Lemma is an Electromagnetics API
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

DipoleSource.cpp 74KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. @version $Id: dipolesource.cpp 203 2015-01-09 21:19:04Z tirons $
  10. **/
  11. #include "DipoleSource.h"
  12. #include "KernelEM1DManager.h"
  13. //#include "GroundedElectricDipole.h"
  14. //#include "UngroundedElectricDipole.h"
  15. //#include "MagneticDipole.h"
  16. #include "FieldPoints.h"
  17. #include "HankelTransform.h"
  18. namespace Lemma {
  19. // ==================== FRIENDS ======================
  20. std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) {
  21. stream << ob.Serialize() << "\n---\n"; // End of doc ---
  22. return stream;
  23. }
  24. // ==================== LIFECYCLE ======================
  25. DipoleSource::DipoleSource( const ctor_key& ) : LemmaObject( ),
  26. Type(NOSOURCETYPE),
  27. irec(-1),
  28. Phase(0),
  29. Moment(1),
  30. KernelManager(nullptr),
  31. Receivers(nullptr),
  32. Earth(nullptr)
  33. {
  34. this->Location.setZero();
  35. this->Phat.setZero();
  36. }
  37. DipoleSource::~DipoleSource() {
  38. }
  39. std::shared_ptr<DipoleSource> DipoleSource::NewSP() {
  40. return std::make_shared<DipoleSource> ( ctor_key() );
  41. }
  42. YAML::Node DipoleSource::Serialize() const {
  43. YAML::Node node = DipoleSource::Serialize();
  44. node.SetTag( GetName() );
  45. /*
  46. node["LayerConductivity"] = LayerConductivity;
  47. node["LayerSusceptibility"] = LayerSusceptibility;
  48. node["LayerLowFreqSusceptibility"] = LayerLowFreqSusceptibility;
  49. node["LayerHighFreqSusceptibility"] = LayerHighFreqSusceptibility;
  50. node["LayerTauSusceptibility"] = LayerTauSusceptibility;
  51. node["LayerBreathSusceptibility"] = LayerBreathSusceptibility;
  52. node["LayerPermitivity"] = LayerPermitivity;
  53. node["LayerLowFreqPermitivity"] = LayerLowFreqPermitivity;
  54. node["LayerHighFreqPermitivity"] = LayerHighFreqPermitivity;
  55. node["LayerTauPermitivity"] = LayerTauPermitivity;
  56. node["LayerBreathPermitivity"] = LayerBreathPermitivity;
  57. */
  58. return node;
  59. }
  60. std::shared_ptr<DipoleSource> DipoleSource::Clone() {
  61. auto Obj = DipoleSource::NewSP();
  62. // copy
  63. Obj->Type = Type;
  64. Obj->irec = irec;
  65. Obj->lays = lays;
  66. Obj->layr = layr;
  67. Obj->Phase = Phase;
  68. Obj->Moment = Moment;
  69. Obj->xxp = xxp;
  70. Obj->yyp = yyp;
  71. Obj->rho = rho;
  72. Obj->sp = sp;
  73. Obj->cp = cp;
  74. Obj->scp = scp;
  75. Obj->sps = sps;
  76. Obj->cps = cps;
  77. Obj->c2p = c2p;
  78. Obj->FieldsToCalculate = FieldsToCalculate;
  79. Obj->f = f;
  80. Obj->ik = ik;
  81. Obj->Location = Location;
  82. Obj->Phat = Phat;
  83. Obj->Freqs = Freqs;
  84. return Obj;
  85. }
  86. // ==================== ACCESS ======================
  87. void DipoleSource::SetLocation(const Vector3r &posin) {
  88. this->Location = posin;
  89. }
  90. void DipoleSource::SetLocation(const Real &xp, const Real &yp,
  91. const Real &zp) {
  92. this->Location = Vector3r(xp, yp, zp);
  93. }
  94. void DipoleSource::SetPhase(const Real &phase) {
  95. this->Phase = phase;
  96. }
  97. void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) {
  98. static bool called = false;
  99. if (!called) {
  100. std::cerr << "\n\n=================================================================\n"
  101. << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n"
  102. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  103. << "This method will be removed in future versions of Lemma"
