Lemma is an Electromagnetics API
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

DipoleSource.cpp 75KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. @version $Id: dipolesource.cpp 203 2015-01-09 21:19:04Z tirons $
  10. **/
  11. #include "DipoleSource.h"
  12. #include "KernelEM1DManager.h"
  13. //#include "GroundedElectricDipole.h"
  14. //#include "UngroundedElectricDipole.h"
  15. //#include "MagneticDipole.h"
  16. #include "FieldPoints.h"
  17. #include "HankelTransform.h"
  18. namespace Lemma {
  19. // ==================== FRIENDS ======================
  20. std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) {
  21. stream << ob.Serialize() << "\n";
  22. return stream;
  23. }
  24. // ==================== LIFECYCLE ======================
  25. DipoleSource::DipoleSource( const ctor_key& key ) : LemmaObject( key ),
  26. Type(NOSOURCETYPE),
  27. irec(-1),
  28. Phase(0),
  29. Moment(1),
  30. KernelManager(nullptr),
  31. Receivers(nullptr),
  32. Earth(nullptr)
  33. {
  34. this->Location.setZero();
  35. this->Phat.setZero();
  36. }
  37. DipoleSource::~DipoleSource() {
  38. }
  39. std::shared_ptr<DipoleSource> DipoleSource::NewSP() {
  40. return std::make_shared<DipoleSource> ( ctor_key() );
  41. }
  42. YAML::Node DipoleSource::Serialize() const {
  43. YAML::Node node = DipoleSource::Serialize();
  44. node.SetTag( GetName() );
  45. /*
  46. node["LayerConductivity"] = LayerConductivity;
  47. node["LayerSusceptibility"] = LayerSusceptibility;
  48. node["LayerLowFreqSusceptibility"] = LayerLowFreqSusceptibility;
  49. node["LayerHighFreqSusceptibility"] = LayerHighFreqSusceptibility;
  50. node["LayerTauSusceptibility"] = LayerTauSusceptibility;
  51. node["LayerBreathSusceptibility"] = LayerBreathSusceptibility;
  52. node["LayerPermitivity"] = LayerPermitivity;
  53. node["LayerLowFreqPermitivity"] = LayerLowFreqPermitivity;
  54. node["LayerHighFreqPermitivity"] = LayerHighFreqPermitivity;
  55. node["LayerTauPermitivity"] = LayerTauPermitivity;
  56. node["LayerBreathPermitivity"] = LayerBreathPermitivity;
  57. */
  58. return node;
  59. }
  60. std::shared_ptr<DipoleSource> DipoleSource::Clone() {
  61. auto Obj = DipoleSource::NewSP();
  62. // copy
  63. Obj->Type = Type;
  64. Obj->irec = irec;
  65. Obj->lays = lays;
  66. Obj->layr = layr;
  67. Obj->Phase = Phase;
  68. Obj->Moment = Moment;
  69. Obj->xxp = xxp;
  70. Obj->yyp = yyp;
  71. Obj->rho = rho;
  72. Obj->sp = sp;
  73. Obj->cp = cp;
  74. Obj->scp = scp;
  75. Obj->sps = sps;
  76. Obj->cps = cps;
  77. Obj->c2p = c2p;
  78. Obj->FieldsToCalculate = FieldsToCalculate;
  79. Obj->f = f;
  80. Obj->ik = ik;
  81. Obj->Location = Location;
  82. Obj->Phat = Phat;
  83. Obj->Freqs = Freqs;
  84. return Obj;
  85. }
  86. //--------------------------------------------------------------------------------------
  87. // Class: DipoleSource
  88. // Method: GetName
  89. // Description: Class identifier
  90. //--------------------------------------------------------------------------------------
  91. inline std::string DipoleSource::GetName ( ) const {
  92. return CName;
  93. } // ----- end of method DipoleSource::GetName -----
  94. // ==================== ACCESS ======================
  95. void DipoleSource::SetLocation(const Vector3r &posin) {
  96. this->Location = posin;
  97. }
  98. void DipoleSource::SetLocation(const Real &xp, const Real &yp,
  99. const Real &zp) {
  100. this->Location = Vector3r(xp, yp, zp);
  101. }
  102. void DipoleSource::SetPhase(const Real &phase) {
  103. this->Phase = phase;
  104. }
  105. void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) {
  106. static bool called = false;
  107. if (!called) {
  108. std::cerr << "\n\n=================================================================\n"
