Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

PolygonalWireAntenna.cpp 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 05/18/2010
  9. **/
  10. #include "PolygonalWireAntenna.h"
  11. namespace Lemma {
  12. std::ostream &operator << (std::ostream &stream, const PolygonalWireAntenna &ob) {
  13. stream << ob.Serialize() << "\n";
  14. return stream;
  15. }
  16. // ==================== LIFECYCLE =======================
  17. PolygonalWireAntenna::PolygonalWireAntenna( const ctor_key& key ) :
  18. WireAntenna( key ), minDipoleRatio(.15),
  19. minDipoleMoment(1e-6), maxDipoleMoment(1e1), rRepeat(1e10,1e10,1e10) {
  20. Points.setZero();
  21. //rRepeat.setOnes();
  22. }
  23. PolygonalWireAntenna::PolygonalWireAntenna( const YAML::Node& node, const ctor_key& key) : WireAntenna(node, key ) {
  24. minDipoleRatio = node["minDipoleRatio"].as<Real>();
  25. maxDipoleMoment = node["maxDipoleMoment"].as<Real>();
  26. minDipoleMoment = node["minDipoleMoment"].as<Real>();
  27. }
  28. PolygonalWireAntenna::~PolygonalWireAntenna() {
  29. }
  30. //--------------------------------------------------------------------------------------
  31. // Class: PolygonalWireAntenna
  32. // Method: Serialize
  33. //--------------------------------------------------------------------------------------
  34. YAML::Node PolygonalWireAntenna::Serialize ( ) const {
  35. YAML::Node node = WireAntenna::Serialize();
  36. node.SetTag( this->GetName() );
  37. node["minDipoleRatio"] = minDipoleRatio;
  38. node["maxDipoleMoment"] = maxDipoleMoment;
  39. node["minDipoleMoment"] = minDipoleMoment;
  40. return node;
  41. } // ----- end of method PolygonalWireAntenna::Serialize -----
  42. //--------------------------------------------------------------------------------------
  43. // Class: WireAntenna
  44. // Method: DeSerialize
  45. //--------------------------------------------------------------------------------------
  46. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::DeSerialize ( const YAML::Node& node ) {
  47. if (node.Tag() != "PolygonalWireAntenna") {
  48. throw DeSerializeTypeMismatch( "PolygonalWireAntenna", node.Tag());
  49. }
  50. return std::make_shared<PolygonalWireAntenna> ( node, ctor_key() );
  51. } // ----- end of method WireAntenna::DeSerialize -----
  52. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::NewSP() {
  53. return std::make_shared<PolygonalWireAntenna>( ctor_key() );
  54. }
  55. std::shared_ptr<WireAntenna> PolygonalWireAntenna::Clone() const {
  56. auto copy = PolygonalWireAntenna::NewSP();
  57. copy->minDipoleRatio = this->minDipoleRatio;
  58. copy->minDipoleMoment = this->minDipoleMoment;
  59. copy->maxDipoleMoment = this->maxDipoleMoment;
  60. copy->NumberOfPoints = this->NumberOfPoints;
  61. copy->Freqs = this->Freqs;
  62. copy->Current = this->Current;
  63. copy->NumberOfTurns = this->NumberOfTurns;
  64. copy->Points = this->Points;
  65. //copy->Dipoles = this->Dipoles; // no, disaster
  66. return copy;
  67. }
  68. std::shared_ptr<PolygonalWireAntenna> PolygonalWireAntenna::ClonePA() const {
  69. auto copy = PolygonalWireAntenna::NewSP();
  70. copy->minDipoleRatio = this->minDipoleRatio;
  71. copy->minDipoleMoment = this->minDipoleMoment;
  72. copy->maxDipoleMoment = this->maxDipoleMoment;
  73. copy->NumberOfPoints = this->NumberOfPoints;
  74. copy->Freqs = this->Freqs;
  75. copy->Current = this->Current;
  76. copy->NumberOfTurns = this->NumberOfTurns;
  77. copy->Points = this->Points;
  78. //copy->Dipoles = this->Dipoles; // no, disaster
  79. return copy;
  80. }
  81. //--------------------------------------------------------------------------------------
  82. // Class: PolygonalWireAntenna
  83. // Method: GetName
  84. // Description: Class identifier