  104. << "\n=================================================================\n";
  105. called = true;
  106. }
  107. // Polarity = pol;
  108. // switch (Polarity) {
  109. // case POSITIVE:
  110. // Moment = std::abs(Moment);
  111. // break;
  112. // case NEGATIVE:
  113. // Moment = -std::abs(Moment);
  114. // break;
  115. // default:
  116. // throw NonValidDipolePolarity();
  117. // };
  118. }
  119. void DipoleSource::SetType(const DipoleSourceType & stype) {
  120. switch (stype) {
  121. case (GROUNDEDELECTRICDIPOLE):
  122. this->Type = stype;
  123. break;
  124. case (UNGROUNDEDELECTRICDIPOLE):
  125. this->Type = stype;
  126. break;
  127. case (MAGNETICDIPOLE):
  128. this->Type = stype;
  129. break;
  130. default:
  131. throw NonValidDipoleTypeAssignment();
  132. }
  133. }
  134. void DipoleSource::SetPolarisation(const Vector3r& pol) {
  135. this->Phat = pol / pol.norm();
  136. }
  137. void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) {
  138. Vector3r pol = (VectorXr(3) << x, y, z).finished();
  139. this->Phat = pol / pol.norm();
  140. }
  141. Vector3r DipoleSource::GetPolarisation() {
  142. return Phat;
  143. }
  144. DipoleSourceType DipoleSource::GetType() {
  145. return Type;
  146. }
  147. void DipoleSource::SetPolarisation(const
  148. DipoleSourcePolarisation &pol) {
  149. static bool called = false;
  150. if (!called) {
  151. std::cout << "\n\n========================================================================================\n"
  152. << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n"
  153. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  154. << "This method will be removed in future versions of Lemma"
  155. << "\n========================================================================================\n";
  156. called = true;
  157. }
  158. switch (pol) {
  159. case (XPOLARISATION):
  160. //this->Polarisation = pol;
  161. this->Phat = (VectorXr(3) << 1, 0, 0).finished();
  162. break;
  163. case (YPOLARISATION):
  164. //this->Polarisation = pol;
  165. this->Phat = (VectorXr(3) << 0, 1, 0).finished();
  166. break;
  167. case (ZPOLARISATION):
  168. //this->Polarisation = pol;
  169. this->Phat = (VectorXr(3) << 0, 0, 1).finished();
  170. break;
  171. default:
  172. throw NonValidDipolePolarisationAssignment();
  173. }
  174. }
  175. void DipoleSource::SetMoment(const Real &moment) {
  176. this->Moment = moment;
  177. }
  178. // ==================== OPERATIONS =====================
  179. void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> ReceiversIn, const int& irecin,
  180. std::shared_ptr<LayeredEarthEM> EarthIn ) {
  181. if (Receivers != ReceiversIn) {
  182. Receivers = ReceiversIn;
  183. }
  184. if (Earth != EarthIn) {
  185. Earth = EarthIn;
  186. }
  187. if (irecin != irec) {
  188. irec = irecin;
  189. }
  190. if (FieldsToCalculate != Fields) {
  191. FieldsToCalculate = Fields;
  192. }
  193. xxp = Receivers->GetLocation(irec)[0] - Location[0];
  194. yyp = Receivers->GetLocation(irec)[1] - Location[1];
  195. rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm();
  196. sp = yyp/rho;
  197. cp = xxp/rho;
  198. scp = sp*cp;
  199. sps = sp*sp;
  200. cps = cp*cp;
  201. c2p = cps-sps;
  202. f = VectorXcr::Zero(13);
  203. ik = VectorXi::Zero(13);
  204. lays = Earth->GetLayerAtThisDepth(Location[2]);
  205. layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]);
  206. KernelManager = KernelEM1DManager::NewSP();
  207. KernelManager->SetEarth(Earth);
  208. // alternative is to use weak_ptr here, this is deep and internal, and we are safe.
