Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

EMEarth1D.cpp 34KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "EMEarth1D.h"
  11. #include "FieldPoints.h"
  12. #include "WireAntenna.h"
  13. #include "PolygonalWireAntenna.h"
  14. #ifdef LEMMAUSEOMP
  15. #include "omp.h"
  16. #endif
  17. namespace Lemma {
  18. std::ostream &operator << (std::ostream &stream, const EMEarth1D &ob) {
  19. stream << ob.Serialize() << "\n";
  20. return stream;
  21. }
  22. #ifdef KIHALEE_EM1D
  23. // Wrapper function for Fortran subroutine Em1D bi kihand
  24. // Returns E or H fields (SLOW)
  25. extern "C" { void em1dcall_(int &itype, // source
  26. int &ipol, // source
  27. int &nlay, // Earth
  28. int &nfreq, // source
  29. int &nfield, // Calculator
  30. int &nres, // Receivers
  31. int &jtype, // N/A
  32. int &jgamma, // Controller
  33. double &acc, // Controller
  34. double *dep, // Earth
  35. std::complex<double> *sig, // Earth
  36. double *susl, // Earth
  37. double *sush, // Earth
  38. double *sustau, // Earth
  39. double *susalp, // Earth
  40. double *eprl, // Earth
  41. double *eprh, // Earth
  42. double *eprtau, // Earth
  43. double *epralp, // Earth
  44. double &finit, // N/A
  45. double &flimit, // N/A
  46. double &dlimit, // N/A
  47. double &lfinc, // N/A
  48. double &tx, // Source
  49. double &ty, // Source
  50. double &tz, // Source
  51. double *rxx, // Receivers
  52. double *rxy, // Receivers
  53. double *rxz, // Receivers
  54. std::complex<double> *ex, // Receivers
  55. std::complex<double> *ey, // |
  56. std::complex<double> *ez, // |
  57. std::complex<double> *hx, // |
  58. std::complex<double> *hy, // V
  59. std::complex<double> *hz ); // ___
  60. }
  61. #endif
  62. // ==================== LIFECYCLE ===================================
  63. // TODO init large arrays here.
  64. EMEarth1D::EMEarth1D( const ctor_key& key ) : LemmaObject( key ),
  65. Dipole(nullptr), Earth(nullptr), Receivers(nullptr), Antenna(nullptr),
  66. FieldsToCalculate(BOTH), HankelType(ANDERSON801), icalcinner(0), icalc(0)
  67. {
  68. }
  69. EMEarth1D::~EMEarth1D() {
  70. }
  71. std::shared_ptr<EMEarth1D> EMEarth1D::NewSP() {
  72. return std::make_shared<EMEarth1D>(ctor_key());
  73. }
  74. YAML::Node EMEarth1D::Serialize() const {
  75. YAML::Node node = LemmaObject::Serialize();
  76. node["FieldsToCalculate"] = enum2String(FieldsToCalculate);
  77. node["HankelType"] = enum2String(HankelType);
  78. //if (Dipole != nullptr) node["Dipole"] = Dipole->Serialize();
  79. if (Earth != nullptr) node["Earth"] = Earth->Serialize();
  80. //if (Receivers != nullptr) node["Receivers"] = Receivers->Serialize(); Can be huge?
