Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

EMEarth1D.cpp 34KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "EMEarth1D.h"
  11. #include "FieldPoints.h"
  12. #include "WireAntenna.h"
  13. #include "PolygonalWireAntenna.h"
  14. #ifdef LEMMAUSEOMP
  15. #include "omp.h"
  16. #endif
  17. namespace Lemma {
  18. std::ostream &operator << (std::ostream &stream, const EMEarth1D &ob) {
  19. stream << ob.Serialize() << "\n";
  20. return stream;
  21. }
  22. #ifdef KIHALEE_EM1D
  23. // Wrapper function for Fortran subroutine Em1D bi kihand
  24. // Returns E or H fields (SLOW)
  25. extern "C" { void em1dcall_(int &itype, // source
  26. int &ipol, // source
  27. int &nlay, // Earth
  28. int &nfreq, // source
  29. int &nfield, // Calculator
  30. int &nres, // Receivers
  31. int &jtype, // N/A
  32. int &jgamma, // Controller
  33. double &acc, // Controller
  34. double *dep, // Earth
  35. std::complex<double> *sig, // Earth
  36. double *susl, // Earth
  37. double *sush, // Earth
  38. double *sustau, // Earth
  39. double *susalp, // Earth
  40. double *eprl, // Earth
  41. double *eprh, // Earth
  42. double *eprtau, // Earth
  43. double *epralp, // Earth
  44. double &finit, // N/A
  45. double &flimit, // N/A
  46. double &dlimit, // N/A
  47. double &lfinc, // N/A
  48. double &tx, // Source
  49. double &ty, // Source
  50. double &tz, // Source
  51. double *rxx, // Receivers
  52. double *rxy, // Receivers
  53. double *rxz, // Receivers
  54. std::complex<double> *ex, // Receivers
  55. std::complex<double> *ey, // |
  56. std::complex<double> *ez, // |
  57. std::complex<double> *hx, // |
  58. std::complex<double> *hy, // V
  59. std::complex<double> *hz ); // ___
  60. }
  61. #endif
  62. // ==================== LIFECYCLE ===================================
  63. // TODO init large arrays here.
  64. EMEarth1D::EMEarth1D( const ctor_key& key ) : LemmaObject( key ),
  65. Dipole(nullptr), Earth(nullptr), Receivers(nullptr), Antenna(nullptr),
  66. FieldsToCalculate(BOTH), HankelType(ANDERSON801), icalcinner(0), icalc(0)
  67. {
  68. }
  69. EMEarth1D::~EMEarth1D() {
  70. }
  71. std::shared_ptr<EMEarth1D> EMEarth1D::NewSP() {
  72. return std::make_shared<EMEarth1D>(ctor_key());
  73. }
  74. YAML::Node EMEarth1D::Serialize() const {
  75. YAML::Node node = LemmaObject::Serialize();
  76. node["FieldsToCalculate"] = enum2String(FieldsToCalculate);
  77. node["HankelType"] = enum2String(HankelType);
  78. //if (Dipole != nullptr) node["Dipole"] = Dipole->Serialize();
  79. if (Earth != nullptr) node["Earth"] = Earth->Serialize();
  80. //if (Receivers != nullptr) node["Receivers"] = Receivers->Serialize(); Can be huge?