  209. KernelManager->SetDipoleSource( shared_from_this().get() , ifreq, Receivers->GetLocation(irec)[2]);
  210. kernelFreq = Freqs(ifreq); // this is never used
  211. ReSetKernels( ifreq, Fields, Receivers, irec, Earth );
  212. return;
  213. }
  214. // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably
  215. // not the most critical piece though
  216. void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> Receivers, const int& irec,
  217. std::shared_ptr<LayeredEarthEM> Earth ) {
  218. Vector3r Pol = Phat;
  219. switch (Type) {
  220. case (GROUNDEDELECTRICDIPOLE):
  221. if (std::abs(Pol[2]) > 0) { // z dipole
  222. switch(FieldsToCalculate) {
  223. case E:
  224. if (lays == 0 && layr == 0) {
  225. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  226. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  227. } else if (lays == 0 && layr > 0) {
  228. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  229. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  230. } else if (lays > 0 && layr == 0) {
  231. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  232. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  233. } else {
  234. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  235. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  236. }
  237. break;
  238. case H:
  239. if (lays == 0 && layr == 0) {
  240. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  241. } else if (lays == 0 && layr > 0) {
  242. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  243. } else if (lays > 0 && layr == 0) {
  244. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  245. } else {
  246. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  247. }
  248. break;
  249. case BOTH:
  250. if ( lays == 0 && layr == 0) {
  251. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  252. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  253. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  254. } else if (lays == 0 && layr > 0) {
  255. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  256. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  257. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  258. } else if (lays > 0 && layr == 0) {
  259. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  260. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  261. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  262. } else {
  263. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  264. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  265. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  266. }
  267. }
  268. }
  269. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  270. switch(FieldsToCalculate) {
  271. case E:
  272. if ( lays == 0 && layr == 0) {
  273. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  274. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  275. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  276. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  277. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  278. } else if (lays == 0 && layr > 0) {
  279. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  280. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  281. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  282. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  283. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  284. } else if (lays > 0 && layr == 0) {
  285. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  286. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  287. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  288. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  289. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  290. } else {
  291. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  292. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  293. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  294. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  295. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  296. }
  297. break;
  298. case H:
  299. if (lays == 0 && layr == 0) {
  300. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  301. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  302. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  303. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  304. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  305. } else if (lays == 0 && layr > 0) {
  306. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  307. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  308. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  309. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  310. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  311. } else if (lays > 0 && layr == 0) {
  312. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  313. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  314. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  315. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  316. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  317. } else {
  318. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  319. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  320. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  321. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  322. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  323. }
  324. break;
  325. case BOTH:
  326. if (lays == 0 && layr == 0) {
  327. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  328. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  329. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  330. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  331. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  332. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  333. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  334. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  335. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  336. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  337. } else if (lays == 0 && layr > 0) {
  338. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  339. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  340. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  341. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  342. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  343. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  344. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  345. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  346. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  347. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  348. } else if (lays > 0 && layr == 0) {