  81. if (Antenna != nullptr) node["Antenna"] = Antenna->Serialize();
  82. node.SetTag( this->GetName() );
  83. return node;
  84. }
  85. //--------------------------------------------------------------------------------------
  86. // Class: EMEarth1D
  87. // Method: GetName
  88. // Description: Class identifier
  89. //--------------------------------------------------------------------------------------
  90. inline std::string EMEarth1D::GetName ( ) const {
  91. return CName;
  92. } // ----- end of method EMEarth1D::GetName -----
  93. // ==================== ACCESS ===================================
  94. void EMEarth1D::AttachDipoleSource( std::shared_ptr<DipoleSource> dipoleptr) {
  95. Dipole = dipoleptr;
  96. }
  97. void EMEarth1D::AttachLayeredEarthEM( std::shared_ptr<LayeredEarthEM> earthptr) {
  98. Earth = earthptr;
  99. }
  100. void EMEarth1D::AttachFieldPoints( std::shared_ptr<FieldPoints> recptr) {
  101. Receivers = recptr;
  102. if (Receivers == nullptr) {
  103. std::cout << "nullptr Receivers in emearth1d.cpp " << std::endl;
  104. return;
  105. }
  106. // This has an implicid need to first set a source before receivers, users
  107. // will not expect this. Fix
  108. if (Dipole != nullptr) {
  109. switch (FieldsToCalculate) {
  110. case E:
  111. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  112. break;
  113. case H:
  114. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  115. break;
  116. case BOTH:
  117. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  118. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  119. break;
  120. }
  121. } else if (Antenna != nullptr) {
  122. switch (FieldsToCalculate) {
  123. case E:
  124. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  125. break;
  126. case H:
  127. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  128. break;
  129. case BOTH:
  130. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  131. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  132. break;
  133. }
  134. }
  135. }
  136. void EMEarth1D::AttachWireAntenna(std::shared_ptr<WireAntenna> antennae) {
  137. this->Antenna = antennae;
  138. }
  139. void EMEarth1D::SetFieldsToCalculate(const FIELDCALCULATIONS &calc) {
  140. FieldsToCalculate = calc;
  141. }
  142. void EMEarth1D::SetHankelTransformMethod( const HANKELTRANSFORMTYPE &type) {
  143. HankelType = type;
  144. }
  145. /*
  146. void EMEarth1D::Query() {
  147. std::cout << "EmEarth1D::Query()" << std::endl;
  148. std::cout << "Dipole " << Dipole;
  149. if (Dipole) std::cout << *Dipole << std::endl;
  150. std::cout << "Earth " << Earth;
  151. if (Earth) std::cout << *Earth << std::endl;
  152. std::cout << "Receivers " << Earth;
  153. if (Earth) std::cout << *Receivers << std::endl;
  154. std::cout << "Antenna " << Earth;
  155. if (Antenna) std::cout << *Antenna << std::endl;
  156. std::cout << "icalc " << icalc << std::endl;
  157. std::cout << "icalcinner " << icalcinner << std::endl;
  158. }
  159. */
  160. // ==================== OPERATIONS ===================================
  161. void EMEarth1D::CalculateWireAntennaFields(bool progressbar) {
  162. if (Earth == nullptr) {
  163. throw NullEarth();
  164. }
  165. if (Receivers == nullptr) {
  166. throw NullReceivers();
  167. }
  168. if (Antenna == nullptr) {
  169. throw NullAntenna();
  170. }
  171. if (Dipole != nullptr) {
  172. throw DipoleSourceSpecifiedForWireAntennaCalc();
  173. }
  174. Receivers->ClearFields();
  175. // Check to make sure Receivers are set up for all calculations
  176. switch(FieldsToCalculate) {
  177. case E:
  178. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  179. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  180. break;
  181. case H:
  182. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  183. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  184. break;
  185. case BOTH:
  186. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  187. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  188. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  189. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  190. break;
  191. }
  192. if (Antenna->GetName() == std::string("PolygonalWireAntenna") || Antenna->GetName() == std::string("TEMTransmitter") ) {
  193. icalc += 1;
  194. // Check to see if they are all on a plane? If so we can do this fast
  195. if ( Antenna->IsHorizontallyPlanar() && ( HankelType == ANDERSON801 || HankelType == FHTKEY201 || HankelType==FHTKEY101 ||
  196. HankelType == FHTKEY51 || HankelType == FHTKONG61 || HankelType == FHTKONG121 ||
  197. HankelType == FHTKONG241 || HankelType == IRONS )) {
  198. std::unique_ptr<ProgressBar> mdisp;
  199. if (progressbar) {
  200. mdisp = std::make_unique< ProgressBar >( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  201. }
  202. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies();++ifreq) {
  203. Real wavef = 2.*PI* Antenna->GetFrequency(ifreq);
  204. #ifdef LEMMAUSEOMP
  205. #pragma omp parallel
  206. {
  207. #endif
  208. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  209. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  210. #ifdef LEMMAUSEOMP
  211. #pragma omp for schedule(static, 1)
  212. #endif
  213. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  214. SolveLaggedTxRxPair(irec, Hankel.get(), wavef, ifreq, AntCopy.get());
  215. if (progressbar) {
  216. ++ *mdisp;
  217. }
  218. }
  219. #ifdef LEMMAUSEOMP
  220. #pragma omp barrier
  221. }
  222. #endif
  223. }
  224. } else if (Receivers->GetNumberOfPoints() > Antenna->GetNumberOfFrequencies()) {
  225. /* Progress display bar for long calculations */
  226. std::unique_ptr<ProgressBar> mdisp;
  227. if (progressbar) {
  228. mdisp = std::make_unique< ProgressBar > ( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  229. }
  230. // parallelise across receivers
  231. #ifdef LEMMAUSEOMP
  232. #pragma omp parallel
  233. #endif
  234. { // OpenMP Parallel Block
  235. // Since these antennas change we need a local copy for each
  236. // thread.