  81. if (Antenna != nullptr) node["Antenna"] = Antenna->Serialize();
  82. node.SetTag( this->GetName() );
  83. return node;
  84. }
  85. //--------------------------------------------------------------------------------------
  86. // Class: EMEarth1D
  87. // Method: GetName
  88. // Description: Class identifier
  89. //--------------------------------------------------------------------------------------
  90. inline std::string EMEarth1D::GetName ( ) const {
  91. return CName;
  92. } // ----- end of method EMEarth1D::GetName -----
  93. // ==================== ACCESS ===================================
  94. void EMEarth1D::AttachDipoleSource( std::shared_ptr<DipoleSource> dipoleptr) {
  95. Dipole = dipoleptr;
  96. }
  97. void EMEarth1D::AttachLayeredEarthEM( std::shared_ptr<LayeredEarthEM> earthptr) {
  98. Earth = earthptr;
  99. }
  100. void EMEarth1D::AttachFieldPoints( std::shared_ptr<FieldPoints> recptr) {
  101. Receivers = recptr;
  102. if (Receivers == nullptr) {
  103. std::cout << "nullptr Receivers in emearth1d.cpp " << std::endl;
  104. return;
  105. }
  106. // This has an implicid need to first set a source before receivers, users
  107. // will not expect this. Fix
  108. if (Dipole != nullptr) {
  109. switch (FieldsToCalculate) {
  110. case E:
  111. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  112. break;
  113. case H:
  114. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  115. break;
  116. case BOTH:
  117. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  118. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  119. break;
  120. }
  121. } else if (Antenna != nullptr) {
  122. switch (FieldsToCalculate) {
  123. case E:
  124. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  125. break;
  126. case H:
  127. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  128. break;
  129. case BOTH:
  130. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  131. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  132. break;
  133. }
  134. }
  135. }
  136. void EMEarth1D::AttachWireAntenna(std::shared_ptr<WireAntenna> antennae) {
  137. this->Antenna = antennae;
  138. }
  139. void EMEarth1D::SetFieldsToCalculate(const FIELDCALCULATIONS &calc) {
  140. FieldsToCalculate = calc;
  141. }
  142. void EMEarth1D::SetHankelTransformMethod( const HANKELTRANSFORMTYPE &type) {
  143. HankelType = type;
  144. }
  145. void EMEarth1D::Query() {
  146. std::cout << "EmEarth1D::Query()" << std::endl;
  147. std::cout << "Dipole " << Dipole;
  148. if (Dipole) std::cout << *Dipole << std::endl;
  149. std::cout << "Earth " << Earth;
  150. if (Earth) std::cout << *Earth << std::endl;
  151. std::cout << "Receivers " << Earth;
  152. if (Earth) std::cout << *Receivers << std::endl;
  153. std::cout << "Antenna " << Earth;
  154. if (Antenna) std::cout << *Antenna << std::endl;
  155. std::cout << "icalc " << icalc << std::endl;
  156. std::cout << "icalcinner " << icalcinner << std::endl;
  157. }
  158. // ==================== OPERATIONS ===================================
  159. void EMEarth1D::CalculateWireAntennaFields(bool progressbar) {
  160. if (Earth == nullptr) {
  161. throw NullEarth();
  162. }
  163. if (Receivers == nullptr) {
  164. throw NullReceivers();
  165. }
  166. if (Antenna == nullptr) {
  167. throw NullAntenna();
  168. }
  169. if (Dipole != nullptr) {
  170. throw DipoleSourceSpecifiedForWireAntennaCalc();
  171. }
  172. Receivers->ClearFields();
  173. // Check to make sure Receivers are set up for all calculations
  174. switch(FieldsToCalculate) {
  175. case E:
  176. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  177. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  178. break;
  179. case H:
  180. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  181. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  182. break;
  183. case BOTH:
  184. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  185. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  186. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  187. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  188. break;
  189. }
  190. if (Antenna->GetName() == std::string("PolygonalWireAntenna") || Antenna->GetName() == std::string("TEMTransmitter") ) {
  191. icalc += 1;
  192. // Check to see if they are all on a plane? If so we can do this fast
  193. if ( Antenna->IsHorizontallyPlanar() && ( HankelType == ANDERSON801 || HankelType == FHTKEY201 || HankelType==FHTKEY101 ||
  194. HankelType == FHTKEY51 || HankelType == FHTKONG61 || HankelType == FHTKONG121 ||
  195. HankelType == FHTKONG241 || HankelType == IRONS )) {
  196. std::unique_ptr<ProgressBar> mdisp;
  197. if (progressbar) {
  198. mdisp = std::make_unique< ProgressBar >( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  199. }
  200. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies();++ifreq) {
  201. Real wavef = 2.*PI* Antenna->GetFrequency(ifreq);
  202. #ifdef LEMMAUSEOMP
  203. #pragma omp parallel
  204. {
  205. #endif
  206. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  207. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  208. #ifdef LEMMAUSEOMP
  209. #pragma omp for schedule(static, 1)
  210. #endif
  211. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  212. SolveLaggedTxRxPair(irec, Hankel.get(), wavef, ifreq, AntCopy.get());
  213. if (progressbar) {
  214. ++ *mdisp;
  215. }
  216. }
  217. #ifdef LEMMAUSEOMP
  218. #pragma omp barrier
  219. }
  220. #endif
  221. }
  222. } else if (Receivers->GetNumberOfPoints() > Antenna->GetNumberOfFrequencies()) {
  223. //** Progress display bar for long calculations */
  224. std::unique_ptr<ProgressBar> mdisp;
  225. if (progressbar) {
  226. mdisp = std::make_unique< ProgressBar > ( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  227. }
  228. // parallelise across receivers
  229. #ifdef LEMMAUSEOMP
  230. #pragma omp parallel
  231. #endif
  232. { // OpenMP Parallel Block
  233. // Since these antennas change we need a local copy for each
  234. // thread.
