Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

utORS.cpp 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. // ===========================================================================
  2. //
  3. // Filename: utdipolesource.cpp
  4. //
  5. // Description:
  6. //
  7. // Version: 0.0
  8. // Created: 12/02/2009 11:57:14 AM
  9. // Revision: none
  10. // Compiler: g++ (c++)
  11. //
  12. // Author: Trevor Irons (ti)
  13. //
  14. // Organisation: Colorado School of Mines (CSM)
  15. // United States Geological Survey (USGS)
  16. //
  17. // Email: tirons@mines.edu, tirons@usgs.gov
  18. //
  19. // This program is free software: you can redistribute it and/or modify
  20. // it under the terms of the GNU General Public License as published by
  21. // the Free Software Foundation, either version 3 of the License, or
  22. // (at your option) any later version.
  23. //
  24. // This program is distributed in the hope that it will be useful,
  25. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. // GNU General Public License for more details.
  28. //
  29. // You should have received a copy of the GNU General Public License
  30. // along with this program. If not, see <http://www.gnu.org/licenses/>.
  31. //
  32. // ===========================================================================
  33. #include <iostream>
  34. #include <fstream>
  35. #include "dipolesource.h"
  36. #include "layeredearth.h"
  37. #include "receiverpoints.h"
  38. #include "emearth1d.h"
  39. #include "WireAntenna.h"
  40. #include "PolygonalWireAntenna.h"
  41. #if LEMMAUSEVTK
  42. #include "vtkRenderer.h"
  43. #include "vtkRenderWindow.h"
  44. #include "vtkRenderWindowInteractor.h"
  45. #include "vtkRenderLargeImage.h"
  46. #include "vtkPNGWriter.h"
  47. #include "vtkRectilinearGrid.h"
  48. #include "vtkXMLRectilinearGridWriter.h"
  49. #include "vtkDoubleArray.h"
  50. #include "vtkFieldData.h"
  51. #include "vtkCellData.h"
  52. #endif // ----- not LEMMA_USE_VTK -----
  53. // For testing purposes disable VTK and run scale.sh
  54. //#undef LEMMAUSEVTK
  55. #include "timer.h"
  56. using namespace Lemma;
  57. double randDouble(double low, double high) {
  58. //srand(time(0));
  59. double temp;
  60. /* swap low & high around if the user makes no sense */
  61. if (low > high) {
  62. temp = low;
  63. low = high;
  64. high = temp;
  65. }
  66. /* calculate the random number & return it */
  67. temp = (rand() / (static_cast<double>(RAND_MAX) + 1.0))
  68. * (high - low) + low;
  69. return temp;
  70. }
  71. int main() {
  72. // Keep track of time
  73. jsw_timer timer;
  74. srand(time(0));
  75. PolygonalWireAntenna *pa = PolygonalWireAntenna::New();
  76. pa->SetNumberOfFrequencies(1);
  77. pa->SetFrequency(0, 540000);
  78. Real Depth = 370; // nominal depth
  79. Real Width = 0.14; // transmitter height
  80. Real Height = 0.70;// .14; //.014; // transmitter width
  81. pa->SetNumberOfPoints(5);
  82. /*
  83. pa->SetPoint(0, Vector3r( 0, 0, Depth));
  84. pa->SetPoint(1, Vector3r( 0, 0, Depth+Height));
  85. pa->SetPoint(2, Vector3r( 0, Width, Depth+Height));
  86. pa->SetPoint(3, Vector3r( 0, Width, Depth));
  87. pa->SetPoint(4, Vector3r( 0, 0, Depth));
  88. */
  89. pa->SetPoint(0, Vector3r( -Width/2., -Height/2., Depth));
  90. pa->SetPoint(1, Vector3r( Width/2., -Height/2., Depth));
  91. pa->SetPoint(2, Vector3r( Width/2., Height/2., Depth));
  92. pa->SetPoint(3, Vector3r( -Width/2., Height/2., Depth));
  93. pa->SetPoint(4, Vector3r( -Width/2., -Height/2., Depth));
  94. pa->SetCurrent(1.);
  95. pa->SetNumberOfTurns(6);
  96. //Vector3r rp = Vector3r::Random(3);
  97. //rp << 150., 10, 0.;
  98. //rp << -27.1456, 15.2350, -1e-3;
  99. //rp << randDouble(-35,35), randDouble(-35,35), randDouble(-35,35);
  100. //rp << 3.22806, -13.1548, 14.9695;
  101. //rp.setRandom(3);