  349. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  350. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  351. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  352. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  353. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  354. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  355. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  356. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  357. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  358. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  359. } else {
  360. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  361. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  362. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  363. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  364. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  365. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  366. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  367. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  368. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  369. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  370. }
  371. break;
  372. }
  373. }
  374. break;
  375. case (UNGROUNDEDELECTRICDIPOLE):
  376. if (std::abs(Pol[2]) > 0) { // z dipole
  377. switch(FieldsToCalculate) {
  378. case E:
  379. if (lays == 0 && layr == 0) {
  380. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  381. } else if (lays == 0 && layr > 0) {
  382. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  383. } else if (lays > 0 && layr == 0) {
  384. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  385. } else {
  386. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  387. }
  388. break;
  389. case H:
  390. if (lays == 0 && layr == 0) {
  391. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  392. } else if (lays == 0 && layr > 0) {
  393. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  394. } else if (lays > 0 && layr == 0) {
  395. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  396. } else {
  397. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  398. }
  399. break;
  400. case BOTH:
  401. if ( lays == 0 && layr == 0) {
  402. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  403. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  404. } else if (lays == 0 && layr > 0) {
  405. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  406. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  407. } else if (lays > 0 && layr == 0) {
  408. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  409. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  410. } else {
  411. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  412. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  413. }
  414. }
  415. }
  416. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  417. switch(FieldsToCalculate) {
  418. case E:
  419. if ( lays == 0 && layr == 0) {
  420. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  421. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  422. } else if (lays == 0 && layr > 0) {
  423. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  424. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  425. } else if (lays > 0 && layr == 0) {
  426. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  427. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  428. } else {
  429. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  430. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  431. }
  432. break;
  433. case H:
  434. if (lays == 0 && layr == 0) {
  435. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  436. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  437. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  438. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  439. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  440. } else if (lays == 0 && layr > 0) {
  441. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  442. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  443. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  444. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  445. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  446. } else if (lays > 0 && layr == 0) {
  447. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  448. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  449. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  450. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  451. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  452. } else {
  453. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  454. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  455. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  456. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  457. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  458. }
  459. break;
  460. case BOTH:
  461. if (lays == 0 && layr == 0) {
  462. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  463. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  464. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  465. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  466. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  467. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  468. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  469. } else if (lays == 0 && layr > 0) {
  470. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  471. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  472. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  473. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  474. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  475. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  476. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  477. } else if (lays > 0 && layr == 0) {
  478. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  479. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  480. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  481. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  482. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  483. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  484. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  485. } else {
  486. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  487. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  488. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  489. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  490. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  491. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  492. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  493. }
