Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

helper.h 7.5KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. /* This file is part of Lemma, a geophysical modelling and inversion API.
  2. * More information is available at http://lemmasoftware.org
  3. */
  4. /* This Source Code Form is subject to the terms of the Mozilla Public
  5. * License, v. 2.0. If a copy of the MPL was not distributed with this
  6. * file, You can obtain one at http://mozilla.org/MPL/2.0/.
  7. */
  8. /**
  9. * @file
  10. * @date 10/02/2014 02:49:55 PM
  11. * @version $Id$
  12. * @author Trevor Irons (ti)
  13. * @email Trevor.Irons@xri-geo.com
  14. * @copyright Copyright (c) 2014, XRI Geophysics, LLC
  15. * @copyright Copyright (c) 2014, Trevor Irons
  16. */
  17. #pragma once
  18. #ifndef HELPER_INC
  19. #define HELPER_INC
  20. #include "lemma.h"
  21. #ifdef HAVE_YAMLCPP
  22. #include "yaml-cpp/yaml.h"
  23. #endif
  24. namespace Lemma {
  25. template <class T>
  26. inline std::string to_string (const T& t) {
  27. std::stringstream ss;
  28. ss << t;
  29. return ss.str();
  30. }
  31. // handy little way to convert enums, saves repeated code useful for YAML serializing
  32. std::string enum2String(const FREQUENCYUNITS& Units);
  33. std::string enum2String(const TIMEUNITS& Units);
  34. std::string enum2String(const MAGUNITS& Units);
  35. std::string enum2String(const TEMPUNITS& Units);
  36. std::string enum2String(const FEMCOILORIENTATION& Units);
  37. std::string enum2String(const ORIENTATION& Units);
  38. std::string enum2String(const FIELDCOMPONENT& Comp);
  39. std::string enum2String(const HANKELTRANSFORMTYPE& Htype);
  40. std::string enum2String(const FIELDCALCULATIONS& Htype);
  41. // other way around is a template, where template argument lets us know
  42. // which specialisation to use.
  43. template <typename T>
  44. T string2Enum( const std::string& str );
  45. // Handy little class that indents a stream.
  46. // Based on solution provided here, todo may need to add to some managing class which keeps
  47. // track of nesting levels? But perhaps not. A Lemma class will contain pointers to other Lemma
  48. // classes. But those are not specifically listed out.
  49. // http://stackoverflow.com/questions/9599807/how-to-add-indention-to-the-stream-operator
  50. class IndentingOStreambuf : public std::streambuf {
  51. std::streambuf* myDest;
  52. bool myIsAtStartOfLine;
  53. std::string myIndent;
  54. std::ostream* myOwner;
  55. protected:
  56. virtual int overflow( int ch )
  57. {
  58. if ( myIsAtStartOfLine && ch != '\n' ) {
  59. myDest->sputn( myIndent.data(), myIndent.size() );
  60. }
  61. myIsAtStartOfLine = ch == '\n';
  62. return myDest->sputc( ch );
  63. }
  64. public:
  65. explicit IndentingOStreambuf(
  66. std::streambuf* dest, int indent = 4 )
  67. : myDest( dest )
  68. , myIsAtStartOfLine( true )
  69. , myIndent( indent, ' ' )
  70. , myOwner( NULL )
  71. {
  72. }
  73. explicit IndentingOStreambuf(
  74. std::ostream& dest, int indent = 4 )
  75. : myDest( dest.rdbuf() )
  76. , myIsAtStartOfLine( true )
  77. , myIndent( indent, ' ' )
  78. , myOwner( &dest )
  79. {
  80. myOwner->rdbuf( this );
  81. }
  82. virtual ~IndentingOStreambuf()
  83. {
  84. if ( myOwner != NULL ) {
  85. myOwner->rdbuf( myDest );
  86. }
  87. }
  88. };
  89. } // end namespace Lemma
  90. #ifdef HAVE_YAMLCPP
  91. ///////////////////////////////////////////////////////
  92. // YAML Serializing helper functions. Can we move this into helper.h
  93. namespace YAML {
  94. template<>
  95. struct convert<Lemma::Complex> {
  96. static Node encode(const Lemma::Complex& rhs) {
  97. Node node;
  98. node["real"] = rhs.real();
  99. node["imag"] = rhs.imag();
  100. // No labels
  101. //node.push_back(rhs.real());
  102. //node.push_back(rhs.imag());
  103. node.SetTag( "Complex" ); // too verbose?
  104. return node;
  105. }
  106. static bool decode(const Node& node, Lemma::Complex& rhs) {
  107. // Disabled due to overly verbose output. Just believe...