  102. //std::cout << "rp " << rp.transpose() << std::endl;
  103. //pa->ApproximateWithElectricDipoles(rp);
  104. // Define model
  105. Real Sigma = 1.0/20. ; // .05;
  106. VectorXcr sigma(2);
  107. sigma << Complex(0.,0), Complex(Sigma,0);
  108. VectorXr thick(1);
  109. thick << 10;
  110. LayeredEarthEM *earth = LayeredEarthEM::New();
  111. earth->SetNumberOfLayers(2);
  112. earth->SetLayerConductivity(sigma);
  113. //earth->SetLayerThickness(thick);
  114. // Receivers
  115. ReceiverPoints *receivers = ReceiverPoints::New();
  116. Vector3r loc;
  117. Real ox = -5.*Width - .003373;
  118. Real oy = -3.*Height - .003373;
  119. Real oz = Depth - Height/2. - .003373;
  120. int nx = 120; // 60;
  121. int ny = 180; // 50;
  122. int nz = 100; // 40;
  123. Real hx = 11.*Width/nx;
  124. Real hy = 7.*Height/ny;
  125. Real hz = 1.*Height/nz;
  126. receivers->SetNumberOfReceivers(nx*ny*nz);
  127. int ir = 0;
  128. for (int iz=0; iz<nz; ++iz) {
  129. for (int iy=0; iy<ny; ++iy) {
  130. for (int ix=0; ix<nx; ++ix) {
  131. loc << ox+ix*hx, oy+iy*hy, oz+iz*hz;
  132. receivers->SetLocation(ir, loc);
  133. ++ ir;
  134. }
  135. }
  136. }
  137. // EmEarth
  138. EMEarth1D *EmEarth = EMEarth1D::New();
  139. //EmEarth->AttachWireAntenna(wire);
  140. EmEarth->AttachWireAntenna(pa);
  141. EmEarth->AttachLayeredEarthEM(earth);
  142. EmEarth->AttachReceiverPoints(receivers);
  143. EmEarth->SetFieldsToCalculate(E);
  144. //EmEarth->SetHankelTransformMethod(GAUSSIANQUADRATURE);
  145. EmEarth->SetHankelTransformMethod(ANDERSON801);
  146. // Do calculation
  147. timer.begin();
  148. EmEarth->CalculateWireAntennaFields();
  149. Real paTime = timer.end();
  150. std::cout << "Polygonal wire antennae time: " << paTime << "\n";
  151. //EmEarth->AttachWireAntenna(wire);
  152. //timer.begin();
  153. //EmEarth->CalculateWireAntennaFields();
  154. //Real waTime = timer.end();
  155. //std::cout << "Fixed wire antennae time: " << waTime << "\n";
  156. /*
  157. depth = depth2;
  158. std::fstream real("reale_lay.dat", std::ios::out);
  159. std::fstream imag("image_lay.dat", std::ios::out);
  160. for (int iz=0; iz<nz; ++iz) {
  161. Vector3cr temp = receivers->GetEfield(0,iz);
  162. real << ox << "\t" << oy << "\t" << depth << "\t"
  163. << temp(0).real() << "\t" << temp(1).real()
  164. << "\t" << temp(2).real() << std::endl;
  165. imag << ox << "\t" << oy << "\t" << depth << "\t"
  166. << std::imag(temp(0)) << "\t" << std::imag(temp(1))
  167. << "\t" << std::imag(temp(2)) << std::endl;
  168. depth += dx;
  169. }
  170. real.close();
  171. imag.close();
  172. */
  173. //wire->Delete();
  174. #if LEMMAUSEVTK
  175. // Set Coordinates
  176. vtkDoubleArray *xCoords = vtkDoubleArray::New();
  177. xCoords->InsertNextValue(ox-hx/2.);
  178. double xm1 = ox-hx/2.;
  179. for (int ix=0; ix<nx; ix++) {
  180. xCoords->InsertNextValue(xm1 + hx);
  181. xm1 += hx;
  182. }
  183. vtkDoubleArray *yCoords = vtkDoubleArray::New();
  184. yCoords->InsertNextValue(oy-hy/2.);
  185. double ym1 = oy-hy/2.;
  186. for (int iy=0; iy<ny; iy++) {
  187. yCoords->InsertNextValue(ym1 + hy);
  188. ym1 += hy;
  189. }
  190. vtkDoubleArray *zCoords = vtkDoubleArray::New();
  191. zCoords->InsertNextValue(oz-hz/2.);
  192. double zm1 = oz-hz/2.;
  193. for (int iz=0; iz<nz; iz++) {
  194. zCoords->InsertNextValue(zm1 + hz);
  195. zm1 += hz;
  196. }
  197. vtkDoubleArray *EReal = vtkDoubleArray::New();
  198. vtkDoubleArray *EImag = vtkDoubleArray::New();
  199. vtkDoubleArray *Watts = vtkDoubleArray::New();
  200. EReal->SetNumberOfComponents(3);
  201. EImag->SetNumberOfComponents(3);
  202. Watts->SetNumberOfComponents(1);
  203. ir = 0;
  204. Real WattsTotal(0);
  205. Real WattsInterior(0);
  206. for (int iz=0; iz<nz; ++iz) {
  207. for (int iy=0; iy<ny; ++iy) {
  208. for (int ix=0; ix<nx; ++ix) {
