Lemma is an Electromagnetics API
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

DipoleSource.cpp 73KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. @version $Id: dipolesource.cpp 203 2015-01-09 21:19:04Z tirons $
  10. **/
  11. #include "DipoleSource.h"
  12. #include "KernelEM1DManager.h"
  13. //#include "GroundedElectricDipole.h"
  14. //#include "UngroundedElectricDipole.h"
  15. //#include "MagneticDipole.h"
  16. #include "FieldPoints.h"
  17. #include "HankelTransform.h"
  18. namespace Lemma {
  19. // ==================== FRIENDS ======================
  20. std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) {
  21. stream << ob.Serialize() << "\n---\n"; // End of doc ---
  22. return stream;
  23. }
  24. // ==================== LIFECYCLE ======================
  25. DipoleSource::DipoleSource( const ctor_key& ) : LemmaObject( ),
  26. Type(NOSOURCETYPE),
  27. Phase(0),
  28. Moment(1),
  29. KernelManager(nullptr),
  30. Receivers(nullptr),
  31. Earth(nullptr)
  32. {
  33. this->Location.setZero();
  34. this->Phat.setZero();
  35. }
  36. DipoleSource::~DipoleSource() {
  37. }
  38. std::shared_ptr<DipoleSource> DipoleSource::NewSP() {
  39. return std::make_shared<DipoleSource> ( ctor_key() );
  40. }
  41. YAML::Node DipoleSource::Serialize() const {
  42. YAML::Node node = DipoleSource::Serialize();
  43. node.SetTag( GetName() );
  44. /*
  45. node["LayerConductivity"] = LayerConductivity;
  46. node["LayerSusceptibility"] = LayerSusceptibility;
  47. node["LayerLowFreqSusceptibility"] = LayerLowFreqSusceptibility;
  48. node["LayerHighFreqSusceptibility"] = LayerHighFreqSusceptibility;
  49. node["LayerTauSusceptibility"] = LayerTauSusceptibility;
  50. node["LayerBreathSusceptibility"] = LayerBreathSusceptibility;
  51. node["LayerPermitivity"] = LayerPermitivity;
  52. node["LayerLowFreqPermitivity"] = LayerLowFreqPermitivity;
  53. node["LayerHighFreqPermitivity"] = LayerHighFreqPermitivity;
  54. node["LayerTauPermitivity"] = LayerTauPermitivity;
  55. node["LayerBreathPermitivity"] = LayerBreathPermitivity;
  56. */
  57. return node;
  58. }
  59. std::shared_ptr<DipoleSource> DipoleSource::Clone() {
  60. auto Obj = DipoleSource::NewSP();
  61. // copy
  62. Obj->Type = Type;
  63. Obj->irec = irec;
  64. Obj->lays = lays;
  65. Obj->layr = layr;
  66. Obj->Phase = Phase;
  67. Obj->Moment = Moment;
  68. Obj->xxp = xxp;
  69. Obj->yyp = yyp;
  70. Obj->rho = rho;
  71. Obj->sp = sp;
  72. Obj->cp = cp;
  73. Obj->scp = scp;
  74. Obj->sps = sps;
  75. Obj->cps = cps;
  76. Obj->c2p = c2p;
  77. Obj->FieldsToCalculate = FieldsToCalculate;
  78. Obj->f = f;
  79. Obj->ik = ik;
  80. Obj->Location = Location;
  81. Obj->Phat = Phat;
  82. Obj->Freqs = Freqs;
  83. return Obj;
  84. }
  85. // ==================== ACCESS ======================
  86. void DipoleSource::SetLocation(const Vector3r &posin) {
  87. this->Location = posin;
  88. }
  89. void DipoleSource::SetLocation(const Real &xp, const Real &yp,
  90. const Real &zp) {
  91. this->Location = Vector3r(xp, yp, zp);
  92. }
  93. void DipoleSource::SetPhase(const Real &phase) {
  94. this->Phase = phase;
  95. }
  96. void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) {
  97. static bool called = false;
  98. if (!called) {
  99. std::cerr << "\n\n=================================================================\n"
  100. << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n"
  101. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  102. << "This method will be removed in future versions of Lemma"
  103. << "\n=================================================================\n";
  104. called = true;
  105. }
  106. // Polarity = pol;
  107. // switch (Polarity) {
  108. // case POSITIVE:
  109. // Moment = std::abs(Moment);
  110. // break;
  111. // case NEGATIVE:
  112. // Moment = -std::abs(Moment);
  113. // break;
  114. // default:
  115. // throw NonValidDipolePolarity();
  116. // };
  117. }
  118. void DipoleSource::SetType(const DipoleSourceType & stype) {
  119. switch (stype) {
  120. case (GROUNDEDELECTRICDIPOLE):
  121. this->Type = stype;
  122. break;
  123. case (UNGROUNDEDELECTRICDIPOLE):
  124. this->Type = stype;
  125. break;
  126. case (MAGNETICDIPOLE):
  127. this->Type = stype;
  128. break;
  129. default:
  130. throw NonValidDipoleTypeAssignment();
  131. }
  132. }
  133. void DipoleSource::SetPolarisation(const Vector3r& pol) {
  134. this->Phat = pol / pol.norm();
  135. }
  136. void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) {
  137. Vector3r pol = (VectorXr(3) << x, y, z).finished();
  138. this->Phat = pol / pol.norm();
  139. }
  140. Vector3r DipoleSource::GetPolarisation() {
  141. return Phat;
  142. }
  143. DipoleSourceType DipoleSource::GetType() {
  144. return Type;
  145. }
  146. void DipoleSource::SetPolarisation(const
  147. DipoleSourcePolarisation &pol) {
  148. static bool called = false;
  149. if (!called) {
  150. std::cout << "\n\n========================================================================================\n"
  151. << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n"
  152. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  153. << "This method will be removed in future versions of Lemma"
  154. << "\n========================================================================================\n";
  155. called = true;
  156. }
  157. switch (pol) {
  158. case (XPOLARISATION):
  159. //this->Polarisation = pol;
  160. this->Phat = (VectorXr(3) << 1, 0, 0).finished();
  161. break;
  162. case (YPOLARISATION):
  163. //this->Polarisation = pol;
  164. this->Phat = (VectorXr(3) << 0, 1, 0).finished();
  165. break;
  166. case (ZPOLARISATION):
  167. //this->Polarisation = pol;
  168. this->Phat = (VectorXr(3) << 0, 0, 1).finished();
  169. break;
  170. default:
  171. throw NonValidDipolePolarisationAssignment();
  172. }
  173. }
  174. void DipoleSource::SetMoment(const Real &moment) {
  175. this->Moment = moment;
  176. }
  177. // ==================== OPERATIONS =====================
  178. void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> ReceiversIn, const int& irecin,