  235. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  236. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  237. #ifdef LEMMAUSEOMP
  238. #pragma omp for schedule(static, 1) //nowait
  239. #endif
  240. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  241. if (!Receivers->GetMask(irec)) {
  242. AntCopy->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  243. for (int idip=0; idip < static_cast<int>(AntCopy->GetNumberOfDipoles()); ++idip) {
  244. auto tDipole = AntCopy->GetDipoleSource(idip);
  245. //#ifdef LEMMAUSEOMP
  246. //#pragma omp for schedule(static, 1)
  247. //#endif
  248. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies();
  249. ++ifreq) {
  250. // Propogation constant in free space
  251. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  252. std::sqrt(MU0*EPSILON0);
  253. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  254. } // freq loop
  255. } // dipole loop
  256. } // mask
  257. //std::cout << "Normal Path\n";
  258. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  259. //if (irec == 1) exit(0);
  260. if (progressbar) {
  261. ++ *mdisp;
  262. }
  263. } // receiver loop
  264. } // OMP_PARALLEL BLOCK
  265. } else if (Antenna->GetNumberOfFrequencies() > 8) {
  266. // parallel across frequencies
  267. //std::cout << "freq parallel #2" << std::endl;
  268. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  269. if (!Receivers->GetMask(irec)) {
  270. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  271. #ifdef LEMMAUSEOMP
  272. #pragma omp parallel
  273. #endif
  274. { // OpenMP Parallel Block
  275. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  276. #ifdef LEMMAUSEOMP
  277. #pragma omp for schedule(static, 1)
  278. #endif
  279. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  280. for (int idip=0; idip< static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  281. auto tDipole = Antenna->GetDipoleSource(idip);
  282. // Propogation constant in free space
  283. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  284. std::sqrt(MU0*EPSILON0);
  285. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  286. } // dipole loop
  287. } // frequency loop
  288. } // OMP_PARALLEL BLOCK
  289. } // mask loop
  290. //if (Receivers->GetNumberOfPoints() > 100) {
  291. // ++ mdisp;
  292. //}
  293. } // receiver loop
  294. } // Frequency Parallel
  295. else {
  296. //std::cout << "parallel across transmitter dipoles " << std::endl;
  297. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  298. if (!Receivers->GetMask(irec)) {
  299. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  300. // std::cout << "Not Masked " << std::endl;
  301. // std::cout << "n Freqs " << Antenna->GetNumberOfFrequencies() << std::endl;
  302. // std::cout << "n Dipoles " << Antenna->GetNumberOfDipoles() << std::endl;
  303. // if ( !Antenna->GetNumberOfDipoles() ) {
  304. // std::cout << "NO DIPOLES!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
  305. // // std::cout << "rec location " << Receivers->GetLocation(irec) << std::endl;
  306. // // }
  307. #ifdef LEMMAUSEOMP
  308. #pragma omp parallel
  309. #endif
  310. { // OpenMP Parallel Block
  311. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  312. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  313. #ifdef LEMMAUSEOMP
  314. #pragma omp for schedule(static, 1)
  315. #endif
  316. for (int idip=0; idip<static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  317. //#pragma omp critical
  318. //{
  319. //cout << "idip=" << idip << "\tthread num=" << omp_get_thread_num() << '\n';
  320. //}
  321. auto tDipole = Antenna->GetDipoleSource(idip);
  322. // Propogation constant in free space
  323. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  324. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  325. } // dipole loop
  326. } // frequency loop
  327. } // OMP_PARALLEL BLOCK
  328. } // mask loop
  329. //if (Receivers->GetNumberOfPoints() > 100) {
  330. // ++ disp;
  331. //}
  332. } // receiver loop
  333. } // Polygonal parallel logic
  334. } else {
  335. std::cerr << "Lemma with WireAntenna class is currently broken"
  336. << " fix or use PolygonalWireAntenna\n" << std::endl;
  337. exit(EXIT_FAILURE);
  338. // TODO, getting wrong answer, curiously worKernel->GetKs() with MakeCalc, maybe
  339. // a threading issue, use SolveSingleTxRxPair maype instead of call
  340. // to MakeCalc3? !!!