  109. << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n"
  110. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  111. << "This method will be removed in future versions of Lemma"
  112. << "\n=================================================================\n";
  113. called = true;
  114. }
  115. // Polarity = pol;
  116. // switch (Polarity) {
  117. // case POSITIVE:
  118. // Moment = std::abs(Moment);
  119. // break;
  120. // case NEGATIVE:
  121. // Moment = -std::abs(Moment);
  122. // break;
  123. // default:
  124. // throw NonValidDipolePolarity();
  125. // };
  126. }
  127. void DipoleSource::SetType(const DipoleSourceType & stype) {
  128. switch (stype) {
  129. case (GROUNDEDELECTRICDIPOLE):
  130. this->Type = stype;
  131. break;
  132. case (UNGROUNDEDELECTRICDIPOLE):
  133. this->Type = stype;
  134. break;
  135. case (MAGNETICDIPOLE):
  136. this->Type = stype;
  137. break;
  138. default:
  139. throw NonValidDipoleTypeAssignment();
  140. }
  141. }
  142. void DipoleSource::SetPolarisation(const Vector3r& pol) {
  143. this->Phat = pol / pol.norm();
  144. }
  145. void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) {
  146. Vector3r pol = (VectorXr(3) << x, y, z).finished();
  147. this->Phat = pol / pol.norm();
  148. }
  149. Vector3r DipoleSource::GetPolarisation() {
  150. return Phat;
  151. }
  152. DipoleSourceType DipoleSource::GetType() {
  153. return Type;
  154. }
  155. void DipoleSource::SetPolarisation(const
  156. DipoleSourcePolarisation &pol) {
  157. static bool called = false;
  158. if (!called) {
  159. std::cout << "\n\n========================================================================================\n"
  160. << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n"
  161. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  162. << "This method will be removed in future versions of Lemma"
  163. << "\n========================================================================================\n";
  164. called = true;
  165. }
  166. switch (pol) {
  167. case (XPOLARISATION):
  168. //this->Polarisation = pol;
  169. this->Phat = (VectorXr(3) << 1, 0, 0).finished();
  170. break;
  171. case (YPOLARISATION):
  172. //this->Polarisation = pol;
  173. this->Phat = (VectorXr(3) << 0, 1, 0).finished();
  174. break;
  175. case (ZPOLARISATION):
  176. //this->Polarisation = pol;
  177. this->Phat = (VectorXr(3) << 0, 0, 1).finished();
  178. break;
  179. default:
  180. throw NonValidDipolePolarisationAssignment();
  181. }
  182. }
  183. void DipoleSource::SetMoment(const Real &moment) {
  184. this->Moment = moment;
  185. }
  186. // ==================== OPERATIONS =====================
  187. void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> ReceiversIn, const int& irecin,
  188. std::shared_ptr<LayeredEarthEM> EarthIn ) {
  189. if (Receivers != ReceiversIn) {
  190. Receivers = ReceiversIn;
  191. }
  192. if (Earth != EarthIn) {
  193. Earth = EarthIn;
  194. }
  195. if (irecin != irec) {
  196. irec = irecin;
  197. }
  198. if (FieldsToCalculate != Fields) {
  199. FieldsToCalculate = Fields;
  200. }
  201. xxp = Receivers->GetLocation(irec)[0] - Location[0];
  202. yyp = Receivers->GetLocation(irec)[1] - Location[1];
  203. rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm();
  204. sp = yyp/rho;
  205. cp = xxp/rho;
  206. scp = sp*cp;
  207. sps = sp*sp;
  208. cps = cp*cp;
  209. c2p = cps-sps;
  210. f = VectorXcr::Zero(13);
  211. ik = VectorXi::Zero(13);
  212. lays = Earth->GetLayerAtThisDepth(Location[2]);
  213. layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]);
  214. KernelManager = KernelEM1DManager::NewSP();
  215. KernelManager->SetEarth(Earth);
  216. // alternative is to use weak_ptr here, this is deep and internal, and we are safe.