  179. std::shared_ptr<LayeredEarthEM> EarthIn ) {
  180. if (Receivers != ReceiversIn) {
  181. Receivers = ReceiversIn;
  182. }
  183. if (Earth != EarthIn) {
  184. Earth = EarthIn;
  185. }
  186. if (irecin != irec) {
  187. irec = irecin;
  188. }
  189. if (FieldsToCalculate != Fields) {
  190. FieldsToCalculate = Fields;
  191. }
  192. xxp = Receivers->GetLocation(irec)[0] - Location[0];
  193. yyp = Receivers->GetLocation(irec)[1] - Location[1];
  194. rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm();
  195. sp = yyp/rho;
  196. cp = xxp/rho;
  197. scp = sp*cp;
  198. sps = sp*sp;
  199. cps = cp*cp;
  200. c2p = cps-sps;
  201. f = VectorXcr::Zero(13);
  202. ik = VectorXi::Zero(13);
  203. lays = Earth->GetLayerAtThisDepth(Location[2]);
  204. layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]);
  205. KernelManager = KernelEM1DManager::NewSP();
  206. KernelManager->SetEarth(Earth);
  207. KernelManager->SetDipoleSource(shared_from_this(), ifreq, Receivers->GetLocation(irec)[2]);
  208. kernelFreq = Freqs(ifreq); // this is never used
  209. ReSetKernels( ifreq, Fields, Receivers, irec, Earth );
  210. return;
  211. }
  212. // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably
  213. // not the most critical piece though
  214. void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> Receivers, const int& irec,
  215. std::shared_ptr<LayeredEarthEM> Earth ) {
  216. Vector3r Pol = Phat;
  217. switch (Type) {
  218. case (GROUNDEDELECTRICDIPOLE):
  219. if (std::abs(Pol[2]) > 0) { // z dipole
  220. switch(FieldsToCalculate) {
  221. case E:
  222. if (lays == 0 && layr == 0) {
  223. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  224. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  225. } else if (lays == 0 && layr > 0) {
  226. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  227. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  228. } else if (lays > 0 && layr == 0) {
  229. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  230. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  231. } else {
  232. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  233. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  234. }
  235. break;
  236. case H:
  237. if (lays == 0 && layr == 0) {
  238. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  239. } else if (lays == 0 && layr > 0) {
  240. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  241. } else if (lays > 0 && layr == 0) {
  242. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  243. } else {
  244. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  245. }
  246. break;
  247. case BOTH:
  248. if ( lays == 0 && layr == 0) {
  249. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  250. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  251. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  252. } else if (lays == 0 && layr > 0) {
  253. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  254. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  255. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  256. } else if (lays > 0 && layr == 0) {
  257. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  258. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  259. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  260. } else {
  261. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  262. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  263. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  264. }
  265. }
  266. }
  267. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  268. switch(FieldsToCalculate) {
  269. case E:
  270. if ( lays == 0 && layr == 0) {
  271. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  272. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  273. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  274. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  275. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  276. } else if (lays == 0 && layr > 0) {
  277. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  278. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  279. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  280. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  281. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  282. } else if (lays > 0 && layr == 0) {
  283. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  284. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  285. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  286. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  287. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  288. } else {
  289. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  290. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  291. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  292. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  293. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  294. }
  295. break;
  296. case H:
  297. if (lays == 0 && layr == 0) {
  298. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  299. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  300. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  301. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  302. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  303. } else if (lays == 0 && layr > 0) {
  304. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  305. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  306. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  307. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  308. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  309. } else if (lays > 0 && layr == 0) {
  310. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  311. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  312. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  313. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  314. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  315. } else {
  316. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  317. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  318. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  319. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  320. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  321. }