  341. for (unsigned int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  342. this->Dipole = Antenna->GetDipoleSource(idip);
  343. MakeCalc3();
  344. //++disp;
  345. }
  346. this->Dipole = nullptr;
  347. }
  348. }
  349. #ifdef KIHALEE_EM1D
  350. void EMEarth1D::MakeCalc() {
  351. int itype; // 1 = elec, 2 = mag
  352. switch (this->Dipole->GetDipoleSourceType()) {
  353. case (GROUNDEDELECTRICDIPOLE) :
  354. itype = 1;
  355. break;
  356. case (MAGNETICDIPOLE) :
  357. itype = 2;
  358. break;
  359. case (UNGROUNDEDELECTRICDIPOLE) :
  360. std::cerr << "Fortran routine cannot calculate ungrounded"
  361. "electric dipole\n";
  362. default:
  363. throw NonValidDipoleType();
  364. }
  365. int ipol ;
  366. Vector3r Pol = this->Dipole->GetPolarisation();
  367. if (std::abs(Pol[0]-1) < 1e-5) {
  368. ipol = 1;
  369. } else if (std::abs(Pol[1]-1) < 1e-5) {
  370. ipol = 2;
  371. } else if (std::abs(Pol[2]-1) < 1e-5) {
  372. ipol = 3;
  373. } else {
  374. std::cerr << "Fortran routine cannot calculate arbitrary "
  375. "dipole polarisation, set to x, y, or z\n";
  376. }
  377. int nlay = Earth->GetNumberOfNonAirLayers();
  378. if (nlay > MAXLAYERS) {
  379. std::cerr << "FORTRAN CODE CAN ONLY HANDLE " << MAXLAYERS
  380. << " LAYERS\n";
  381. throw EarthModelWithMoreThanMaxLayers();
  382. }
  383. int nfreq = 1; // number of freqs
  384. int nfield; // field output 1 = elec, 2 = mag, 3 = both
  385. switch (FieldsToCalculate) {
  386. case E:
  387. nfield = 1;
  388. break;
  389. case H:
  390. nfield = 2;
  391. break;
  392. case BOTH:
  393. nfield = 3;
  394. break;
  395. default:
  396. throw 7;
  397. }
  398. int nres = Receivers->GetNumberOfPoints();
  399. int jtype = 3; // form ouf output,
  400. // 1 = horizontal,
  401. // 2 = down hole,
  402. // 3 = freq sounding
  403. // 4 = down hole logging
  404. int jgamma = 0; // Units 0 = MKS (H->A/m and E->V/m)
  405. // 1 = h->Gammas E->V/m
  406. double acc = 0.; // Tolerance
  407. // TODO, fix FORTRAN calls so these arrays can be nlay long, not
  408. // MAXLAYERS.