  217. KernelManager->SetDipoleSource( shared_from_this().get() , ifreq, Receivers->GetLocation(irec)[2]);
  218. kernelFreq = Freqs(ifreq); // this is never used
  219. ReSetKernels( ifreq, Fields, Receivers, irec, Earth );
  220. return;
  221. }
  222. // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably
  223. // not the most critical piece though
  224. void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> Receivers, const int& irec,
  225. std::shared_ptr<LayeredEarthEM> Earth ) {
  226. Vector3r Pol = Phat;
  227. switch (Type) {
  228. case (GROUNDEDELECTRICDIPOLE):
  229. if (std::abs(Pol[2]) > 0) { // z dipole
  230. switch(FieldsToCalculate) {
  231. case E:
  232. if (lays == 0 && layr == 0) {
  233. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  234. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  235. } else if (lays == 0 && layr > 0) {
  236. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  237. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  238. } else if (lays > 0 && layr == 0) {
  239. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  240. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  241. } else {
  242. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  243. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  244. }
  245. break;
  246. case H:
  247. if (lays == 0 && layr == 0) {
  248. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  249. } else if (lays == 0 && layr > 0) {
  250. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  251. } else if (lays > 0 && layr == 0) {
  252. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  253. } else {
  254. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  255. }
  256. break;
  257. case BOTH:
  258. if ( lays == 0 && layr == 0) {
  259. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  260. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  261. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  262. } else if (lays == 0 && layr > 0) {
  263. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  264. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  265. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  266. } else if (lays > 0 && layr == 0) {
  267. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  268. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  269. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  270. } else {
  271. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  272. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  273. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  274. }
  275. }
  276. }
  277. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  278. switch(FieldsToCalculate) {
  279. case E:
  280. if ( lays == 0 && layr == 0) {
  281. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  282. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  283. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  284. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  285. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  286. } else if (lays == 0 && layr > 0) {
  287. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  288. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  289. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  290. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  291. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  292. } else if (lays > 0 && layr == 0) {
  293. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  294. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  295. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  296. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  297. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  298. } else {
  299. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  300. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  301. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  302. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  303. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  304. }
  305. break;
  306. case H:
  307. if (lays == 0 && layr == 0) {
  308. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  309. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  310. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  311. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  312. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  313. } else if (lays == 0 && layr > 0) {
  314. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  315. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  316. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  317. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  318. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  319. } else if (lays > 0 && layr == 0) {
  320. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  321. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  322. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  323. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  324. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  325. } else {
  326. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  327. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  328. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  329. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  330. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  331. }
  332. break;
  333. case BOTH:
  334. if (lays == 0 && layr == 0) {
  335. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  336. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  337. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  338. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  339. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  340. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  341. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  342. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  343. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  344. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  345. } else if (lays == 0 && layr > 0) {
  346. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  347. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  348. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  349. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  350. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  351. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  352. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  353. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  354. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  355. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  356. } else if (lays > 0 && layr == 0) {