  237. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  238. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  239. #ifdef LEMMAUSEOMP
  240. #pragma omp for schedule(static, 1) //nowait
  241. #endif
  242. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  243. if (!Receivers->GetMask(irec)) {
  244. AntCopy->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  245. for (int idip=0; idip < static_cast<int>(AntCopy->GetNumberOfDipoles()); ++idip) {
  246. auto tDipole = AntCopy->GetDipoleSource(idip);
  247. //#ifdef LEMMAUSEOMP
  248. //#pragma omp for schedule(static, 1)
  249. //#endif
  250. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies();
  251. ++ifreq) {
  252. // Propogation constant in free space
  253. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  254. std::sqrt(MU0*EPSILON0);
  255. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  256. } // freq loop
  257. } // dipole loop
  258. } // mask
  259. //std::cout << "Normal Path\n";
  260. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  261. //if (irec == 1) exit(0);
  262. if (progressbar) {
  263. ++ *mdisp;
  264. }
  265. } // receiver loop
  266. } // OMP_PARALLEL BLOCK
  267. } else if (Antenna->GetNumberOfFrequencies() > 8) {
  268. // parallel across frequencies
  269. //std::cout << "freq parallel #2" << std::endl;
  270. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  271. if (!Receivers->GetMask(irec)) {
  272. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  273. #ifdef LEMMAUSEOMP
  274. #pragma omp parallel
  275. #endif
  276. { // OpenMP Parallel Block
  277. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  278. #ifdef LEMMAUSEOMP
  279. #pragma omp for schedule(static, 1)
  280. #endif
  281. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  282. for (int idip=0; idip< static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  283. auto tDipole = Antenna->GetDipoleSource(idip);
  284. // Propogation constant in free space
  285. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  286. std::sqrt(MU0*EPSILON0);
  287. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  288. } // dipole loop
  289. } // frequency loop
  290. } // OMP_PARALLEL BLOCK
  291. } // mask loop
  292. //if (Receivers->GetNumberOfPoints() > 100) {
  293. // ++ mdisp;
  294. //}
  295. } // receiver loop
  296. } // Frequency Parallel
  297. else {
  298. //std::cout << "parallel across transmitter dipoles " << std::endl;
  299. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  300. if (!Receivers->GetMask(irec)) {
  301. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  302. // std::cout << "Not Masked " << std::endl;
  303. // std::cout << "n Freqs " << Antenna->GetNumberOfFrequencies() << std::endl;
  304. // std::cout << "n Dipoles " << Antenna->GetNumberOfDipoles() << std::endl;
  305. // if ( !Antenna->GetNumberOfDipoles() ) {
  306. // std::cout << "NO DIPOLES!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
  307. // // std::cout << "rec location " << Receivers->GetLocation(irec) << std::endl;
  308. // // }
  309. #ifdef LEMMAUSEOMP
  310. #pragma omp parallel
  311. #endif
  312. { // OpenMP Parallel Block
  313. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  314. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  315. #ifdef LEMMAUSEOMP
  316. #pragma omp for schedule(static, 1)
  317. #endif
  318. for (int idip=0; idip<static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  319. //#pragma omp critical
  320. //{
  321. //cout << "idip=" << idip << "\tthread num=" << omp_get_thread_num() << '\n';
  322. //}
  323. auto tDipole = Antenna->GetDipoleSource(idip);
  324. // Propogation constant in free space
  325. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  326. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  327. } // dipole loop
  328. } // frequency loop
  329. } // OMP_PARALLEL BLOCK
  330. } // mask loop
  331. //if (Receivers->GetNumberOfPoints() > 100) {
  332. // ++ disp;
  333. //}
  334. } // receiver loop
  335. } // Polygonal parallel logic
  336. } else {
  337. std::cerr << "Lemma with WireAntenna class is currently broken"
  338. << " fix or use PolygonalWireAntenna\n" << std::endl;
  339. exit(EXIT_FAILURE);
  340. // TODO, getting wrong answer, curiously worKernel->GetKs() with MakeCalc, maybe
  341. // a threading issue, use SolveSingleTxRxPair maype instead of call
  342. // to MakeCalc3? !!!