  409. // Model Parameters
  410. double *dep = new double[MAXLAYERS];
  411. dep[0] = 0.; // We always say air starts at 0
  412. for (int ilay=1; ilay<Earth->GetNumberOfLayers(); ++ilay) {
  413. dep[ilay] = dep[ilay-1] + Earth->GetLayerThickness(ilay);
  414. //std::cout << "Depth " << dep[ilay] << std::endl;
  415. }
  416. std::complex<double> *sig = new std::complex<double> [MAXLAYERS];
  417. for (int ilay=1; ilay<=nlay; ++ilay) {
  418. sig[ilay-1] = (std::complex<double>)(Earth->GetLayerConductivity(ilay));
  419. }
  420. // TODO, pass these into Fortran call, and return Cole-Cole model
  421. // parameters. Right now this does nothing
  422. //std::complex<double> *sus = new std::complex<double>[MAXLAYERS];
  423. //std::complex<double> *epr = new std::complex<double>[MAXLAYERS];
  424. // Cole-Cole model stuff
  425. double *susl = new double[MAXLAYERS];
  426. for (int ilay=1; ilay<=nlay; ++ilay) {
  427. susl[ilay-1] = Earth->GetLayerLowFreqSusceptibility(ilay);
  428. }
  429. double *sush = new double[MAXLAYERS];
  430. for (int ilay=1; ilay<=nlay; ++ilay) {
  431. sush[ilay-1] = Earth->GetLayerHighFreqSusceptibility(ilay);
  432. }
  433. double *sustau = new double[MAXLAYERS];
  434. for (int ilay=1; ilay<=nlay; ++ilay) {
  435. sustau[ilay-1] = Earth->GetLayerTauSusceptibility(ilay);
  436. }
  437. double *susalp = new double[MAXLAYERS];
  438. for (int ilay=1; ilay<=nlay; ++ilay) {
  439. susalp[ilay-1] = Earth->GetLayerBreathSusceptibility(ilay);
  440. }
  441. double *eprl = new double[MAXLAYERS];
  442. for (int ilay=1; ilay<=nlay; ++ilay) {
  443. eprl[ilay-1] = Earth->GetLayerLowFreqPermitivity(ilay);
  444. }
  445. double *eprh = new double[MAXLAYERS];
  446. for (int ilay=1; ilay<=nlay; ++ilay) {
  447. eprh[ilay-1] = Earth->GetLayerHighFreqPermitivity(ilay);
  448. }
  449. double *eprtau = new double[MAXLAYERS];
  450. for (int ilay=1; ilay<=nlay; ++ilay) {
  451. eprtau[ilay-1] = Earth->GetLayerTauPermitivity(ilay);
  452. }
  453. double *epralp = new double[MAXLAYERS];
  454. for (int ilay=1; ilay<=nlay; ++ilay) {
  455. epralp[ilay-1] = Earth->GetLayerBreathPermitivity(ilay);
  456. }
  457. // Freq stuff
  458. double finit = Dipole->GetFrequency(0); //(1000); // Starting freq
  459. double flimit = Dipole->GetFrequency(0); //(1000); // max freq
  460. double dlimit = Dipole->GetFrequency(0); //(1000); // difusion limit
  461. double lfinc(1); // no. freq per decade
  462. // tx location jtype != 4
  463. double txx = Dipole->GetLocation(0); // (0.);
  464. double txy = Dipole->GetLocation(1); // (0.);
  465. double txz = Dipole->GetLocation(2); // (0.);
  466. // rx position
  467. // TODO, fix Fortran program to not waste this memory
  468. // maybe
  469. const int MAXREC = 15;
  470. double *rxx = new double [MAXREC];
  471. double *rxy = new double [MAXREC];
  472. double *rxz = new double [MAXREC];
  473. std::complex<double> *ex = new std::complex<double>[MAXREC];
  474. std::complex<double> *ey = new std::complex<double>[MAXREC];
  475. std::complex<double> *ez = new std::complex<double>[MAXREC];
  476. std::complex<double> *hx = new std::complex<double>[MAXREC];
  477. std::complex<double> *hy = new std::complex<double>[MAXREC];
  478. std::complex<double> *hz = new std::complex<double>[MAXREC];
  479. int nres2 = MAXREC;
  480. int ii=0;
  481. for (ii=0; ii<nres-MAXREC; ii+=MAXREC) {
  482. for (int ir=0; ir<MAXREC; ++ir) {
  483. //Vector3r pos = Receivers->GetLocation(ii+ir);
  484. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  485. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  486. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  487. }
  488. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  489. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  490. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  491. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  492. hx, hy, hz);
  493. // Scale By Moment
  494. for (int ir=0; ir<MAXREC; ++ir) {