  209. //sigmaArray->InsertTuple1(i, sigma[ix][iy][iz] );
  210. Vector3cr E = receivers->GetEfield(0, ir);
  211. EReal-> InsertTuple3(ir, real(E(0)), real(E(1)), real(E(2)));
  212. EImag-> InsertTuple3(ir, imag(E(0)), imag(E(1)), imag(E(2)));
  213. //std::cout << std::abs(ox+ix*hx) << "\t" << Width/2. << endl; // && std::abs(oy+iy*hy) > Height/2. ) { // && std::abs(oz+iz*hz - Depth) > Width/2. ) {
  214. //if ( std::abs( ox+ix*hx ) < Width/2. && std::abs(oy+iy*hy) < Height/2. && std::abs(oz+iz*hz - Depth) < Width/2. ) {
  215. if ( std::sqrt( std::pow(ox+ix*hx,2) + std::pow(oz+iz*hz - Depth, 2) ) < .085 && std::abs(oy+iy*hy) < Height/2. ) {
  216. Watts-> InsertTuple1(ir, 1e-20 );
  217. WattsInterior += .5* (( pow((std::abs(E(0)) + std::abs(E(1)) + std::abs(E(2))), 2)*Sigma)*hx*hy*hz );
  218. } else {
  219. Watts-> InsertTuple1(ir, .5* (pow( (std::abs(E(0)) + std::abs(E(1)) + std::abs(E(2))), 2)*Sigma)*hx*hy*hz );
  220. //Watts-> InsertTuple1(ir, 1e-20 );
  221. WattsTotal += .5* (( pow((std::abs(E(0)) + std::abs(E(1)) + std::abs(E(2))), 2)*Sigma)*hx*hy*hz );
  222. }
  223. ++ ir;
  224. }
  225. }
  226. }
  227. std::cout << "Total Power: " << Sigma << "\t" << WattsTotal << "\t" << WattsInterior << endl;
  228. EReal->SetName("E_real");
  229. EImag->SetName("E_imag");
  230. Watts->SetName("Power");
  231. vtkRectilinearGrid *rgrid = vtkRectilinearGrid::New();
  232. rgrid->SetDimensions(nx+1,ny+1,nz+1);
  233. rgrid->SetXCoordinates(xCoords);
  234. rgrid->SetYCoordinates(yCoords);
  235. rgrid->SetZCoordinates(zCoords);
  236. rgrid->GetCellData()->AddArray(EReal);
  237. rgrid->GetCellData()->AddArray(EImag);
  238. rgrid->GetCellData()->AddArray(Watts);
  239. //rgrid->Update();
  240. vtkXMLRectilinearGridWriter *gridWrite = vtkXMLRectilinearGridWriter::New();
  241. gridWrite->SetInputData(rgrid);
  242. gridWrite->SetFileName("ors.vtr");
  243. gridWrite->Write();
  244. //gridWrite->Update();
  245. #endif
  246. EmEarth->Delete();
  247. receivers->Delete();
  248. earth->Delete();
  249. #if LEMMAUSEVTKX
  250. // Create the usual rendering stuff.
  251. vtkRenderer *renderer = vtkRenderer::New();
  252. vtkRenderWindow *renWin = vtkRenderWindow::New();
  253. vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
  254. std::cout << "wire antennae approximating " << std::endl;
  255. loc << 0, .5*Width, Depth+.5*Height;
  256. pa->ApproximateWithElectricDipoles(loc);
  257. std::cout << "Wire approximated with " << pa->GetNumberOfDipoles() << std::endl;
  258. vtkActor **pdipActors = new vtkActor*[pa->GetNumberOfDipoles()];
  259. for (int id=0; id<pa->GetNumberOfDipoles(); ++id) {
  260. pdipActors[id] = pa->GetVtkActor(id);
  261. renderer->AddActor(pdipActors[id]);
  262. }
  263. /*
  264. vtkActor **dipActors = new vtkActor*[wire->GetNumberOfDipoles()];
  265. for (int id=0; id<wire->GetNumberOfDipoles(); ++id) {
  266. dipActors[id] = wire->GetVtkActor(id);
  267. renderer->AddActor(dipActors[id]);
  268. }
  269. */
  270. renderer->SetBackground(1,1,1);
  271. // Render the window
  272. renWin->AddRenderer(renderer);
  273. renWin->SetWindowName("Wire antennae");
  274. iren->SetRenderWindow(renWin);
  275. iren->Initialize();
  276. iren->Start();
  277. iren->Render();
  278. #if 0
  279. cout << "Enter File name?: ";
  280. std::string pngName;
  281. std::cin >> pngName;
  282. vtkPNGWriter *pngwrite = vtkPNGWriter::New();
  283. vtkRenderLargeImage *renlarge = vtkRenderLargeImage::New();
  284. renlarge->SetInput(renderer);
  285. renlarge->SetMagnification(2);
  286. pngwrite->SetInputConnection(renlarge->GetOutputPort());
  287. pngName.append(".png");
  288. pngwrite->SetFileName(pngName.c_str());
  289. pngwrite->Write();
  290. #endif
  291. #endif // ----- not LEMMA_USE_VTK -----
  292. //std::cout << *pa << std::endl;
  293. //pa->Delete();
  294. return 0;
  295. }