624. hy[ir] *= Dipole->GetMoment();
  625. hz[ir] *= Dipole->GetMoment();
  626. // Append values instead of setting them
  627. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  628. (Complex)(ey[ir]),
  629. (Complex)(ez[ir]) );
  630. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  631. (Complex)(hy[ir]),
  632. (Complex)(hz[ir]) );
  633. }
  634. delete [] sig;
  635. delete [] dep;
  636. //delete [] sus;
  637. //delete [] epr;
  638. delete [] susl;
  639. delete [] sush;
  640. delete [] susalp;
  641. delete [] sustau;
  642. delete [] eprl;
  643. delete [] eprh;
  644. delete [] epralp;
  645. delete [] eprtau;
  646. delete [] rxx;
  647. delete [] rxy;
  648. delete [] rxz;
  649. delete [] ex;
  650. delete [] ey;
  651. delete [] ez;
  652. delete [] hx;
  653. delete [] hy;
  654. delete [] hz;
  655. }
  656. #endif
  657. void EMEarth1D::SolveSingleTxRxPair (const int &irec, HankelTransform *Hankel, const Real &wavef, const int &ifreq,
  658. DipoleSource *tDipole) {
  659. ++icalcinner;
  660. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  661. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  662. Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  663. tDipole->UpdateFields( ifreq, Hankel, wavef );
  664. }
  665. // void EMEarth1D::SolveSingleTxRxPair (const int &irec, std::shared_ptr<HankelTransform> Hankel, const Real &wavef, const int &ifreq,
  666. // std::shared_ptr<DipoleSource> tDipole) {
  667. // ++icalcinner;
  668. // Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  669. // tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  670. // //Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  671. // //tDipole->UpdateFields( ifreq, Hankel, wavef );
  672. // }
  673. void EMEarth1D::SolveLaggedTxRxPair(const int &irec, FHTAnderson801* Hankel,
  674. const Real &wavef, const int &ifreq, PolygonalWireAntenna* antenna) {
  675. antenna->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  676. // Determine the min and max arguments
  677. Real rhomin = 1e9;
  678. Real rhomax = 1e-9;
  679. for (int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  680. auto tDipole = antenna->GetDipoleSource(idip);
  681. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  682. rhomin = std::min(rhomin, rho);
  683. rhomax = std::max(rhomax, rho);
  684. }
  685. //std::cout << "rhomin\t" << rhomin << "\trhomax" << rhomax << std::endl;
  686. // Determine number of lagged convolutions to do
  687. // TODO, can Hankel2 adjust the lagg spacing safely?
  688. int nlag = 1; // We need an extra for some reason for stability
  689. Real lrho ( 1.01* rhomax );
  690. while ( lrho > rhomin ) {
  691. nlag += 1;
  692. lrho *= Hankel->GetABSER();
  693. }
  694. //int nlag = rhomin
  695. auto tDipole = antenna->GetDipoleSource(0);
  696. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  697. // Instead we should pass the antenna into this so that Hankel hass all the rho arguments...
  698. Hankel->ComputeLaggedRelated( 1.01* rhomax, nlag, tDipole->GetKernelManager() );
  699. //std::cout << Hankel->GetAnswer() << std::endl;
  700. //std::cout << Hankel->GetArg() << std::endl;
  701. // Sort the dipoles by rho
  702. for (int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  703. //for (int idip=0; idip<1; ++idip) {
  704. auto tDipole = antenna->GetDipoleSource(idip);
  705. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  706. // Pass Hankel2 a message here so it knows which one to return in Zgauss!
  707. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  708. //std::cout << " in Lagged " << rho << "\t" << rhomin << "\t" << rhomax << std::endl;
  709. Hankel->SetLaggedArg( rho );
  710. //std::cout << "out Lagged" << std::endl;
  711. tDipole->UpdateFields( ifreq, Hankel, wavef );
  712. }
  713. //std::cout << "Spline\n";
  714. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  715. }
  716. //////////////////////////////////////////////////////////
  717. // Thread safe OO Reimplimentation of KiHand's
  718. // EM1DNEW.for programme
  719. void EMEarth1D::MakeCalc3() {
  720. if ( Dipole == nullptr ) throw NullDipoleSource();
  721. if (Earth == nullptr) throw NullEarth();
  722. if (Receivers == nullptr) throw NullReceivers();
  723. #ifdef LEMMAUSEOMP
  724. #pragma omp parallel
  725. #endif
  726. { // OpenMP Parallel Block
  727. #ifdef LEMMAUSEOMP
  728. int tid = omp_get_thread_num();
  729. int nthreads = omp_get_num_threads();
  730. #else
  731. int tid=0;
  732. int nthreads=1;
  733. #endif
  734. auto tDipole = Dipole->Clone();
  735. std::shared_ptr<HankelTransform> Hankel;
  736. switch (HankelType) {
  737. case ANDERSON801:
  738. Hankel = FHTAnderson801::NewSP();
  739. break;
  740. case CHAVE:
  741. Hankel = GQChave::NewSP();
  742. break;
  743. case FHTKEY201:
  744. Hankel = FHTKey201::NewSP();
  745. break;
  746. case FHTKEY101:
  747. Hankel = FHTKey101::NewSP();
  748. break;
  749. case FHTKEY51:
  750. Hankel = FHTKey51::NewSP();
  751. break;
  752. case QWEKEY:
  753. Hankel = QWEKey::NewSP();
  754. break;
  755. default:
  756. std::cerr << "Hankel transform cannot be created\n";
  757. exit(EXIT_FAILURE);
  758. }
  759. if ( tDipole->GetNumberOfFrequencies() < Receivers->GetNumberOfPoints() ) {
  760. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies(); ++ifreq) {
  761. // Propogation constant in free space being input to Hankel
  762. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  763. for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  764. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  765. }
  766. }
  767. } else {
  768. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  769. for (int ifreq=tid; ifreq<tDipole->GetNumberOfFrequencies(); ifreq+=nthreads) {
  770. // Propogation constant in free space being input to Hankel
  771. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  772. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  773. }
  774. }
  775. }
  776. } // OpenMP Parallel Block
  777. }
  778. NullReceivers::NullReceivers() :
  779. runtime_error("nullptr RECEIVERS") {}
  780. NullAntenna::NullAntenna() :
  781. runtime_error("nullptr ANTENNA") {}
  782. NullInstrument::NullInstrument(LemmaObject* ptr) :
  783. runtime_error("nullptr INSTRUMENT") {
  784. std::cout << "Thrown by instance of "
  785. << ptr->GetName() << std::endl;
  786. }
  787. DipoleSourceSpecifiedForWireAntennaCalc::
  788. DipoleSourceSpecifiedForWireAntennaCalc() :
  789. runtime_error("DIPOLE SOURCE SPECIFIED FOR WIRE ANTENNA CALC"){}
  790. } // end of Lemma Namespace