  494. break;
  495. }
  496. }
  497. break;
  498. case (MAGNETICDIPOLE):
  499. if (std::abs(Pol[2]) > 0) { // z dipole
  500. switch (FieldsToCalculate) {
  501. case E:
  502. if (lays == 0 && layr == 0) {
  503. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  504. } else if (lays == 0 && layr > 0) {
  505. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  506. } else if (lays > 0 && layr == 0) {
  507. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  508. } else {
  509. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  510. }
  511. break;
  512. case H:
  513. if (lays == 0 && layr == 0) {
  514. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  515. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  516. } else if (lays == 0 && layr > 0) {
  517. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  518. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  519. } else if (lays > 0 && layr == 0) {
  520. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  521. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  522. } else {
  523. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  524. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  525. }
  526. break;
  527. case BOTH:
  528. if (lays == 0 && layr == 0) {
  529. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  530. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  531. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  532. } else if (lays == 0 && layr > 0) {
  533. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  534. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  535. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  536. } else if (lays > 0 && layr == 0) {
  537. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  538. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  539. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  540. } else {
  541. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  542. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  543. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  544. }
  545. }
  546. }
  547. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  548. switch (FieldsToCalculate) {
  549. case E:
  550. if ( lays == 0 && layr == 0) {
  551. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  552. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  553. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  554. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  555. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  556. } else if (lays == 0 && layr > 0) {
  557. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  558. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  559. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  560. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  561. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  562. } else if (lays > 0 && layr == 0) {
  563. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INAIR>( );
  564. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INAIR>( );
  565. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INAIR>( );
  566. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INAIR>( );
  567. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INAIR>( );
  568. } else {
  569. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  570. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  571. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  572. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  573. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  574. }
  575. break;
  576. case H:
  577. if ( lays == 0 && layr == 0) {
  578. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  579. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  580. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  581. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  582. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  583. } else if (lays == 0 && layr > 0) {
  584. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  585. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  586. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  587. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  588. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  589. } else if (lays > 0 && layr == 0) {
  590. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INAIR>( );
  591. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INAIR>( );
  592. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INAIR>( );
  593. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INAIR>( );
  594. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INAIR>( );
  595. } else {
  596. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  597. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  598. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  599. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  600. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  601. }
  602. break;
  603. case BOTH:
  604. if ( lays == 0 && layr == 0) {
  605. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  606. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  607. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  608. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  609. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  610. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  611. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  612. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  613. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  614. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  615. } else if (lays == 0 && layr > 0) {
  616. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  617. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  618. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  619. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  620. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  621. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  622. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  623. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  624. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  625. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  626. } else {