  357. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  358. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  359. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  360. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  361. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  362. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  363. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  364. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  365. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  366. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  367. } else {
  368. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  369. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  370. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  371. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  372. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  373. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  374. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  375. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  376. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  377. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  378. }
  379. break;
  380. }
  381. }
  382. break;
  383. case (UNGROUNDEDELECTRICDIPOLE):
  384. if (std::abs(Pol[2]) > 0) { // z dipole
  385. switch(FieldsToCalculate) {
  386. case E:
  387. if (lays == 0 && layr == 0) {
  388. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  389. } else if (lays == 0 && layr > 0) {
  390. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  391. } else if (lays > 0 && layr == 0) {
  392. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  393. } else {
  394. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  395. }
  396. break;
  397. case H:
  398. if (lays == 0 && layr == 0) {
  399. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  400. } else if (lays == 0 && layr > 0) {
  401. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  402. } else if (lays > 0 && layr == 0) {
  403. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  404. } else {
  405. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  406. }
  407. break;
  408. case BOTH:
  409. if ( lays == 0 && layr == 0) {
  410. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  411. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  412. } else if (lays == 0 && layr > 0) {
  413. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  414. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  415. } else if (lays > 0 && layr == 0) {
  416. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  417. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  418. } else {
  419. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  420. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  421. }
  422. }
  423. }
  424. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  425. switch(FieldsToCalculate) {
  426. case E:
  427. if ( lays == 0 && layr == 0) {
  428. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  429. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  430. } else if (lays == 0 && layr > 0) {
  431. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  432. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  433. } else if (lays > 0 && layr == 0) {
  434. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  435. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  436. } else {
  437. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  438. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  439. }
  440. break;
  441. case H:
  442. if (lays == 0 && layr == 0) {
  443. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  444. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  445. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  446. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  447. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  448. } else if (lays == 0 && layr > 0) {
  449. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  450. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  451. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  452. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  453. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  454. } else if (lays > 0 && layr == 0) {
  455. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  456. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  457. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  458. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  459. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  460. } else {
  461. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  462. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  463. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  464. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  465. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  466. }
  467. break;
  468. case BOTH:
  469. if (lays == 0 && layr == 0) {
  470. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  471. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  472. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  473. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  474. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  475. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  476. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  477. } else if (lays == 0 && layr > 0) {
  478. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  479. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  480. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  481. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  482. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  483. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  484. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  485. } else if (lays > 0 && layr == 0) {
  486. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  487. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  488. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  489. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  490. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  491. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  492. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  493. } else {
  494. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  495. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  496. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  497. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  498. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  499. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  500. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  501. }
  502. break;