  322. break;
  323. case BOTH:
  324. if (lays == 0 && layr == 0) {
  325. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  326. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  327. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  328. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  329. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  330. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  331. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  332. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  333. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  334. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  335. } else if (lays == 0 && layr > 0) {
  336. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  337. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  338. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  339. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  340. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  341. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  342. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  343. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  344. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  345. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  346. } else if (lays > 0 && layr == 0) {
  347. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  348. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  349. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  350. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  351. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  352. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  353. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  354. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  355. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  356. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  357. } else {
  358. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  359. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  360. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  361. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  362. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  363. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  364. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  365. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  366. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  367. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  368. }
  369. break;
  370. }
  371. }
  372. break;
  373. case (UNGROUNDEDELECTRICDIPOLE):
  374. if (std::abs(Pol[2]) > 0) { // z dipole
  375. switch(FieldsToCalculate) {
  376. case E:
  377. if (lays == 0 && layr == 0) {
  378. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  379. } else if (lays == 0 && layr > 0) {
  380. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  381. } else if (lays > 0 && layr == 0) {
  382. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  383. } else {
  384. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  385. }
  386. break;
  387. case H:
  388. if (lays == 0 && layr == 0) {
  389. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  390. } else if (lays == 0 && layr > 0) {
  391. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  392. } else if (lays > 0 && layr == 0) {
  393. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  394. } else {
  395. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  396. }
  397. break;
  398. case BOTH:
  399. if ( lays == 0 && layr == 0) {
  400. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  401. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  402. } else if (lays == 0 && layr > 0) {
  403. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  404. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  405. } else if (lays > 0 && layr == 0) {
  406. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  407. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  408. } else {
  409. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  410. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  411. }
  412. }
  413. }
  414. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  415. switch(FieldsToCalculate) {
  416. case E:
  417. if ( lays == 0 && layr == 0) {
  418. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  419. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  420. } else if (lays == 0 && layr > 0) {
  421. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  422. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  423. } else if (lays > 0 && layr == 0) {
  424. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  425. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  426. } else {
  427. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  428. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  429. }
  430. break;
  431. case H:
  432. if (lays == 0 && layr == 0) {
  433. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  434. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  435. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  436. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  437. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  438. } else if (lays == 0 && layr > 0) {
  439. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  440. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  441. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  442. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  443. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  444. } else if (lays > 0 && layr == 0) {
  445. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  446. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  447. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  448. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  449. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  450. } else {
  451. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  452. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  453. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  454. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  455. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  456. }