  85. //--------------------------------------------------------------------------------------
  86. inline std::string PolygonalWireAntenna::GetName ( ) const {
  87. return CName;
  88. } // ----- end of method PolygonalWireAntenna::GetName -----
  89. void PolygonalWireAntenna::SetMinDipoleRatio (const Real& ratio) {
  90. minDipoleRatio = ratio;
  91. }
  92. void PolygonalWireAntenna::SetMinDipoleMoment (const Real& m) {
  93. minDipoleMoment = m;
  94. }
  95. void PolygonalWireAntenna::SetMaxDipoleMoment (const Real& m) {
  96. maxDipoleMoment = m;
  97. }
  98. // ==================== OPERATIONS =======================
  99. void PolygonalWireAntenna::ApproximateWithElectricDipoles(const Vector3r &rp) {
  100. // Only resplit if necessary. Save a few cycles if repeated
  101. if ( (rRepeat-rp).norm() > 1e-16 ) {
  102. Dipoles.clear();
  103. // loop over all segments
  104. for (int iseg=0; iseg<NumberOfPoints-1; ++iseg) {
  105. InterpolateLineSegment(Points.col(iseg), Points.col(iseg+1), rp);
  106. }
  107. rRepeat = rp;
  108. } else {
  109. for (unsigned int id=0; id<Dipoles.size(); ++id) {
  110. Dipoles[id]->SetFrequencies(Freqs);
  111. }
  112. }
  113. }
  114. Vector3r PolygonalWireAntenna::ClosestPointOnLine(const Vector3r &p1,
  115. const Vector3r &p2, const Vector3r &tp) {
  116. Vector3r v1 = p2 - p1;
  117. Vector3r v2 = p1 - tp;
  118. Vector3r v3 = p1 - p2;
  119. Vector3r v4 = p2 - tp;
  120. Real dot1 = v2.dot(v1);
  121. Real dot2 = v1.dot(v1);
  122. Real dot3 = v4.dot(v3);
  123. Real dot4 = v3.dot(v3);
  124. Real t1 = -1.*dot1/dot2;
  125. Real t2 = -1.*dot3/dot4;
  126. Vector3r pos = p1+v1*t1 ;
  127. // check if on line
  128. // else give back the closest end point
  129. if ( t1>=0 && t2>=0. ) {
  130. return pos;
  131. } else if (t1<0) {
  132. return p1;
  133. } else {
  134. return p2;
  135. }
  136. }
  137. void PolygonalWireAntenna::PushXYZDipoles(const Vector3r &step,
  138. const Vector3r &cp, const Vector3r &dir,
  139. std::vector< std::shared_ptr<DipoleSource> > &xDipoles) {
  140. Real scale = (Real)(NumberOfTurns)*Current;
  141. auto tx = DipoleSource::NewSP();
  142. tx->SetLocation(cp);
  143. tx->SetType(UNGROUNDEDELECTRICDIPOLE);
  144. tx->SetPolarisation(dir);
  145. tx->SetFrequencies(Freqs);
  146. tx->SetMoment(scale*step.norm());
  147. xDipoles.push_back(tx);
  148. }
  149. void PolygonalWireAntenna::CorrectOverstepXYZDipoles(const Vector3r &step,
  150. const Vector3r &cp, const Vector3r &dir,
  151. std::vector< std::shared_ptr<DipoleSource> > &xDipoles ) {
  152. Real scale = (Real)(NumberOfTurns)*Current;
  153. // X oriented dipoles
  154. if (step.norm() > minDipoleMoment) {
  155. xDipoles[xDipoles.size()-1]->SetLocation(cp);
  156. xDipoles[xDipoles.size()-1]->SetMoment(scale*step.norm());
  157. }
  158. }
  159. void PolygonalWireAntenna::InterpolateLineSegment(const Vector3r &p1,
  160. const Vector3r &p2, const Vector3r & tp) {
  161. Vector3r phat = (p1-p2).array() / (p1-p2).norm();
  162. Vector3r c = this->ClosestPointOnLine(p1, p2, tp);
  163. Real dtp = (tp-c).norm(); // distance to point at c
  164. Real dc1 = (p1-c).norm(); // distance to c from p1
  165. Real dc2 = (p2-c).norm(); // distance to c from p1
  166. // unit vector
  167. Vector3r cdir = (p2-p1).array() / (p2-p1).norm();
  168. ///////////////////
  169. // dipoles for this segment
  170. std::vector< std::shared_ptr<DipoleSource> > xDipoles;
  171. // go towards p1
  172. if ( ((c-p1).array().abs() > minDipoleMoment).any() ) {
  173. // cp = current pos, lp = last pos
  174. Vector3r cp = c + phat*(dtp*minDipoleRatio)*.5;
  175. Vector3r lp = c;
  176. Real dist = (cp-p1).norm();
  177. Real dist_old = dist+1.;
  178. // check that we didn't run past the end, or that we aren't starting at
  179. // the end, or that initial step runs over!