  503. }
  504. }
  505. break;
  506. case (MAGNETICDIPOLE):
  507. if (std::abs(Pol[2]) > 0) { // z dipole
  508. switch (FieldsToCalculate) {
  509. case E:
  510. if (lays == 0 && layr == 0) {
  511. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  512. } else if (lays == 0 && layr > 0) {
  513. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  514. } else if (lays > 0 && layr == 0) {
  515. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  516. } else {
  517. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  518. }
  519. break;
  520. case H:
  521. if (lays == 0 && layr == 0) {
  522. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  523. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  524. } else if (lays == 0 && layr > 0) {
  525. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  526. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  527. } else if (lays > 0 && layr == 0) {
  528. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  529. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  530. } else {
  531. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  532. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  533. }
  534. break;
  535. case BOTH:
  536. if (lays == 0 && layr == 0) {
  537. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  538. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  539. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  540. } else if (lays == 0 && layr > 0) {
  541. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  542. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  543. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  544. } else if (lays > 0 && layr == 0) {
  545. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  546. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  547. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  548. } else {
  549. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  550. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  551. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  552. }
  553. }
  554. }
  555. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  556. switch (FieldsToCalculate) {
  557. case E:
  558. if ( lays == 0 && layr == 0) {
  559. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  560. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  561. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  562. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  563. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  564. } else if (lays == 0 && layr > 0) {
  565. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  566. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  567. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  568. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  569. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  570. } else if (lays > 0 && layr == 0) {
  571. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INAIR>( );
  572. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INAIR>( );
  573. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INAIR>( );
  574. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INAIR>( );
  575. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INAIR>( );
  576. } else {
  577. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  578. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  579. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  580. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  581. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  582. }
  583. break;
  584. case H:
  585. if ( lays == 0 && layr == 0) {
  586. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  587. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  588. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  589. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  590. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  591. } else if (lays == 0 && layr > 0) {
  592. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  593. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  594. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  595. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  596. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  597. } else if (lays > 0 && layr == 0) {
  598. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INAIR>( );
  599. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INAIR>( );
  600. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INAIR>( );
  601. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INAIR>( );
  602. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INAIR>( );
  603. } else {
  604. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  605. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  606. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  607. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  608. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  609. }
  610. break;
  611. case BOTH:
  612. if ( lays == 0 && layr == 0) {
  613. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  614. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  615. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  616. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  617. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  618. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  619. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  620. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  621. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  622. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  623. } else if (lays == 0 && layr > 0) {
  624. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  625. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  626. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  627. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  628. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  629. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  630. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  631. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  632. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  633. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  634. } else {
  635. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  636. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  637. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  638. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  639. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  640. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  641. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  642. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  643. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  644. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  645. }