  343. for (unsigned int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  344. this->Dipole = Antenna->GetDipoleSource(idip);
  345. MakeCalc3();
  346. //++disp;
  347. }
  348. this->Dipole = nullptr;
  349. }
  350. }
  351. #ifdef KIHALEE_EM1D
  352. void EMEarth1D::MakeCalc() {
  353. int itype; // 1 = elec, 2 = mag
  354. switch (this->Dipole->GetDipoleSourceType()) {
  355. case (GROUNDEDELECTRICDIPOLE) :
  356. itype = 1;
  357. break;
  358. case (MAGNETICDIPOLE) :
  359. itype = 2;
  360. break;
  361. case (UNGROUNDEDELECTRICDIPOLE) :
  362. std::cerr << "Fortran routine cannot calculate ungrounded"
  363. "electric dipole\n";
  364. default:
  365. throw NonValidDipoleType();
  366. }
  367. int ipol ;
  368. Vector3r Pol = this->Dipole->GetPolarisation();
  369. if (std::abs(Pol[0]-1) < 1e-5) {
  370. ipol = 1;
  371. } else if (std::abs(Pol[1]-1) < 1e-5) {
  372. ipol = 2;
  373. } else if (std::abs(Pol[2]-1) < 1e-5) {
  374. ipol = 3;
  375. } else {
  376. std::cerr << "Fortran routine cannot calculate arbitrary "
  377. "dipole polarisation, set to x, y, or z\n";
  378. }
  379. int nlay = Earth->GetNumberOfNonAirLayers();
  380. if (nlay > MAXLAYERS) {
  381. std::cerr << "FORTRAN CODE CAN ONLY HANDLE " << MAXLAYERS
  382. << " LAYERS\n";
  383. throw EarthModelWithMoreThanMaxLayers();
  384. }
  385. int nfreq = 1; // number of freqs
  386. int nfield; // field output 1 = elec, 2 = mag, 3 = both
  387. switch (FieldsToCalculate) {
  388. case E:
  389. nfield = 1;
  390. break;
  391. case H:
  392. nfield = 2;
  393. break;
  394. case BOTH:
  395. nfield = 3;
  396. break;
  397. default:
  398. throw 7;
  399. }
  400. int nres = Receivers->GetNumberOfPoints();
  401. int jtype = 3; // form ouf output,
  402. // 1 = horizontal,
  403. // 2 = down hole,
  404. // 3 = freq sounding
  405. // 4 = down hole logging
  406. int jgamma = 0; // Units 0 = MKS (H->A/m and E->V/m)
  407. // 1 = h->Gammas E->V/m
  408. double acc = 0.; // Tolerance
  409. // TODO, fix FORTRAN calls so these arrays can be nlay long, not
  410. // MAXLAYERS.