  627. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  628. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  629. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  630. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  631. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  632. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  633. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  634. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  635. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  636. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  637. }
  638. break;
  639. }
  640. }
  641. break;
  642. default:
  643. std::cerr << "Dipole type incorrect, in dipolesource.cpp";
  644. exit(EXIT_FAILURE);
  645. }
  646. }
  647. void DipoleSource::UpdateFields( const int& ifreq, HankelTransform* Hankel, const Real& wavef) {
  648. Vector3r Pol = Phat;
  649. switch (Type) {
  650. case (GROUNDEDELECTRICDIPOLE):
  651. //Hankel->ComputeRelated(rho, KernelManager);
  652. if (std::abs(Pol[2]) > 0) { // z dipole
  653. switch(FieldsToCalculate) {
  654. case E:
  655. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  656. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  657. std::cout.precision(12);
  658. this->Receivers->AppendEfield(ifreq, irec,
  659. -Pol[2]*QPI*cp*f(10)*Moment,
  660. -Pol[2]*QPI*sp*f(10)*Moment,
  661. Pol[2]*QPI*f(11)*Moment);
  662. break;
  663. case H:
  664. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  665. this->Receivers->AppendHfield(ifreq, irec,
  666. -Pol[2]*QPI*sp*f(12)*Moment,
  667. Pol[2]*QPI*cp*f(12)*Moment,
  668. 0. );
  669. break;
  670. case BOTH:
  671. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  672. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  673. this->Receivers->AppendEfield(ifreq, irec,
  674. -Pol[2]*QPI*cp*f(10)*Moment,
  675. -Pol[2]*QPI*sp*f(10)*Moment,
  676. Pol[2]*QPI*f(11)*Moment );
  677. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  678. this->Receivers->AppendHfield(ifreq, irec,
  679. -Pol[2]*QPI*sp*f(12)*Moment,
  680. Pol[2]*QPI*cp*f(12)*Moment,
  681. 0. );
  682. } // Fields to calculate Z polarity Electric dipole
  683. }
  684. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  685. switch(FieldsToCalculate) {
  686. case E:
  687. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  688. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  689. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  690. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  691. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  692. if (std::abs(Pol[1]) > 0) {
  693. this->Receivers->AppendEfield(ifreq, irec,
  694. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  695. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  696. Pol[1]*QPI*sp*f(4)*Moment);
  697. }
  698. if (std::abs(Pol[0]) > 0) {
  699. this->Receivers->AppendEfield(ifreq, irec,
  700. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  701. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  702. Pol[0]*Moment*QPI*cp*f(4) );
  703. }
  704. break;
  705. case H:
  706. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  707. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  708. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  709. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  710. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  711. if (std::abs(Pol[1]) > 0) {
  712. this->Receivers->AppendHfield(ifreq, irec,
  713. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  714. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  715. -Pol[1]*QPI*cp*f(9)*Moment );
  716. }
  717. if (std::abs(Pol[0]) > 0) {
  718. this->Receivers->AppendHfield(ifreq, irec,
  719. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  720. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  721. Pol[0]*Moment*QPI*sp*f(9) );
  722. }
  723. break;
  724. case BOTH:
  725. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  726. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  727. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  728. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  729. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  730. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  731. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  732. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  733. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  734. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  735. if (std::abs(Pol[1]) > 0) {
  736. this->Receivers->AppendEfield(ifreq, irec,
  737. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  738. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  739. Pol[1]*QPI*sp*f(4)*Moment);
  740. this->Receivers->AppendHfield(ifreq, irec,
  741. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  742. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  743. -Pol[1]*QPI*cp*f(9)*Moment );
  744. }
  745. if (std::abs(Pol[0]) > 0) {
  746. this->Receivers->AppendEfield(ifreq, irec,
  747. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  748. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  749. Pol[0]*Moment*QPI*cp*f(4) );
  750. this->Receivers->AppendHfield(ifreq, irec,
  751. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  752. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  753. Pol[0]*Moment*QPI*sp*f(9) );
  754. }
  755. break;
  756. }
  757. }
  758. break; // GROUNDEDELECTRICDIPOLE
  759. case UNGROUNDEDELECTRICDIPOLE:
  760. //Hankel->ComputeRelated(rho, KernelManager);
  761. if (std::abs(Pol[2]) > 0) { // z dipole
  762. switch(FieldsToCalculate) {
  763. case E:
  764. f(10) = 0;
  765. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  766. this->Receivers->AppendEfield(ifreq, irec,
  767. -Pol[2]*QPI*cp*f(10)*Moment,
  768. -Pol[2]*QPI*sp*f(10)*Moment,
  769. Pol[2]*QPI*f(11)*Moment);
  770. break;
  771. case H:
  772. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  773. this->Receivers->AppendHfield(ifreq, irec,
  774. -Pol[2]*QPI*sp*f(12)*Moment,
  775. Pol[2]*QPI*cp*f(12)*Moment,
  776. 0. );
  777. break;
  778. case BOTH:
  779. f(10) = 0;
  780. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  781. this->Receivers->AppendEfield(ifreq, irec,
  782. -Pol[2]*QPI*cp*f(10)*Moment,
  783. -Pol[2]*QPI*sp*f(10)*Moment,
  784. Pol[2]*QPI*f(11)*Moment );
  785. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  786. this->Receivers->AppendHfield(ifreq, irec,
  787. -Pol[2]*QPI*sp*f(12)*Moment,
  788. Pol[2]*QPI*cp*f(12)*Moment,
  789. 0. );
  790. } // Fields to calculate Z polarity Electric dipole
  791. }
  792. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  793. switch(FieldsToCalculate) {
  794. case E:
  795. f(0) = 0;
  796. f(1) = 0;
  797. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  798. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  799. f(4) = 0;