  646. break;
  647. }
  648. }
  649. break;
  650. default:
  651. std::cerr << "Dipole type incorrect, in dipolesource.cpp";
  652. exit(EXIT_FAILURE);
  653. }
  654. }
  655. void DipoleSource::UpdateFields( const int& ifreq, HankelTransform* Hankel, const Real& wavef) {
  656. Vector3r Pol = Phat;
  657. switch (Type) {
  658. case (GROUNDEDELECTRICDIPOLE):
  659. //Hankel->ComputeRelated(rho, KernelManager);
  660. if (std::abs(Pol[2]) > 0) { // z dipole
  661. switch(FieldsToCalculate) {
  662. case E:
  663. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  664. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  665. std::cout.precision(12);
  666. this->Receivers->AppendEfield(ifreq, irec,
  667. -Pol[2]*QPI*cp*f(10)*Moment,
  668. -Pol[2]*QPI*sp*f(10)*Moment,
  669. Pol[2]*QPI*f(11)*Moment);
  670. break;
  671. case H:
  672. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  673. this->Receivers->AppendHfield(ifreq, irec,
  674. -Pol[2]*QPI*sp*f(12)*Moment,
  675. Pol[2]*QPI*cp*f(12)*Moment,
  676. 0. );
  677. break;
  678. case BOTH:
  679. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  680. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  681. this->Receivers->AppendEfield(ifreq, irec,
  682. -Pol[2]*QPI*cp*f(10)*Moment,
  683. -Pol[2]*QPI*sp*f(10)*Moment,
  684. Pol[2]*QPI*f(11)*Moment );
  685. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  686. this->Receivers->AppendHfield(ifreq, irec,
  687. -Pol[2]*QPI*sp*f(12)*Moment,
  688. Pol[2]*QPI*cp*f(12)*Moment,
  689. 0. );
  690. } // Fields to calculate Z polarity Electric dipole
  691. }
  692. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  693. switch(FieldsToCalculate) {
  694. case E:
  695. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  696. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  697. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  698. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  699. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  700. if (std::abs(Pol[1]) > 0) {
  701. this->Receivers->AppendEfield(ifreq, irec,
  702. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  703. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  704. Pol[1]*QPI*sp*f(4)*Moment);
  705. }
  706. if (std::abs(Pol[0]) > 0) {
  707. this->Receivers->AppendEfield(ifreq, irec,
  708. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  709. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  710. Pol[0]*Moment*QPI*cp*f(4) );
  711. }
  712. break;
  713. case H:
  714. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  715. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  716. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  717. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  718. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  719. if (std::abs(Pol[1]) > 0) {
  720. this->Receivers->AppendHfield(ifreq, irec,
  721. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  722. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  723. -Pol[1]*QPI*cp*f(9)*Moment );
  724. }
  725. if (std::abs(Pol[0]) > 0) {
  726. this->Receivers->AppendHfield(ifreq, irec,
  727. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  728. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  729. Pol[0]*Moment*QPI*sp*f(9) );
  730. }
  731. break;
  732. case BOTH:
  733. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  734. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  735. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  736. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  737. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  738. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  739. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  740. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  741. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  742. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  743. if (std::abs(Pol[1]) > 0) {
  744. this->Receivers->AppendEfield(ifreq, irec,
  745. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  746. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  747. Pol[1]*QPI*sp*f(4)*Moment);
  748. this->Receivers->AppendHfield(ifreq, irec,
  749. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  750. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  751. -Pol[1]*QPI*cp*f(9)*Moment );
  752. }
  753. if (std::abs(Pol[0]) > 0) {
  754. this->Receivers->AppendEfield(ifreq, irec,
  755. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  756. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  757. Pol[0]*Moment*QPI*cp*f(4) );
  758. this->Receivers->AppendHfield(ifreq, irec,
  759. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  760. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  761. Pol[0]*Moment*QPI*sp*f(9) );
  762. }
  763. break;
  764. }
  765. }
  766. break; // GROUNDEDELECTRICDIPOLE
  767. case UNGROUNDEDELECTRICDIPOLE:
  768. if (std::abs(Pol[2]) > 0) { // z dipole
  769. switch(FieldsToCalculate) {
  770. case E:
  771. f(10) = 0;
  772. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  773. this->Receivers->AppendEfield(ifreq, irec,
  774. -Pol[2]*QPI*cp*f(10)*Moment,
  775. -Pol[2]*QPI*sp*f(10)*Moment,
  776. Pol[2]*QPI*f(11)*Moment);
  777. break;
  778. case H:
  779. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  780. this->Receivers->AppendHfield(ifreq, irec,
  781. -Pol[2]*QPI*sp*f(12)*Moment,
  782. Pol[2]*QPI*cp*f(12)*Moment,
  783. 0. );
  784. break;
  785. case BOTH:
  786. f(10) = 0;
  787. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  788. this->Receivers->AppendEfield(ifreq, irec,
  789. -Pol[2]*QPI*cp*f(10)*Moment,
  790. -Pol[2]*QPI*sp*f(10)*Moment,
  791. Pol[2]*QPI*f(11)*Moment );
  792. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  793. this->Receivers->AppendHfield(ifreq, irec,
  794. -Pol[2]*QPI*sp*f(12)*Moment,
  795. Pol[2]*QPI*cp*f(12)*Moment,
  796. 0. );
  797. } // Fields to calculate Z polarity Electric dipole
  798. }
  799. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole
  800. switch(FieldsToCalculate) {
  801. case E:
  802. f(0) = 0;
  803. f(1) = 0;
  804. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  805. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  806. f(4) = 0;
  807. if (std::abs(Pol[1]) > 0) {
  808. this->Receivers->AppendEfield(ifreq, irec,
  809. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  810. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  811. Pol[1]*QPI*sp*f(4)*Moment);
  812. }
  813. if (std::abs(Pol[0]) > 0) {
  814. this->Receivers->AppendEfield(ifreq, irec,