  457. break;
  458. case BOTH:
  459. if (lays == 0 && layr == 0) {
  460. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  461. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  462. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  463. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  464. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  465. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  466. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  467. } else if (lays == 0 && layr > 0) {
  468. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  469. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  470. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  471. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  472. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  473. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  474. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  475. } else if (lays > 0 && layr == 0) {
  476. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  477. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  478. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  479. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  480. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  481. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  482. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  483. } else {
  484. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  485. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  486. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  487. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  488. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  489. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  490. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  491. }
  492. break;
  493. }
  494. }
  495. break;
  496. case (MAGNETICDIPOLE):
  497. if (std::abs(Pol[2]) > 0) { // z dipole
  498. switch (FieldsToCalculate) {
  499. case E:
  500. if (lays == 0 && layr == 0) {
  501. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  502. } else if (lays == 0 && layr > 0) {
  503. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  504. } else if (lays > 0 && layr == 0) {
  505. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  506. } else {
  507. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  508. }
  509. break;
  510. case H:
  511. if (lays == 0 && layr == 0) {
  512. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  513. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  514. } else if (lays == 0 && layr > 0) {
  515. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  516. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  517. } else if (lays > 0 && layr == 0) {
  518. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  519. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  520. } else {
  521. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  522. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  523. }
  524. break;
  525. case BOTH:
  526. if (lays == 0 && layr == 0) {
  527. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  528. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  529. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  530. } else if (lays == 0 && layr > 0) {
  531. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  532. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  533. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  534. } else if (lays > 0 && layr == 0) {
  535. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  536. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  537. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  538. } else {
  539. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  540. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  541. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  542. }
  543. }
  544. }
  545. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  546. switch (FieldsToCalculate) {
  547. case E:
  548. if ( lays == 0 && layr == 0) {
  549. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  550. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  551. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  552. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  553. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  554. } else if (lays == 0 && layr > 0) {
  555. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  556. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  557. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  558. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  559. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  560. } else if (lays > 0 && layr == 0) {
  561. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INAIR>( );
  562. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INAIR>( );
  563. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INAIR>( );
  564. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INAIR>( );
  565. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INAIR>( );
  566. } else {
  567. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  568. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  569. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  570. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  571. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  572. }
  573. break;
  574. case H:
  575. if ( lays == 0 && layr == 0) {
  576. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  577. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  578. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  579. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  580. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  581. } else if (lays == 0 && layr > 0) {
  582. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  583. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  584. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  585. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  586. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  587. } else if (lays > 0 && layr == 0) {