  800. if (std::abs(Pol[1]) > 0) {
  801. this->Receivers->AppendEfield(ifreq, irec,
  802. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  803. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  804. Pol[1]*QPI*sp*f(4)*Moment);
  805. }
  806. if (std::abs(Pol[0]) > 0) {
  807. this->Receivers->AppendEfield(ifreq, irec,
  808. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  809. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  810. Pol[0]*Moment*QPI*cp*f(4) );
  811. }
  812. break;
  813. case H:
  814. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  815. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  816. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  817. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  818. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  819. if (std::abs(Pol[1]) > 0) {
  820. this->Receivers->AppendHfield(ifreq, irec,
  821. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  822. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  823. -Pol[1]*QPI*cp*f(9)*Moment );
  824. // Analytic whole space solution could go here
  825. }
  826. if (std::abs(Pol[0]) > 0) {
  827. this->Receivers->AppendHfield(ifreq, irec,
  828. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  829. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  830. Pol[0]*Moment*QPI*sp*f(9) );
  831. // Analytic whole space solution
  832. }
  833. break;
  834. case BOTH:
  835. f(0) = 0;
  836. f(1) = 0;
  837. f(4) = 0;
  838. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(0)->GetZs();
  839. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(1)->GetZs();
  840. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  841. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  842. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  843. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  844. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  845. if (std::abs(Pol[1]) > 0) {
  846. this->Receivers->AppendEfield(ifreq, irec,
  847. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  848. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  849. Pol[1]*QPI*sp*f(4)*Moment);
  850. this->Receivers->AppendHfield(ifreq, irec,
  851. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  852. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  853. -Pol[1]*QPI*cp*f(9)*Moment );
  854. }
  855. if (std::abs(Pol[0]) > 0) {
  856. this->Receivers->AppendEfield(ifreq, irec,
  857. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  858. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  859. Pol[0]*Moment*QPI*cp*f(4) );
  860. this->Receivers->AppendHfield(ifreq, irec,
  861. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  862. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  863. Pol[0]*Moment*QPI*sp*f(9) );
  864. }
  865. break;
  866. }
  867. }
  868. break; // UNGROUNDEDELECTRICDIPOLE
  869. case MAGNETICDIPOLE:
  870. //Hankel->ComputeRelated(rho, KernelManager);
  871. if (std::abs(Pol[2]) > 0) { // z dipole
  872. switch(FieldsToCalculate) {
  873. case E:
  874. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  875. this->Receivers->AppendEfield(ifreq, irec,
  876. Pol[2]*Moment*QPI*sp*f(12),
  877. -Pol[2]*Moment*QPI*cp*f(12),
  878. 0);
  879. break;
  880. case H:
  881. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  882. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  883. this->Receivers->AppendHfield(ifreq, irec,
  884. -Pol[2]*Moment*QPI*cp*f(10),
  885. -Pol[2]*Moment*QPI*sp*f(10),
  886. Pol[2]*Moment*QPI*f(11) );
  887. break;
  888. case BOTH:
  889. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  890. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  891. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  892. this->Receivers->AppendEfield(ifreq, irec,
  893. Pol[2]*Moment*QPI*sp*f(12),
  894. -Pol[2]*Moment*QPI*cp*f(12),
  895. 0);
  896. this->Receivers->AppendHfield(ifreq, irec,
  897. -Pol[2]*Moment*QPI*cp*f(10),
  898. -Pol[2]*Moment*QPI*sp*f(10),
  899. Pol[2]*Moment*QPI*f(11) );
  900. break;
  901. }
  902. }
  903. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  904. switch (FieldsToCalculate) {
  905. case E:
  906. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  907. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  908. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  909. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  910. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  911. if (std::abs(Pol[0]) > 0) {
  912. this->Receivers->AppendEfield(ifreq, irec,
  913. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  914. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  915. Pol[0]*Moment*QPI*sp*f(9));
  916. }
  917. if (std::abs(Pol[1]) > 0) {
  918. this->Receivers->AppendEfield(ifreq, irec,
  919. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  920. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  921. -Pol[1]*Moment*QPI*cp*f(9) );
  922. }
  923. break;
  924. case H:
  925. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  926. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  927. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  928. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  929. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  930. if (std::abs(Pol[0]) > 0) {
  931. this->Receivers->AppendHfield(ifreq, irec,
  932. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  933. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  934. Pol[0]*Moment*QPI*cp*f(4) );
  935. }
  936. if (std::abs(Pol[1]) > 0) {
  937. this->Receivers->AppendHfield(ifreq, irec,
  938. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  939. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  940. Pol[1]*Moment*QPI*sp*f(4));
  941. }
  942. break;
  943. case BOTH:
  944. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  945. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  946. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  947. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  948. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  949. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  950. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  951. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  952. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  953. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  954. if (std::abs(Pol[0]) > 0) {
  955. this->Receivers->AppendEfield(ifreq, irec,
  956. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  957. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  958. Pol[0]*Moment*QPI*sp*f(9));