  815. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  816. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  817. Pol[0]*Moment*QPI*cp*f(4) );
  818. }
  819. break;
  820. case H:
  821. std::cout << "Fuck me gently with a chainsaw..." << std::endl;
  822. //std::cout << f.cols() << "\t" << f.rows() << std::endl;
  823. //std::cout << "kern" << KernelManager->GetRAWKernel(ik[5]);
  824. //std::cout << "Inputs\t" << TM << "\t" << rho << "\t" << wavef << "\t" << ik[5] << "\t" << KernelManager->GetRAWKernel(ik[5])<< std::endl;
  825. //Hankel->Zgauss(5, TM, 0, rho, wavef, nullptr);
  826. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  827. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  828. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  829. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  830. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  831. std::cout << "HARDER!!!!" << std::endl;
  832. if (std::abs(Pol[1]) > 0) {
  833. this->Receivers->AppendHfield(ifreq, irec,
  834. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  835. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  836. -Pol[1]*QPI*cp*f(9)*Moment );
  837. // Analytic whole space solution could go here
  838. }
  839. if (std::abs(Pol[0]) > 0) {
  840. this->Receivers->AppendHfield(ifreq, irec,
  841. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  842. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  843. Pol[0]*Moment*QPI*sp*f(9) );
  844. // Analytic whole space solution
  845. }
  846. //std::cout << "ahhhhhh!!!!!!!!!" << std::endl;
  847. break;
  848. case BOTH:
  849. f(0) = 0;
  850. f(1) = 0;
  851. f(4) = 0;
  852. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(0)->GetZs();
  853. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(1)->GetZs();
  854. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  855. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  856. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  857. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  858. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  859. if (std::abs(Pol[1]) > 0) {
  860. this->Receivers->AppendEfield(ifreq, irec,
  861. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  862. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  863. Pol[1]*QPI*sp*f(4)*Moment);
  864. this->Receivers->AppendHfield(ifreq, irec,
  865. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  866. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  867. -Pol[1]*QPI*cp*f(9)*Moment );
  868. }
  869. if (std::abs(Pol[0]) > 0) {
  870. this->Receivers->AppendEfield(ifreq, irec,
  871. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  872. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  873. Pol[0]*Moment*QPI*cp*f(4) );
  874. this->Receivers->AppendHfield(ifreq, irec,
  875. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  876. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  877. Pol[0]*Moment*QPI*sp*f(9) );
  878. }
  879. break;
  880. }
  881. }
  882. break; // UNGROUNDEDELECTRICDIPOLE
  883. case MAGNETICDIPOLE:
  884. //Hankel->ComputeRelated(rho, KernelManager);
  885. if (std::abs(Pol[2]) > 0) { // z dipole
  886. switch(FieldsToCalculate) {
  887. case E:
  888. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  889. this->Receivers->AppendEfield(ifreq, irec,
  890. Pol[2]*Moment*QPI*sp*f(12),
  891. -Pol[2]*Moment*QPI*cp*f(12),
  892. 0);
  893. break;
  894. case H:
  895. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  896. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  897. this->Receivers->AppendHfield(ifreq, irec,
  898. -Pol[2]*Moment*QPI*cp*f(10),
  899. -Pol[2]*Moment*QPI*sp*f(10),
  900. Pol[2]*Moment*QPI*f(11) );
  901. break;
  902. case BOTH:
  903. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  904. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  905. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  906. this->Receivers->AppendEfield(ifreq, irec,
  907. Pol[2]*Moment*QPI*sp*f(12),
  908. -Pol[2]*Moment*QPI*cp*f(12),
  909. 0);
  910. this->Receivers->AppendHfield(ifreq, irec,
  911. -Pol[2]*Moment*QPI*cp*f(10),
  912. -Pol[2]*Moment*QPI*sp*f(10),
  913. Pol[2]*Moment*QPI*f(11) );
  914. break;
  915. }
  916. }
  917. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  918. switch (FieldsToCalculate) {
  919. case E:
  920. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  921. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  922. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  923. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  924. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  925. if (std::abs(Pol[0]) > 0) {
  926. this->Receivers->AppendEfield(ifreq, irec,
  927. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  928. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  929. Pol[0]*Moment*QPI*sp*f(9));
  930. }
  931. if (std::abs(Pol[1]) > 0) {
  932. this->Receivers->AppendEfield(ifreq, irec,
  933. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  934. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  935. -Pol[1]*Moment*QPI*cp*f(9) );
  936. }
  937. break;
  938. case H:
  939. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  940. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  941. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  942. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  943. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  944. if (std::abs(Pol[0]) > 0) {
  945. this->Receivers->AppendHfield(ifreq, irec,
  946. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  947. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  948. Pol[0]*Moment*QPI*cp*f(4) );
  949. }
  950. if (std::abs(Pol[1]) > 0) {
  951. this->Receivers->AppendHfield(ifreq, irec,
  952. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  953. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  954. Pol[1]*Moment*QPI*sp*f(4));
  955. }
  956. break;
  957. case BOTH:
  958. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  959. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  960. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  961. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  962. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  963. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  964. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  965. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  966. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  967. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  968. if (std::abs(Pol[0]) > 0) {
  969. this->Receivers->AppendEfield(ifreq, irec,