  411. // Model Parameters
  412. double *dep = new double[MAXLAYERS];
  413. dep[0] = 0.; // We always say air starts at 0
  414. for (int ilay=1; ilay<Earth->GetNumberOfLayers(); ++ilay) {
  415. dep[ilay] = dep[ilay-1] + Earth->GetLayerThickness(ilay);
  416. //std::cout << "Depth " << dep[ilay] << std::endl;
  417. }
  418. std::complex<double> *sig = new std::complex<double> [MAXLAYERS];
  419. for (int ilay=1; ilay<=nlay; ++ilay) {
  420. sig[ilay-1] = (std::complex<double>)(Earth->GetLayerConductivity(ilay));
  421. }
  422. // TODO, pass these into Fortran call, and return Cole-Cole model
  423. // parameters. Right now this does nothing
  424. //std::complex<double> *sus = new std::complex<double>[MAXLAYERS];
  425. //std::complex<double> *epr = new std::complex<double>[MAXLAYERS];
  426. // Cole-Cole model stuff
  427. double *susl = new double[MAXLAYERS];
  428. for (int ilay=1; ilay<=nlay; ++ilay) {
  429. susl[ilay-1] = Earth->GetLayerLowFreqSusceptibility(ilay);
  430. }
  431. double *sush = new double[MAXLAYERS];
  432. for (int ilay=1; ilay<=nlay; ++ilay) {
  433. sush[ilay-1] = Earth->GetLayerHighFreqSusceptibility(ilay);
  434. }
  435. double *sustau = new double[MAXLAYERS];
  436. for (int ilay=1; ilay<=nlay; ++ilay) {
  437. sustau[ilay-1] = Earth->GetLayerTauSusceptibility(ilay);
  438. }
  439. double *susalp = new double[MAXLAYERS];
  440. for (int ilay=1; ilay<=nlay; ++ilay) {
  441. susalp[ilay-1] = Earth->GetLayerBreathSusceptibility(ilay);
  442. }
  443. double *eprl = new double[MAXLAYERS];
  444. for (int ilay=1; ilay<=nlay; ++ilay) {
  445. eprl[ilay-1] = Earth->GetLayerLowFreqPermitivity(ilay);
  446. }
  447. double *eprh = new double[MAXLAYERS];
  448. for (int ilay=1; ilay<=nlay; ++ilay) {
  449. eprh[ilay-1] = Earth->GetLayerHighFreqPermitivity(ilay);
  450. }
  451. double *eprtau = new double[MAXLAYERS];
  452. for (int ilay=1; ilay<=nlay; ++ilay) {
  453. eprtau[ilay-1] = Earth->GetLayerTauPermitivity(ilay);
  454. }
  455. double *epralp = new double[MAXLAYERS];
  456. for (int ilay=1; ilay<=nlay; ++ilay) {
  457. epralp[ilay-1] = Earth->GetLayerBreathPermitivity(ilay);
  458. }
  459. // Freq stuff
  460. double finit = Dipole->GetFrequency(0); //(1000); // Starting freq
  461. double flimit = Dipole->GetFrequency(0); //(1000); // max freq
  462. double dlimit = Dipole->GetFrequency(0); //(1000); // difusion limit
  463. double lfinc(1); // no. freq per decade
  464. // tx location jtype != 4
  465. double txx = Dipole->GetLocation(0); // (0.);
  466. double txy = Dipole->GetLocation(1); // (0.);
  467. double txz = Dipole->GetLocation(2); // (0.);
  468. // rx position
  469. // TODO, fix Fortran program to not waste this memory
  470. // maybe
  471. const int MAXREC = 15;
  472. double *rxx = new double [MAXREC];
  473. double *rxy = new double [MAXREC];
  474. double *rxz = new double [MAXREC];
  475. std::complex<double> *ex = new std::complex<double>[MAXREC];
  476. std::complex<double> *ey = new std::complex<double>[MAXREC];
  477. std::complex<double> *ez = new std::complex<double>[MAXREC];
  478. std::complex<double> *hx = new std::complex<double>[MAXREC];
  479. std::complex<double> *hy = new std::complex<double>[MAXREC];
  480. std::complex<double> *hz = new std::complex<double>[MAXREC];
  481. int nres2 = MAXREC;
  482. int ii=0;
  483. for (ii=0; ii<nres-MAXREC; ii+=MAXREC) {
  484. for (int ir=0; ir<MAXREC; ++ir) {
  485. //Vector3r pos = Receivers->GetLocation(ii+ir);
  486. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  487. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  488. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  489. }
  490. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  491. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  492. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  493. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  494. hx, hy, hz);
  495. // Scale By Moment
  496. for (int ir=0; ir<MAXREC; ++ir) {