  588. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INAIR>( );
  589. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INAIR>( );
  590. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INAIR>( );
  591. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INAIR>( );
  592. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INAIR>( );
  593. } else {
  594. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  595. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  596. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  597. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  598. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  599. }
  600. break;
  601. case BOTH:
  602. if ( lays == 0 && layr == 0) {
  603. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  604. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  605. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  606. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  607. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  608. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  609. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  610. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  611. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  612. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  613. } else if (lays == 0 && layr > 0) {
  614. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  615. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  616. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  617. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  618. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  619. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  620. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  621. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  622. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  623. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  624. } else {
  625. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  626. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  627. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  628. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  629. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  630. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  631. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  632. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  633. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  634. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  635. }
  636. break;
  637. }
  638. }
  639. break;
  640. default:
  641. std::cerr << "Dipole type incorrect, in dipolesource.cpp";
  642. exit(EXIT_FAILURE);
  643. }
  644. }
  645. void DipoleSource::UpdateFields( const int& ifreq, std::shared_ptr<HankelTransform> Hankel, const Real& wavef) {
  646. Vector3r Pol = Phat;
  647. switch (Type) {
  648. case (GROUNDEDELECTRICDIPOLE):
  649. //Hankel->ComputeRelated(rho, KernelManager);
  650. if (std::abs(Pol[2]) > 0) { // z dipole
  651. switch(FieldsToCalculate) {
  652. case E:
  653. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetKernel(ik[10])) / KernelManager->GetKernel(ik[10])->GetYm();
  654. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  655. std::cout.precision(12);
  656. this->Receivers->AppendEfield(ifreq, irec,
  657. -Pol[2]*QPI*cp*f(10)*Moment,
  658. -Pol[2]*QPI*sp*f(10)*Moment,
  659. Pol[2]*QPI*f(11)*Moment);
  660. break;
  661. case H:
  662. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  663. this->Receivers->AppendHfield(ifreq, irec,
  664. -Pol[2]*QPI*sp*f(12)*Moment,
  665. Pol[2]*QPI*cp*f(12)*Moment,
  666. 0. );
  667. break;
  668. case BOTH:
  669. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetKernel(ik[10])) / KernelManager->GetKernel(ik[10])->GetYm();
  670. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  671. this->Receivers->AppendEfield(ifreq, irec,
  672. -Pol[2]*QPI*cp*f(10)*Moment,
  673. -Pol[2]*QPI*sp*f(10)*Moment,
  674. Pol[2]*QPI*f(11)*Moment );
  675. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  676. this->Receivers->AppendHfield(ifreq, irec,
  677. -Pol[2]*QPI*sp*f(12)*Moment,
  678. Pol[2]*QPI*cp*f(12)*Moment,
  679. 0. );
  680. } // Fields to calculate Z polarity Electric dipole
  681. }
  682. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  683. switch(FieldsToCalculate) {
  684. case E:
  685. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(ik[2])->GetZs();
  686. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(ik[3])->GetZs();
  687. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetKernel(ik[0])) / KernelManager->GetKernel(ik[0])->GetYm();
  688. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetKernel(ik[1])) / KernelManager->GetKernel(ik[1])->GetYm();
  689. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetKernel(ik[4])) / KernelManager->GetKernel(ik[4])->GetYm();
  690. if (std::abs(Pol[1]) > 0) {
  691. this->Receivers->AppendEfield(ifreq, irec,
  692. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  693. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  694. Pol[1]*QPI*sp*f(4)*Moment);
  695. }
  696. if (std::abs(Pol[0]) > 0) {
  697. this->Receivers->AppendEfield(ifreq, irec,
  698. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  699. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  700. Pol[0]*Moment*QPI*cp*f(4) );
  701. }
  702. break;
  703. case H:
  704. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  705. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  706. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  707. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  708. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  709. if (std::abs(Pol[1]) > 0) {
  710. this->Receivers->AppendHfield(ifreq, irec,
  711. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  712. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  713. -Pol[1]*QPI*cp*f(9)*Moment );
  714. }
  715. if (std::abs(Pol[0]) > 0) {
  716. this->Receivers->AppendHfield(ifreq, irec,