  495. ex[ir] *= Dipole->GetMoment();
  496. ey[ir] *= Dipole->GetMoment();
  497. ez[ir] *= Dipole->GetMoment();
  498. hx[ir] *= Dipole->GetMoment();
  499. hy[ir] *= Dipole->GetMoment();
  500. hz[ir] *= Dipole->GetMoment();
  501. // Append values instead of setting them
  502. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  503. (Complex)(ey[ir]),
  504. (Complex)(ez[ir]) );
  505. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  506. (Complex)(hy[ir]),
  507. (Complex)(hz[ir]) );
  508. }
  509. }
  510. //ii += MAXREC;
  511. nres2 = 0;
  512. // Perform last positions
  513. for (int ir=0; ir<nres-ii; ++ir) {
  514. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  515. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  516. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  517. ++nres2;
  518. }
  519. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  520. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  521. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  522. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  523. hx, hy, hz);
  524. // Scale By Moment
  525. for (int ir=0; ir<nres-ii; ++ir) {
  526. ex[ir] *= Dipole->GetMoment();
  527. ey[ir] *= Dipole->GetMoment();
  528. ez[ir] *= Dipole->GetMoment();
  529. hx[ir] *= Dipole->GetMoment();
  530. hy[ir] *= Dipole->GetMoment();
  531. hz[ir] *= Dipole->GetMoment();
  532. // Append values instead of setting them
  533. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  534. (Complex)(ey[ir]),
  535. (Complex)(ez[ir]) );
  536. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  537. (Complex)(hy[ir]),
  538. (Complex)(hz[ir]) );
  539. }
  540. delete [] sig;
  541. delete [] dep;
  542. //delete [] sus;
  543. //delete [] epr;
  544. delete [] susl;
  545. delete [] sush;
  546. delete [] susalp;
  547. delete [] sustau;
  548. delete [] eprl;
  549. delete [] eprh;
  550. delete [] epralp;
  551. delete [] eprtau;
  552. delete [] rxx;
  553. delete [] rxy;
  554. delete [] rxz;
  555. delete [] ex;
  556. delete [] ey;
  557. delete [] ez;
  558. delete [] hx;
  559. delete [] hy;
  560. delete [] hz;
  561. }
  562. #endif
  563. void EMEarth1D::SolveSingleTxRxPair (const int &irec, HankelTransform *Hankel, const Real &wavef, const int &ifreq,
  564. DipoleSource *tDipole) {
  565. ++icalcinner;
  566. // The PGI compilers fail on the below line, and others like it.
  567. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  568. //Real rho = ( ((Receivers->GetLocation(irec) - tDipole->GetLocation()).head(2)).eval() ).norm();
  569. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  570. Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  571. tDipole->UpdateFields( ifreq, Hankel, wavef );
  572. }
  573. // void EMEarth1D::SolveSingleTxRxPair (const int &irec, std::shared_ptr<HankelTransform> Hankel, const Real &wavef, const int &ifreq,
  574. // std::shared_ptr<DipoleSource> tDipole) {
  575. // ++icalcinner;
  576. // Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  577. // tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  578. // //Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  579. // //tDipole->UpdateFields( ifreq, Hankel, wavef );
  580. // }
  581. void EMEarth1D::SolveLaggedTxRxPair(const int &irec, HankelTransform* Hankel,
  582. const Real &wavef, const int &ifreq, PolygonalWireAntenna* antenna) {
  583. antenna->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  584. // Determine the min and max arguments
  585. Real rhomin = 1e9;
  586. Real rhomax = 1e-9;
  587. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  588. auto tDipole = antenna->GetDipoleSource(idip);
  589. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  590. rhomin = std::min(rhomin, rho);
  591. rhomax = std::max(rhomax, rho);
  592. }
  593. // Determine number of lagged convolutions to do
  594. int nlag = 1; // (Key==0) We need an extra for some reason for stability? Maybe in Spline?