  497. ex[ir] *= Dipole->GetMoment();
  498. ey[ir] *= Dipole->GetMoment();
  499. ez[ir] *= Dipole->GetMoment();
  500. hx[ir] *= Dipole->GetMoment();
  501. hy[ir] *= Dipole->GetMoment();
  502. hz[ir] *= Dipole->GetMoment();
  503. // Append values instead of setting them
  504. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  505. (Complex)(ey[ir]),
  506. (Complex)(ez[ir]) );
  507. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  508. (Complex)(hy[ir]),
  509. (Complex)(hz[ir]) );
  510. }
  511. }
  512. //ii += MAXREC;
  513. nres2 = 0;
  514. // Perform last positions
  515. for (int ir=0; ir<nres-ii; ++ir) {
  516. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  517. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  518. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  519. ++nres2;
  520. }
  521. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  522. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  523. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  524. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  525. hx, hy, hz);
  526. // Scale By Moment
  527. for (int ir=0; ir<nres-ii; ++ir) {
  528. ex[ir] *= Dipole->GetMoment();
  529. ey[ir] *= Dipole->GetMoment();
  530. ez[ir] *= Dipole->GetMoment();
  531. hx[ir] *= Dipole->GetMoment();
  532. hy[ir] *= Dipole->GetMoment();
  533. hz[ir] *= Dipole->GetMoment();
  534. // Append values instead of setting them
  535. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  536. (Complex)(ey[ir]),
  537. (Complex)(ez[ir]) );
  538. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  539. (Complex)(hy[ir]),
  540. (Complex)(hz[ir]) );
  541. }
  542. delete [] sig;
  543. delete [] dep;
  544. //delete [] sus;
  545. //delete [] epr;
  546. delete [] susl;
  547. delete [] sush;
  548. delete [] susalp;
  549. delete [] sustau;
  550. delete [] eprl;
  551. delete [] eprh;
  552. delete [] epralp;
  553. delete [] eprtau;
  554. delete [] rxx;
  555. delete [] rxy;
  556. delete [] rxz;
  557. delete [] ex;
  558. delete [] ey;
  559. delete [] ez;
  560. delete [] hx;
  561. delete [] hy;
  562. delete [] hz;
  563. }
  564. #endif
  565. void EMEarth1D::SolveSingleTxRxPair (const int &irec, HankelTransform *Hankel, const Real &wavef, const int &ifreq,
  566. DipoleSource *tDipole) {
  567. ++icalcinner;
  568. // The PGI compilers fail on the below line, and others like it.
  569. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  570. //Real rho = ( ((Receivers->GetLocation(irec) - tDipole->GetLocation()).head(2)).eval() ).norm();
  571. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  572. Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  573. tDipole->UpdateFields( ifreq, Hankel, wavef );
  574. }
  575. // void EMEarth1D::SolveSingleTxRxPair (const int &irec, std::shared_ptr<HankelTransform> Hankel, const Real &wavef, const int &ifreq,
  576. // std::shared_ptr<DipoleSource> tDipole) {
  577. // ++icalcinner;
  578. // Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  579. // tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  580. // //Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  581. // //tDipole->UpdateFields( ifreq, Hankel, wavef );
  582. // }
  583. void EMEarth1D::SolveLaggedTxRxPair(const int &irec, HankelTransform* Hankel,
  584. const Real &wavef, const int &ifreq, PolygonalWireAntenna* antenna) {
  585. antenna->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  586. // Determine the min and max arguments
  587. Real rhomin = 1e9;
  588. Real rhomax = 1e-9;
  589. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  590. auto tDipole = antenna->GetDipoleSource(idip);
  591. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  592. rhomin = std::min(rhomin, rho);
  593. rhomax = std::max(rhomax, rho);
  594. }
  595. // Determine number of lagged convolutions to do
  596. int nlag = 1; // (Key==0) We need an extra for some reason for stability? Maybe in Spline?