  717. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  718. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  719. Pol[0]*Moment*QPI*sp*f(9) );
  720. }
  721. break;
  722. case BOTH:
  723. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetKernel(ik[0])) / KernelManager->GetKernel(ik[0])->GetYm();
  724. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetKernel(ik[1])) / KernelManager->GetKernel(ik[1])->GetYm();
  725. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetKernel(ik[4])) / KernelManager->GetKernel(ik[4])->GetYm();
  726. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(ik[2])->GetZs();
  727. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(ik[3])->GetZs();
  728. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  729. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  730. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  731. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  732. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  733. if (std::abs(Pol[1]) > 0) {
  734. this->Receivers->AppendEfield(ifreq, irec,
  735. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  736. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  737. Pol[1]*QPI*sp*f(4)*Moment);
  738. this->Receivers->AppendHfield(ifreq, irec,
  739. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  740. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  741. -Pol[1]*QPI*cp*f(9)*Moment );
  742. }
  743. if (std::abs(Pol[0]) > 0) {
  744. this->Receivers->AppendEfield(ifreq, irec,
  745. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  746. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  747. Pol[0]*Moment*QPI*cp*f(4) );
  748. this->Receivers->AppendHfield(ifreq, irec,
  749. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  750. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  751. Pol[0]*Moment*QPI*sp*f(9) );
  752. }
  753. break;
  754. }
  755. }
  756. break; // GROUNDEDELECTRICDIPOLE
  757. case UNGROUNDEDELECTRICDIPOLE:
  758. //Hankel->ComputeRelated(rho, KernelManager);
  759. if (std::abs(Pol[2]) > 0) { // z dipole
  760. switch(FieldsToCalculate) {
  761. case E:
  762. f(10) = 0;
  763. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  764. this->Receivers->AppendEfield(ifreq, irec,
  765. -Pol[2]*QPI*cp*f(10)*Moment,
  766. -Pol[2]*QPI*sp*f(10)*Moment,
  767. Pol[2]*QPI*f(11)*Moment);
  768. break;
  769. case H:
  770. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  771. this->Receivers->AppendHfield(ifreq, irec,
  772. -Pol[2]*QPI*sp*f(12)*Moment,
  773. Pol[2]*QPI*cp*f(12)*Moment,
  774. 0. );
  775. break;
  776. case BOTH:
  777. f(10) = 0;
  778. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  779. this->Receivers->AppendEfield(ifreq, irec,
  780. -Pol[2]*QPI*cp*f(10)*Moment,
  781. -Pol[2]*QPI*sp*f(10)*Moment,
  782. Pol[2]*QPI*f(11)*Moment );
  783. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  784. this->Receivers->AppendHfield(ifreq, irec,
  785. -Pol[2]*QPI*sp*f(12)*Moment,
  786. Pol[2]*QPI*cp*f(12)*Moment,
  787. 0. );
  788. } // Fields to calculate Z polarity Electric dipole
  789. }
  790. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  791. switch(FieldsToCalculate) {
  792. case E:
  793. f(0) = 0;
  794. f(1) = 0;
  795. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(ik[2])->GetZs();
  796. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(ik[3])->GetZs();
  797. f(4) = 0;
  798. if (std::abs(Pol[1]) > 0) {
  799. this->Receivers->AppendEfield(ifreq, irec,
  800. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  801. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  802. Pol[1]*QPI*sp*f(4)*Moment);
  803. }
  804. if (std::abs(Pol[0]) > 0) {
  805. this->Receivers->AppendEfield(ifreq, irec,
  806. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  807. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  808. Pol[0]*Moment*QPI*cp*f(4) );
  809. }
  810. break;
  811. case H:
  812. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  813. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  814. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  815. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  816. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  817. if (std::abs(Pol[1]) > 0) {
  818. this->Receivers->AppendHfield(ifreq, irec,
  819. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  820. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  821. -Pol[1]*QPI*cp*f(9)*Moment );
  822. // Analytic whole space solution could go here
  823. }
  824. if (std::abs(Pol[0]) > 0) {
  825. this->Receivers->AppendHfield(ifreq, irec,
  826. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  827. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  828. Pol[0]*Moment*QPI*sp*f(9) );
  829. // Analytic whole space solution
  830. }
  831. break;
  832. case BOTH:
  833. f(0) = 0;
  834. f(1) = 0;
  835. f(4) = 0;
  836. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(0)->GetZs();
  837. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(1)->GetZs();
  838. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  839. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  840. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  841. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  842. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  843. if (std::abs(Pol[1]) > 0) {
  844. this->Receivers->AppendEfield(ifreq, irec,
  845. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  846. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  847. Pol[1]*QPI*sp*f(4)*Moment);
  848. this->Receivers->AppendHfield(ifreq, irec,
  849. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  850. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  851. -Pol[1]*QPI*cp*f(9)*Moment );
  852. }
  853. if (std::abs(Pol[0]) > 0) {
  854. this->Receivers->AppendEfield(ifreq, irec,
  855. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  856. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  857. Pol[0]*Moment*QPI*cp*f(4) );
  858. this->Receivers->AppendHfield(ifreq, irec,
  859. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  860. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  861. Pol[0]*Moment*QPI*sp*f(9) );