  108. if( node.Tag() != "Complex" ) {
  109. return false;
  110. }
  111. rhs = Lemma::Complex( node["real"].as<Lemma::Real>(), node["imag"].as<Lemma::Real>() );
  112. // no label style
  113. //rhs = Lemma::Complex( node[0].as<Lemma::Real>(), node[1].as<Lemma::Real>() );
  114. return true;
  115. }
  116. };
  117. template<>
  118. struct convert<Lemma::Vector3Xr> {
  119. static Node encode(const Lemma::Vector3Xr& rhs) {
  120. Node node;
  121. node["size"] = rhs.cols();
  122. //node["rows"] = rhs.rows(); // == 3
  123. for (int ic=0; ic<rhs.cols(); ++ic) {
  124. node[ic].push_back( rhs(0, ic) );
  125. node[ic].push_back( rhs(1, ic) );
  126. node[ic].push_back( rhs(2, ic) );
  127. }
  128. node.SetTag( "Vector3Xr" );
  129. return node;
  130. }
  131. static bool decode(const Node& node, Lemma::Vector3Xr& rhs) {
  132. if( node.Tag() != "Vector3Xr" ) {
  133. return false;
  134. }
  135. rhs.resize( Eigen::NoChange, node["size"].as<int>() );
  136. for (unsigned int ic=0; ic<node.size(); ++ic) {
  137. int ir=0;
  138. for(YAML::const_iterator it=node[ic].begin();it!=node[ic].end();++it) {
  139. rhs(ir, ic) = it->as<Lemma::Real>();
  140. ++ir;
  141. }
  142. }
  143. return true;
  144. }
  145. };
  146. template<>
  147. struct convert<Lemma::VectorXr> {
  148. static Node encode(const Lemma::VectorXr& rhs) {
  149. Node node;
  150. node["size"] = rhs.size();
  151. for (int ic=0; ic<rhs.size(); ++ic) {
  152. node["data"].push_back( rhs(ic) );
  153. }
  154. node.SetTag( "VectorXr" );
  155. return node;
  156. }
  157. static bool decode(const Node& node, Lemma::VectorXr& rhs) {
  158. if( node.Tag() != "VectorXr" ) {
  159. return false;
  160. }
  161. rhs.resize( node["size"].as<int>() );
  162. int ir=0;
  163. for(YAML::const_iterator it=node["data"].begin(); it!=node["data"].end(); ++it) {
  164. rhs(ir) = it->as<Lemma::Real>();
  165. ++ir;
  166. }
  167. return true;
  168. }
  169. };
  170. template<>
  171. struct convert<Lemma::VectorXcr> {
  172. static Node encode(const Lemma::VectorXcr& rhs) {
  173. Node node;
  174. node["size"] = rhs.size();
  175. for (int ic=0; ic<rhs.size(); ++ic) {
  176. node["data"].push_back( rhs(ic) );
  177. }
  178. node.SetTag( "VectorXcr" );
  179. return node;
  180. }
  181. static bool decode(const Node& node, Lemma::VectorXcr& rhs) {
  182. if( node.Tag() != "VectorXcr" ) {
  183. return false;
  184. }
  185. rhs.resize( node["size"].as<int>() );
  186. int ir=0;
  187. for(YAML::const_iterator it=node["data"].begin(); it!=node["data"].end(); ++it) {
  188. rhs(ir) = it->as<Lemma::Complex>();
  189. ++ir;
  190. }
  191. return true;
  192. }
  193. };
  194. template<>
  195. struct convert<Lemma::VectorXi> {
  196. static Node encode(const Lemma::VectorXi& rhs) {
  197. Node node;
  198. node["size"] = rhs.size();
  199. for (int ic=0; ic<rhs.size(); ++ic) {
  200. node["data"].push_back( rhs(ic) );
  201. }
  202. node.SetTag( "VectorXi" );
  203. return node;
  204. }
  205. static bool decode(const Node& node, Lemma::VectorXi& rhs) {
  206. if( node.Tag() != "VectorXi" ) {
  207. return false;
  208. }
  209. rhs.resize( node["size"].as<int>() );
  210. int ir=0;
  211. for(YAML::const_iterator it=node["data"].begin(); it!=node["data"].end(); ++it) {
  212. rhs(ir) = it->as<int>();
  213. ++ir;
  214. }
  215. return true;
  216. }
  217. };
  218. template<>
  219. struct convert<Lemma::Vector3r> {
  220. static Node encode(const Lemma::Vector3r& rhs) {
  221. Node node;
  222. for (int ic=0; ic<rhs.size(); ++ic) {
  223. node[0].push_back( rhs(ic) );
  224. }
  225. node.SetTag( "Vector3r" );
  226. return node;
  227. }
  228. static bool decode(const Node& node, Lemma::Vector3r& rhs) {
  229. if( node.Tag() != "Vector3r" ) {
  230. return false;
  231. }
  232. int ir=0;
  233. for(YAML::const_iterator it=node[0].begin(); it!=node[0].end(); ++it) {
  234. rhs(ir) = it->as<Lemma::Real>();
  235. ++ir;
  236. }
  237. return true;
  238. }
  239. };
  240. }
  241. #endif //HAVE_YAMLCPP
  242. #endif // ----- #ifndef HELPER_INC -----