  597. Real lrho ( 1.0 * rhomax );
  598. while ( lrho > rhomin ) {
  599. nlag += 1;
  600. lrho *= Hankel->GetABSER();
  601. }
  602. auto tDipole = antenna->GetDipoleSource(0);
  603. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  604. // Instead we should pass the antenna into this so that Hankel hass all the rho arguments...
  605. Hankel->ComputeLaggedRelated( 1.0*rhomax, nlag, tDipole->GetKernelManager() );
  606. // Sort the dipoles by rho
  607. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  608. // Can we avoid these two lines, and instead vary the moment of the previous tDipole?
  609. // SetKernels is somewhat heavy
  610. auto rDipole = antenna->GetDipoleSource(idip);
  611. //tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth); // expensive, and not used
  612. tDipole->SetLocation( rDipole->GetLocation() );
  613. tDipole->SetMoment( rDipole->GetMoment() );
  614. tDipole->SetPolarisation( rDipole->GetPolarisation() );
  615. tDipole->SetupLight( ifreq, FieldsToCalculate, irec );
  616. // Pass Hankel2 a message here so it knows which one to return in Zgauss!
  617. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  618. Hankel->SetLaggedArg( rho );
  619. tDipole->UpdateFields( ifreq, Hankel, wavef );
  620. }
  621. }
  622. //////////////////////////////////////////////////////////
  623. // Thread safe OO Reimplimentation of KiHand's
  624. // EM1DNEW.for programme
  625. void EMEarth1D::MakeCalc3() {
  626. if ( Dipole == nullptr ) throw NullDipoleSource();
  627. if (Earth == nullptr) throw NullEarth();
  628. if (Receivers == nullptr) throw NullReceivers();
  629. #ifdef LEMMAUSEOMP
  630. #pragma omp parallel
  631. #endif
  632. { // OpenMP Parallel Block
  633. #ifdef LEMMAUSEOMP
  634. int tid = omp_get_thread_num();
  635. int nthreads = omp_get_num_threads();
  636. #else
  637. int tid=0;
  638. int nthreads=1;
  639. #endif
  640. auto tDipole = Dipole->Clone();
  641. std::shared_ptr<HankelTransform> Hankel;
  642. switch (HankelType) {
  643. case ANDERSON801:
  644. Hankel = FHTAnderson801::NewSP();
  645. break;
  646. case CHAVE:
  647. Hankel = GQChave::NewSP();
  648. break;
  649. case FHTKEY201:
  650. Hankel = FHTKey201::NewSP();
  651. break;
  652. case FHTKEY101:
  653. Hankel = FHTKey101::NewSP();
  654. break;
  655. case FHTKEY51:
  656. Hankel = FHTKey51::NewSP();
  657. break;
  658. case QWEKEY:
  659. Hankel = QWEKey::NewSP();
  660. break;
  661. default:
  662. std::cerr << "Hankel transform cannot be created\n";
  663. exit(EXIT_FAILURE);
  664. }
  665. if ( tDipole->GetNumberOfFrequencies() < Receivers->GetNumberOfPoints() ) {
  666. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies(); ++ifreq) {
  667. // Propogation constant in free space being input to Hankel
  668. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  669. for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  670. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  671. }
  672. }
  673. } else {
  674. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  675. for (int ifreq=tid; ifreq<tDipole->GetNumberOfFrequencies(); ifreq+=nthreads) {
  676. // Propogation constant in free space being input to Hankel
  677. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  678. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  679. }
  680. }
  681. }
  682. } // OpenMP Parallel Block
  683. }
  684. NullReceivers::NullReceivers() :
  685. runtime_error("nullptr RECEIVERS") {}
  686. NullAntenna::NullAntenna() :
  687. runtime_error("nullptr ANTENNA") {}
  688. NullInstrument::NullInstrument(LemmaObject* ptr) :
  689. runtime_error("nullptr INSTRUMENT") {
  690. std::cout << "Thrown by instance of "
  691. << ptr->GetName() << std::endl;
  692. }
  693. DipoleSourceSpecifiedForWireAntennaCalc::
  694. DipoleSourceSpecifiedForWireAntennaCalc() :
  695. runtime_error("DIPOLE SOURCE SPECIFIED FOR WIRE ANTENNA CALC"){}
  696. } // end of Lemma Namespace