  595. Real lrho ( 1.0 * rhomax );
  596. while ( lrho > rhomin ) {
  597. nlag += 1;
  598. lrho *= Hankel->GetABSER();
  599. }
  600. auto tDipole = antenna->GetDipoleSource(0);
  601. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  602. // Instead we should pass the antenna into this so that Hankel hass all the rho arguments...
  603. Hankel->ComputeLaggedRelated( 1.0*rhomax, nlag, tDipole->GetKernelManager() );
  604. // Sort the dipoles by rho
  605. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  606. // Can we avoid these two lines, and instead vary the moment of the previous tDipole?
  607. // SetKernels is somewhat heavy
  608. auto rDipole = antenna->GetDipoleSource(idip);
  609. //tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth); // expensive, and not used
  610. tDipole->SetLocation( rDipole->GetLocation() );
  611. tDipole->SetMoment( rDipole->GetMoment() );
  612. tDipole->SetPolarisation( rDipole->GetPolarisation() );
  613. tDipole->SetupLight( ifreq, FieldsToCalculate, irec );
  614. // Pass Hankel2 a message here so it knows which one to return in Zgauss!
  615. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  616. Hankel->SetLaggedArg( rho );
  617. tDipole->UpdateFields( ifreq, Hankel, wavef );
  618. }
  619. }
  620. //////////////////////////////////////////////////////////
  621. // Thread safe OO Reimplimentation of KiHand's
  622. // EM1DNEW.for programme
  623. void EMEarth1D::MakeCalc3() {
  624. if ( Dipole == nullptr ) throw NullDipoleSource();
  625. if (Earth == nullptr) throw NullEarth();
  626. if (Receivers == nullptr) throw NullReceivers();
  627. #ifdef LEMMAUSEOMP
  628. #pragma omp parallel
  629. #endif
  630. { // OpenMP Parallel Block
  631. #ifdef LEMMAUSEOMP
  632. int tid = omp_get_thread_num();
  633. int nthreads = omp_get_num_threads();
  634. #else
  635. int tid=0;
  636. int nthreads=1;
  637. #endif
  638. auto tDipole = Dipole->Clone();
  639. std::shared_ptr<HankelTransform> Hankel;
  640. switch (HankelType) {
  641. case ANDERSON801:
  642. Hankel = FHTAnderson801::NewSP();
  643. break;
  644. case CHAVE:
  645. Hankel = GQChave::NewSP();
  646. break;
  647. case FHTKEY201:
  648. Hankel = FHTKey201::NewSP();
  649. break;
  650. case FHTKEY101:
  651. Hankel = FHTKey101::NewSP();
  652. break;
  653. case FHTKEY51:
  654. Hankel = FHTKey51::NewSP();
  655. break;
  656. case QWEKEY:
  657. Hankel = QWEKey::NewSP();
  658. break;
  659. default:
  660. std::cerr << "Hankel transform cannot be created\n";
  661. exit(EXIT_FAILURE);
  662. }
  663. if ( tDipole->GetNumberOfFrequencies() < Receivers->GetNumberOfPoints() ) {
  664. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies(); ++ifreq) {
  665. // Propogation constant in free space being input to Hankel
  666. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  667. for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  668. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  669. }
  670. }
  671. } else {
  672. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  673. for (int ifreq=tid; ifreq<tDipole->GetNumberOfFrequencies(); ifreq+=nthreads) {
  674. // Propogation constant in free space being input to Hankel
  675. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  676. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  677. }
  678. }
  679. }
  680. } // OpenMP Parallel Block
  681. }
  682. NullReceivers::NullReceivers() :
  683. runtime_error("nullptr RECEIVERS") {}
  684. NullAntenna::NullAntenna() :
  685. runtime_error("nullptr ANTENNA") {}
  686. NullInstrument::NullInstrument(LemmaObject* ptr) :
  687. runtime_error("nullptr INSTRUMENT") {
  688. std::cout << "Thrown by instance of "
  689. << ptr->GetName() << std::endl;
  690. }
  691. DipoleSourceSpecifiedForWireAntennaCalc::
  692. DipoleSourceSpecifiedForWireAntennaCalc() :
  693. runtime_error("DIPOLE SOURCE SPECIFIED FOR WIRE ANTENNA CALC"){}
  694. } // end of Lemma Namespace