  862. }
  863. break;
  864. }
  865. }
  866. break; // UNGROUNDEDELECTRICDIPOLE
  867. case MAGNETICDIPOLE:
  868. //Hankel->ComputeRelated(rho, KernelManager);
  869. if (std::abs(Pol[2]) > 0) { // z dipole
  870. switch(FieldsToCalculate) {
  871. case E:
  872. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetKernel(ik[12]))*KernelManager->GetKernel(ik[12])->GetZs();
  873. this->Receivers->AppendEfield(ifreq, irec,
  874. Pol[2]*Moment*QPI*sp*f(12),
  875. -Pol[2]*Moment*QPI*cp*f(12),
  876. 0);
  877. break;
  878. case H:
  879. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetKernel(ik[10]))*KernelManager->GetKernel(ik[10])->GetZs()/KernelManager->GetKernel(ik[10])->GetZm();
  880. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetKernel(ik[11]))*KernelManager->GetKernel(ik[11])->GetZs()/KernelManager->GetKernel(ik[11])->GetZm();
  881. this->Receivers->AppendHfield(ifreq, irec,
  882. -Pol[2]*Moment*QPI*cp*f(10),
  883. -Pol[2]*Moment*QPI*sp*f(10),
  884. Pol[2]*Moment*QPI*f(11) );
  885. break;
  886. case BOTH:
  887. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetKernel(ik[12]))*KernelManager->GetKernel(ik[12])->GetZs();
  888. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetKernel(ik[10]))*KernelManager->GetKernel(ik[10])->GetZs()/KernelManager->GetKernel(ik[10])->GetZm();
  889. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetKernel(ik[11]))*KernelManager->GetKernel(ik[11])->GetZs()/KernelManager->GetKernel(ik[11])->GetZm();
  890. this->Receivers->AppendEfield(ifreq, irec,
  891. Pol[2]*Moment*QPI*sp*f(12),
  892. -Pol[2]*Moment*QPI*cp*f(12),
  893. 0);
  894. this->Receivers->AppendHfield(ifreq, irec,
  895. -Pol[2]*Moment*QPI*cp*f(10),
  896. -Pol[2]*Moment*QPI*sp*f(10),
  897. Pol[2]*Moment*QPI*f(11) );
  898. break;
  899. }
  900. }
  901. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  902. switch (FieldsToCalculate) {
  903. case E:
  904. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetKernel(ik[5]))*KernelManager->GetKernel(ik[5])->GetZs();
  905. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetKernel(ik[6]))*KernelManager->GetKernel(ik[6])->GetZs();
  906. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetKs()/KernelManager->GetKernel(ik[7])->GetYm();
  907. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetKs()/KernelManager->GetKernel(ik[8])->GetYm();
  908. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetKs()/KernelManager->GetKernel(ik[9])->GetYm();
  909. if (std::abs(Pol[0]) > 0) {
  910. this->Receivers->AppendEfield(ifreq, irec,
  911. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  912. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  913. Pol[0]*Moment*QPI*sp*f(9));
  914. }
  915. if (std::abs(Pol[1]) > 0) {
  916. this->Receivers->AppendEfield(ifreq, irec,
  917. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  918. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  919. -Pol[1]*Moment*QPI*cp*f(9) );
  920. }
  921. break;
  922. case H:
  923. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetKernel(ik[0]))*KernelManager->GetKernel(ik[0])->GetZs()/KernelManager->GetKernel(ik[0])->GetZm();
  924. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetKernel(ik[1]))*KernelManager->GetKernel(ik[1])->GetZs()/KernelManager->GetKernel(ik[1])->GetZm();
  925. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetKernel(ik[4]))*KernelManager->GetKernel(ik[4])->GetZs()/KernelManager->GetKernel(ik[4])->GetZm();
  926. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetKernel(ik[2]))*KernelManager->GetKernel(ik[2])->GetKs();
  927. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetKernel(ik[3]))*KernelManager->GetKernel(ik[3])->GetKs();
  928. if (std::abs(Pol[0]) > 0) {
  929. this->Receivers->AppendHfield(ifreq, irec,
  930. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  931. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  932. Pol[0]*Moment*QPI*cp*f(4) );
  933. }
  934. if (std::abs(Pol[1]) > 0) {
  935. this->Receivers->AppendHfield(ifreq, irec,
  936. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  937. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  938. Pol[1]*Moment*QPI*sp*f(4));
  939. }
  940. break;
  941. case BOTH:
  942. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetKernel(ik[5]))*KernelManager->GetKernel(ik[5])->GetZs();
  943. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetKernel(ik[6]))*KernelManager->GetKernel(ik[6])->GetZs();
  944. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetKs()/KernelManager->GetKernel(ik[7])->GetYm();
  945. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetKs()/KernelManager->GetKernel(ik[8])->GetYm();
  946. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetKs()/KernelManager->GetKernel(ik[9])->GetYm();
  947. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetKernel(ik[0]))*KernelManager->GetKernel(ik[0])->GetZs()/KernelManager->GetKernel(ik[0])->GetZm();
  948. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetKernel(ik[1]))*KernelManager->GetKernel(ik[1])->GetZs()/KernelManager->GetKernel(ik[1])->GetZm();
  949. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetKernel(ik[4]))*KernelManager->GetKernel(ik[4])->GetZs()/KernelManager->GetKernel(ik[4])->GetZm();
  950. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetKernel(ik[2]))*KernelManager->GetKernel(ik[2])->GetKs();
  951. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetKernel(ik[3]))*KernelManager->GetKernel(ik[3])->GetKs();
  952. if (std::abs(Pol[0]) > 0) {
  953. this->Receivers->AppendEfield(ifreq, irec,
  954. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  955. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  956. Pol[0]*Moment*QPI*sp*f(9));
  957. this->Receivers->AppendHfield(ifreq, irec,
  958. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  959. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  960. Pol[0]*Moment*QPI*cp*f(4) );
  961. }
  962. if (std::abs(Pol[1]) > 0) {
  963. this->Receivers->AppendEfield(ifreq, irec,
  964. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  965. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  966. -Pol[1]*Moment*QPI*cp*f(9) );