  970. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  971. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  972. Pol[0]*Moment*QPI*sp*f(9));
  973. this->Receivers->AppendHfield(ifreq, irec,
  974. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  975. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  976. Pol[0]*Moment*QPI*cp*f(4) );
  977. }
  978. if (std::abs(Pol[1]) > 0) {
  979. this->Receivers->AppendEfield(ifreq, irec,
  980. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  981. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  982. -Pol[1]*Moment*QPI*cp*f(9) );
  983. this->Receivers->AppendHfield(ifreq, irec,
  984. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  985. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  986. Pol[1]*Moment*QPI*sp*f(4));
  987. }
  988. break;
  989. }
  990. }
  991. break;
  992. case NOSOURCETYPE:
  993. throw NonValidDipoleType(this);
  994. } // Source Type Switch
  995. }
  996. // ==================== INQUIRY ======================
  997. std::shared_ptr<KernelEM1DManager> DipoleSource::GetKernelManager() {
  998. return KernelManager;
  999. }
  1000. Vector3r DipoleSource::GetLocation() {
  1001. return this->Location;
  1002. }
  1003. #ifdef LEMMAUSEVTK
  1004. vtkActor* DipoleSource::GetVtkActor() {
  1005. vtkActor* vActor;
  1006. vtkLineSource* vLineSource;
  1007. vtkTubeFilter* vTube;
  1008. vtkPolyDataMapper* vMapper;
  1009. vtkRegularPolygonSource* vCircleSource;
  1010. vLineSource = vtkLineSource::New();
  1011. vTube = vtkTubeFilter::New();
  1012. vMapper = vtkPolyDataMapper::New();
  1013. vCircleSource = vtkRegularPolygonSource::New();
  1014. VectorXr M0 = Location - .5*Moment*Phat;
  1015. VectorXr M1 = Location + .5*Moment*Phat;
  1016. vActor = vtkActor::New();
  1017. switch (Type) {
  1018. case GROUNDEDELECTRICDIPOLE:
  1019. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1020. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1021. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1022. vTube->SetRadius(.1 * std::abs(Moment));
  1023. vTube->SetNumberOfSides(6);
  1024. vTube->SetCapping(1);
  1025. vMapper->SetInputConnection(vTube->GetOutputPort());
  1026. vActor->SetMapper(vMapper);
  1027. vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1028. break;
  1029. case UNGROUNDEDELECTRICDIPOLE:
  1030. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1031. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1032. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1033. vTube->SetRadius(.1 * std::abs(Moment));
  1034. vTube->SetNumberOfSides(6);
  1035. vTube->SetCapping(1);
  1036. vMapper->SetInputConnection(vTube->GetOutputPort());
  1037. vActor->SetMapper(vMapper);
  1038. //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1039. vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX));
  1040. vActor->GetProperty()->SetOpacity(1.);
  1041. break;
  1042. case MAGNETICDIPOLE:
  1043. vCircleSource->SetCenter(Location(0), Location(1),
  1044. Location(2));
  1045. vCircleSource->SetNumberOfSides(360);
  1046. vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]);
  1047. vCircleSource->SetRadius(0.2); // .2 m radius
  1048. vCircleSource->SetGeneratePolygon(false);
  1049. vCircleSource->SetGeneratePolyline(true);
  1050. vCircleSource->Update();
  1051. vTube->SetInputConnection(vCircleSource->GetOutputPort());
  1052. //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)),
  1053. // (float)(*yCoords->GetTuple(ny))) / 100);
  1054. vTube->SetRadius(.1*std::abs(Moment));
  1055. vTube->SetNumberOfSides(6);
  1056. vTube->SetCapping(1);
  1057. vMapper->SetInputConnection(vTube->GetOutputPort());
  1058. vActor->SetMapper(vMapper);
  1059. vActor->GetProperty()->SetColor(.9,.2,.9);
  1060. break;
  1061. default:
  1062. throw NonValidDipoleType();
  1063. }
  1064. vLineSource->Delete();
  1065. vCircleSource->Delete();
  1066. vTube->Delete();
  1067. vMapper->Delete();
  1068. return vActor;
  1069. }
  1070. #endif
  1071. Real DipoleSource::GetLocation(const int& coordinate) {
  1072. switch (coordinate) {
  1073. case (0):
  1074. return this->Location.x();
  1075. break;
  1076. case (1):
  1077. return this->Location.y();
  1078. break;
  1079. case (2):
  1080. return this->Location.z();
  1081. break;
  1082. default:
  1083. throw NonValidLocationCoordinate( );
  1084. }
  1085. }
  1086. DipoleSourceType DipoleSource::GetDipoleSourceType() {
  1087. return this->Type;
  1088. }
  1089. //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() {
  1090. // return this->Polarisation;
  1091. //}
  1092. Real DipoleSource::GetAngularFrequency(const int& ifreq) {
  1093. return 2.*PI*this->Freqs(ifreq);
  1094. }
  1095. Real DipoleSource::GetFrequency(const int& ifreq) {
  1096. return this->Freqs(ifreq);
  1097. }
  1098. VectorXr DipoleSource::GetFrequencies( ) {
  1099. return this->Freqs;
  1100. }
  1101. Real DipoleSource::GetPhase() {
  1102. return this->Phase;
  1103. }
  1104. Real DipoleSource::GetMoment() {
  1105. return this->Moment;
  1106. }
  1107. int DipoleSource::GetNumberOfFrequencies() {
  1108. return this->Freqs.size();
  1109. }
  1110. void DipoleSource::SetNumberOfFrequencies(const int &nfreq){
  1111. Freqs.resize(nfreq);
  1112. Freqs.setZero();
  1113. }
  1114. void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){
  1115. Freqs(ifreq) = freq;
  1116. }
  1117. void DipoleSource::SetFrequencies(const VectorXr &freqs){
  1118. Freqs = freqs;
  1119. }
  1120. /////////////////////////////////////////////////////////////////
  1121. /////////////////////////////////////////////////////////////////
  1122. // Error classes
  1123. NullDipoleSource::NullDipoleSource() :
  1124. runtime_error( "NULL VALUED DIPOLE SOURCE") {}
  1125. NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) :
  1126. runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { }
  1127. NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) :
  1128. runtime_error( "NON VALID DIPOLE TYPE") {
  1129. std::cout << "Thrown by instance of "
  1130. << ptr->GetName() << std::endl;
  1131. }
  1132. NonValidDipoleType::NonValidDipoleType( ) :
  1133. runtime_error( "NON VALID DIPOLE TYPE") { }
  1134. NonValidDipolePolarity::NonValidDipolePolarity () :
  1135. runtime_error( "NON VALID DIPOLE POLARITY") { }
  1136. NonValidDipolePolarisation::NonValidDipolePolarisation( ) :
  1137. runtime_error( "NON VALID DIPOLE TYPE") { }
  1138. NonValidDipolePolarisationAssignment::
  1139. NonValidDipolePolarisationAssignment( ) :
  1140. runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { }
  1141. NonValidLocationCoordinate::NonValidLocationCoordinate( ) :
  1142. runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { }
  1143. }