  959. this->Receivers->AppendHfield(ifreq, irec,
  960. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  961. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  962. Pol[0]*Moment*QPI*cp*f(4) );
  963. }
  964. if (std::abs(Pol[1]) > 0) {
  965. this->Receivers->AppendEfield(ifreq, irec,
  966. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  967. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  968. -Pol[1]*Moment*QPI*cp*f(9) );
  969. this->Receivers->AppendHfield(ifreq, irec,
  970. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  971. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  972. Pol[1]*Moment*QPI*sp*f(4));
  973. }
  974. break;
  975. }
  976. }
  977. break;
  978. case NOSOURCETYPE:
  979. throw NonValidDipoleType(this);
  980. } // Source Type Switch
  981. }
  982. // ==================== INQUIRY ======================
  983. std::shared_ptr<KernelEM1DManager> DipoleSource::GetKernelManager() {
  984. return KernelManager;
  985. }
  986. Vector3r DipoleSource::GetLocation() {
  987. return this->Location;
  988. }
  989. #ifdef LEMMAUSEVTK
  990. vtkActor* DipoleSource::GetVtkActor() {
  991. vtkActor* vActor;
  992. vtkLineSource* vLineSource;
  993. vtkTubeFilter* vTube;
  994. vtkPolyDataMapper* vMapper;
  995. vtkRegularPolygonSource* vCircleSource;
  996. vLineSource = vtkLineSource::New();
  997. vTube = vtkTubeFilter::New();
  998. vMapper = vtkPolyDataMapper::New();
  999. vCircleSource = vtkRegularPolygonSource::New();
  1000. VectorXr M0 = Location - .5*Moment*Phat;
  1001. VectorXr M1 = Location + .5*Moment*Phat;
  1002. vActor = vtkActor::New();
  1003. switch (Type) {
  1004. case GROUNDEDELECTRICDIPOLE:
  1005. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1006. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1007. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1008. vTube->SetRadius(.1 * std::abs(Moment));
  1009. vTube->SetNumberOfSides(6);
  1010. vTube->SetCapping(1);
  1011. vMapper->SetInputConnection(vTube->GetOutputPort());
  1012. vActor->SetMapper(vMapper);
  1013. vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1014. break;
  1015. case UNGROUNDEDELECTRICDIPOLE:
  1016. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1017. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1018. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1019. vTube->SetRadius(.1 * std::abs(Moment));
  1020. vTube->SetNumberOfSides(6);
  1021. vTube->SetCapping(1);
  1022. vMapper->SetInputConnection(vTube->GetOutputPort());
  1023. vActor->SetMapper(vMapper);
  1024. //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1025. vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX));
  1026. vActor->GetProperty()->SetOpacity(1.);
  1027. break;
  1028. case MAGNETICDIPOLE:
  1029. vCircleSource->SetCenter(Location(0), Location(1),
  1030. Location(2));
  1031. vCircleSource->SetNumberOfSides(360);
  1032. vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]);
  1033. vCircleSource->SetRadius(0.2); // .2 m radius
  1034. vCircleSource->SetGeneratePolygon(false);
  1035. vCircleSource->SetGeneratePolyline(true);
  1036. vCircleSource->Update();
  1037. vTube->SetInputConnection(vCircleSource->GetOutputPort());
  1038. //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)),
  1039. // (float)(*yCoords->GetTuple(ny))) / 100);
  1040. vTube->SetRadius(.1*std::abs(Moment));
  1041. vTube->SetNumberOfSides(6);
  1042. vTube->SetCapping(1);
  1043. vMapper->SetInputConnection(vTube->GetOutputPort());
  1044. vActor->SetMapper(vMapper);
  1045. vActor->GetProperty()->SetColor(.9,.2,.9);
  1046. break;
  1047. default:
  1048. throw NonValidDipoleType();
  1049. }
  1050. vLineSource->Delete();
  1051. vCircleSource->Delete();
  1052. vTube->Delete();
  1053. vMapper->Delete();
  1054. return vActor;
  1055. }
  1056. #endif
  1057. Real DipoleSource::GetLocation(const int& coordinate) {
  1058. switch (coordinate) {
  1059. case (0):
  1060. return this->Location.x();
  1061. break;
  1062. case (1):
  1063. return this->Location.y();
  1064. break;
  1065. case (2):
  1066. return this->Location.z();
  1067. break;
  1068. default:
  1069. throw NonValidLocationCoordinate( );
  1070. }
  1071. }
  1072. DipoleSourceType DipoleSource::GetDipoleSourceType() {
  1073. return this->Type;
  1074. }
  1075. //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() {
  1076. // return this->Polarisation;
  1077. //}
  1078. Real DipoleSource::GetAngularFrequency(const int& ifreq) {
  1079. return 2.*PI*this->Freqs(ifreq);
  1080. }
  1081. Real DipoleSource::GetFrequency(const int& ifreq) {
  1082. return this->Freqs(ifreq);
  1083. }
  1084. VectorXr DipoleSource::GetFrequencies( ) {
  1085. return this->Freqs;
  1086. }
  1087. Real DipoleSource::GetPhase() {
  1088. return this->Phase;
  1089. }
  1090. Real DipoleSource::GetMoment() {
  1091. return this->Moment;
  1092. }
  1093. int DipoleSource::GetNumberOfFrequencies() {
  1094. return this->Freqs.size();
  1095. }
  1096. void DipoleSource::SetNumberOfFrequencies(const int &nfreq){
  1097. Freqs.resize(nfreq);
  1098. Freqs.setZero();
  1099. }
  1100. void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){
  1101. Freqs(ifreq) = freq;
  1102. }
  1103. void DipoleSource::SetFrequencies(const VectorXr &freqs){
  1104. Freqs = freqs;
  1105. }
  1106. /////////////////////////////////////////////////////////////////
  1107. /////////////////////////////////////////////////////////////////
  1108. // Error classes
  1109. NullDipoleSource::NullDipoleSource() :
  1110. runtime_error( "NULL VALUED DIPOLE SOURCE") {}
  1111. NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) :
  1112. runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { }
  1113. NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) :
  1114. runtime_error( "NON VALID DIPOLE TYPE") {
  1115. std::cout << "Thrown by instance of "
  1116. << ptr->GetName() << std::endl;
  1117. }
  1118. NonValidDipoleType::NonValidDipoleType( ) :
  1119. runtime_error( "NON VALID DIPOLE TYPE") { }
  1120. NonValidDipolePolarity::NonValidDipolePolarity () :
  1121. runtime_error( "NON VALID DIPOLE POLARITY") { }
  1122. NonValidDipolePolarisation::NonValidDipolePolarisation( ) :
  1123. runtime_error( "NON VALID DIPOLE TYPE") { }
  1124. NonValidDipolePolarisationAssignment::
  1125. NonValidDipolePolarisationAssignment( ) :
  1126. runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { }
  1127. NonValidLocationCoordinate::NonValidLocationCoordinate( ) :
  1128. runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { }
  1129. }