  967. this->Receivers->AppendHfield(ifreq, irec,
  968. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  969. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  970. Pol[1]*Moment*QPI*sp*f(4));
  971. }
  972. break;
  973. }
  974. }
  975. break;
  976. case NOSOURCETYPE:
  977. throw NonValidDipoleType(this);
  978. } // Source Type Switch
  979. }
  980. // ==================== INQUIRY ======================
  981. std::shared_ptr<KernelEM1DManager> DipoleSource::GetKernelManager() {
  982. return KernelManager;
  983. }
  984. Vector3r DipoleSource::GetLocation() {
  985. return this->Location;
  986. }
  987. #ifdef LEMMAUSEVTK
  988. vtkActor* DipoleSource::GetVtkActor() {
  989. vtkActor* vActor;
  990. vtkLineSource* vLineSource;
  991. vtkTubeFilter* vTube;
  992. vtkPolyDataMapper* vMapper;
  993. vtkRegularPolygonSource* vCircleSource;
  994. vLineSource = vtkLineSource::New();
  995. vTube = vtkTubeFilter::New();
  996. vMapper = vtkPolyDataMapper::New();
  997. vCircleSource = vtkRegularPolygonSource::New();
  998. VectorXr M0 = Location - .5*Moment*Phat;
  999. VectorXr M1 = Location + .5*Moment*Phat;
  1000. vActor = vtkActor::New();
  1001. switch (Type) {
  1002. case GROUNDEDELECTRICDIPOLE:
  1003. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1004. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1005. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1006. vTube->SetRadius(.1 * std::abs(Moment));
  1007. vTube->SetNumberOfSides(6);
  1008. vTube->SetCapping(1);
  1009. vMapper->SetInputConnection(vTube->GetOutputPort());
  1010. vActor->SetMapper(vMapper);
  1011. vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1012. break;
  1013. case UNGROUNDEDELECTRICDIPOLE:
  1014. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1015. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1016. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1017. vTube->SetRadius(.1 * std::abs(Moment));
  1018. vTube->SetNumberOfSides(6);
  1019. vTube->SetCapping(1);
  1020. vMapper->SetInputConnection(vTube->GetOutputPort());
  1021. vActor->SetMapper(vMapper);
  1022. //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1023. vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX));
  1024. vActor->GetProperty()->SetOpacity(1.);
  1025. break;
  1026. case MAGNETICDIPOLE:
  1027. vCircleSource->SetCenter(Location(0), Location(1),
  1028. Location(2));
  1029. vCircleSource->SetNumberOfSides(360);
  1030. vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]);
  1031. vCircleSource->SetRadius(0.2); // .2 m radius
  1032. vCircleSource->SetGeneratePolygon(false);
  1033. vCircleSource->SetGeneratePolyline(true);
  1034. vCircleSource->Update();
  1035. vTube->SetInputConnection(vCircleSource->GetOutputPort());
  1036. //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)),
  1037. // (float)(*yCoords->GetTuple(ny))) / 100);
  1038. vTube->SetRadius(.1*std::abs(Moment));
  1039. vTube->SetNumberOfSides(6);
  1040. vTube->SetCapping(1);
  1041. vMapper->SetInputConnection(vTube->GetOutputPort());
  1042. vActor->SetMapper(vMapper);
  1043. vActor->GetProperty()->SetColor(.9,.2,.9);
  1044. break;
  1045. default:
  1046. throw NonValidDipoleType();
  1047. }
  1048. vLineSource->Delete();
  1049. vCircleSource->Delete();
  1050. vTube->Delete();
  1051. vMapper->Delete();
  1052. return vActor;
  1053. }
  1054. #endif
  1055. Real DipoleSource::GetLocation(const int& coordinate) {
  1056. switch (coordinate) {
  1057. case (0):
  1058. return this->Location.x();
  1059. break;
  1060. case (1):
  1061. return this->Location.y();
  1062. break;
  1063. case (2):
  1064. return this->Location.z();
  1065. break;
  1066. default:
  1067. throw NonValidLocationCoordinate( );
  1068. }
  1069. }
  1070. DipoleSourceType DipoleSource::GetDipoleSourceType() {
  1071. return this->Type;
  1072. }
  1073. //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() {
  1074. // return this->Polarisation;
  1075. //}
  1076. Real DipoleSource::GetAngularFrequency(const int& ifreq) {
  1077. return 2.*PI*this->Freqs(ifreq);
  1078. }
  1079. Real DipoleSource::GetFrequency(const int& ifreq) {
  1080. return this->Freqs(ifreq);
  1081. }
  1082. VectorXr DipoleSource::GetFrequencies( ) {
  1083. return this->Freqs;
  1084. }
  1085. Real DipoleSource::GetPhase() {
  1086. return this->Phase;
  1087. }
  1088. Real DipoleSource::GetMoment() {
  1089. return this->Moment;
  1090. }
  1091. int DipoleSource::GetNumberOfFrequencies() {
  1092. return this->Freqs.size();
  1093. }
  1094. void DipoleSource::SetNumberOfFrequencies(const int &nfreq){
  1095. Freqs.resize(nfreq);
  1096. Freqs.setZero();
  1097. }
  1098. void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){
  1099. Freqs(ifreq) = freq;
  1100. }
  1101. void DipoleSource::SetFrequencies(const VectorXr &freqs){
  1102. Freqs = freqs;
  1103. }
  1104. /////////////////////////////////////////////////////////////////
  1105. /////////////////////////////////////////////////////////////////
  1106. // Error classes
  1107. NullDipoleSource::NullDipoleSource() :
  1108. runtime_error( "NULL VALUED DIPOLE SOURCE") {}
  1109. NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) :
  1110. runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { }
  1111. NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) :
  1112. runtime_error( "NON VALID DIPOLE TYPE") {
  1113. std::cout << "Thrown by instance of "
  1114. << ptr->GetName() << std::endl;
  1115. }
  1116. NonValidDipoleType::NonValidDipoleType( ) :
  1117. runtime_error( "NON VALID DIPOLE TYPE") { }
  1118. NonValidDipolePolarity::NonValidDipolePolarity () :
  1119. runtime_error( "NON VALID DIPOLE POLARITY") { }
  1120. NonValidDipolePolarisation::NonValidDipolePolarisation( ) :
  1121. runtime_error( "NON VALID DIPOLE TYPE") { }
  1122. NonValidDipolePolarisationAssignment::
  1123. NonValidDipolePolarisationAssignment( ) :
  1124. runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { }
  1125. NonValidLocationCoordinate::NonValidLocationCoordinate( ) :
  1126. runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { }
  1127. }