  180. Vector3r dir = (p1-cp).array() / (p1-cp).norm(); // direction of movement
  181. Vector3r step = phat*(dtp*minDipoleRatio);
  182. Vector3r stepold = Vector3r::Zero();
  183. // (dir-phat) just shows if we are stepping towards or away from p1
  184. while (dist < dist_old && (dir-phat).norm() < 1e-8) {
  185. PushXYZDipoles(step, cp, cdir, xDipoles);
  186. // Make 1/2 of previous step, 1/2 of this step, store this step
  187. stepold = step;
  188. step = phat*( (cp-tp).norm()*minDipoleRatio );
  189. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  190. step *= .5;
  191. }
  192. lp = cp;
  193. cp += .5*stepold + .5*step;
  194. dist = (cp-p1).norm();
  195. dir = (p1-cp).array() / (p1-cp).norm();
  196. }
  197. // cp now points to end last of dipole moments
  198. cp -= .5*step;
  199. // Fix last dipole position, so that entire wire is represented,
  200. // and no more
  201. Real distLastSeg = (c - cp).norm();
  202. if (distLastSeg + minDipoleMoment < dc1) {
  203. // case 1: understep, add dipole
  204. step = (p1-cp).array();
  205. cp += .5*step;
  206. PushXYZDipoles(step, cp, cdir, xDipoles);
  207. } else if (distLastSeg > dc1 + minDipoleMoment) {
  208. // case 2: overstep, reposition dipole and size
  209. step = (p1 - (lp-.5*stepold));
  210. cp = (lp-.5*stepold) + (.5*step);
  211. CorrectOverstepXYZDipoles(step, cp, cdir, xDipoles);
  212. }
  213. // else case 0: nearly 'perfect' fit do nothing
  214. }
  215. // go towards p2
  216. if ( ( (c-p2).array().abs() > minDipoleMoment).any() ) {
  217. // cp = current pos, lp = last pos
  218. Vector3r step = -phat*(dtp*minDipoleRatio);
  219. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  220. step *= .5;
  221. }
  222. Vector3r cp = c + step*.5;
  223. Vector3r lp = c;
  224. Real dist = (p2-cp).norm();
  225. Real dist_old = dist+1e3;
  226. // check that we didn't run past the end, or that we aren't starting at
  227. // the end, or that initial step runs over!
  228. Vector3r dir = (p2-cp).array() / (p2-cp).norm(); // direction of movement
  229. Vector3r stepold = Vector3r::Zero();
  230. // (dir-phat) just shows if we are stepping towards or away from p1
  231. while (dist < dist_old && (dir+phat).norm() < 1e-8) {
  232. PushXYZDipoles(step, cp, cdir, xDipoles);
  233. // Make 1/2 of previous step, 1/2 of this step, store this step
  234. stepold = step;
  235. step = -phat*( (cp-tp).norm()*minDipoleRatio );
  236. while ( (step.array().abs() > maxDipoleMoment).any() ) {
  237. step *= .5;
  238. }
  239. lp = cp;
  240. cp += .5*stepold + .5*step;
  241. dist = (cp-p2).norm();
  242. dir = (p2-cp).array() / (p2-cp).norm();
  243. }
  244. // cp now points to end last of dipole moments
  245. cp -= .5*step;
  246. // Fix last dipole position, so that entire wire is represented,
  247. // and no more
  248. Real distLastSeg = (c - cp).norm();
  249. if (distLastSeg + minDipoleMoment < dc2) {
  250. // case 1: understep, add dipole
  251. step = (p2-cp).array();
  252. cp += .5*step;
  253. PushXYZDipoles(step, cp, cdir, xDipoles);
  254. } else if (distLastSeg > dc2 + minDipoleMoment) {
  255. // case 2: overstep, reposition dipole and size
  256. step = (p2 - (lp-.5*stepold));
  257. cp = (lp-.5*stepold) + (.5*step);
  258. CorrectOverstepXYZDipoles(step, cp, cdir, xDipoles);
  259. }
  260. // else case 0: nearly 'perfect' fit do nothing
  261. }
  262. Dipoles.insert(Dipoles.end(), xDipoles.begin(), xDipoles.end());
  263. }
  264. }