Lemma is an Electromagnetics API
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

EMEarth1D.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "EMEarth1D.h"
  11. #include "FieldPoints.h"
  12. #include "WireAntenna.h"
  13. #include "PolygonalWireAntenna.h"
  14. #ifdef LEMMAUSEOMP
  15. #include "omp.h"
  16. #endif
  17. namespace Lemma {
  18. std::ostream &operator << (std::ostream &stream, const EMEarth1D &ob) {
  19. stream << ob.Serialize() << "\n";
  20. return stream;
  21. }
  22. #ifdef KIHALEE_EM1D
  23. // Wrapper function for Fortran subroutine Em1D bi kihand
  24. // Returns E or H fields (SLOW)
  25. extern "C" { void em1dcall_(int &itype, // source
  26. int &ipol, // source
  27. int &nlay, // Earth
  28. int &nfreq, // source
  29. int &nfield, // Calculator
  30. int &nres, // Receivers
  31. int &jtype, // N/A
  32. int &jgamma, // Controller
  33. double &acc, // Controller
  34. double *dep, // Earth
  35. std::complex<double> *sig, // Earth
  36. double *susl, // Earth
  37. double *sush, // Earth
  38. double *sustau, // Earth
  39. double *susalp, // Earth
  40. double *eprl, // Earth
  41. double *eprh, // Earth
  42. double *eprtau, // Earth
  43. double *epralp, // Earth
  44. double &finit, // N/A
  45. double &flimit, // N/A
  46. double &dlimit, // N/A
  47. double &lfinc, // N/A
  48. double &tx, // Source
  49. double &ty, // Source
  50. double &tz, // Source
  51. double *rxx, // Receivers
  52. double *rxy, // Receivers
  53. double *rxz, // Receivers
  54. std::complex<double> *ex, // Receivers
  55. std::complex<double> *ey, // |
  56. std::complex<double> *ez, // |
  57. std::complex<double> *hx, // |
  58. std::complex<double> *hy, // V
  59. std::complex<double> *hz ); // ___
  60. }
  61. #endif
  62. // ==================== LIFECYCLE ===================================
  63. // TODO init large arrays here.
  64. EMEarth1D::EMEarth1D( const ctor_key& key ) : LemmaObject( key ),
  65. Dipole(nullptr), Earth(nullptr), Receivers(nullptr), Antenna(nullptr),
  66. FieldsToCalculate(BOTH), HankelType(ANDERSON801), icalcinner(0), icalc(0) {
  67. }
  68. EMEarth1D::~EMEarth1D() {
  69. }
  70. std::shared_ptr<EMEarth1D> EMEarth1D::NewSP() {
  71. return std::make_shared<EMEarth1D>(ctor_key());
  72. }
  73. YAML::Node EMEarth1D::Serialize() const {
  74. YAML::Node node = LemmaObject::Serialize();
  75. node["FieldsToCalculate"] = enum2String(FieldsToCalculate);
  76. node["HankelType"] = enum2String(HankelType);
  77. //if (Dipole != nullptr) node["Dipole"] = Dipole->Serialize();
  78. if (Earth != nullptr) node["Earth"] = Earth->Serialize();
  79. //if (Receivers != nullptr) node["Receivers"] = Receivers->Serialize(); Can be huge?
  80. if (Antenna != nullptr) node["Antenna"] = Antenna->Serialize();
  81. node.SetTag( this->GetName() );
  82. return node;
  83. }
  84. //--------------------------------------------------------------------------------------
  85. // Class: EMEarth1D
  86. // Method: GetName
  87. // Description: Class identifier
  88. //--------------------------------------------------------------------------------------
  89. inline std::string EMEarth1D::GetName ( ) const {
  90. return CName;
  91. } // ----- end of method EMEarth1D::GetName -----
  92. // ==================== ACCESS ===================================
  93. void EMEarth1D::AttachDipoleSource( std::shared_ptr<DipoleSource> dipoleptr) {
  94. Dipole = dipoleptr;
  95. if (Receivers != nullptr) {
  96. // Check to make sure Receivers are set up for all calculations
  97. switch(FieldsToCalculate) {
  98. case E:
  99. if (Receivers->NumberOfBinsE != Dipole->GetNumberOfFrequencies())
  100. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  101. break;
  102. case H:
  103. if (Receivers->NumberOfBinsH != Dipole->GetNumberOfFrequencies())
  104. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  105. break;
  106. case BOTH:
  107. if (Receivers->NumberOfBinsH != Dipole->GetNumberOfFrequencies())
  108. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  109. if (Receivers->NumberOfBinsE != Dipole->GetNumberOfFrequencies())
  110. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  111. break;
  112. }
  113. }
  114. }
  115. void EMEarth1D::AttachFieldPoints( std::shared_ptr<FieldPoints> recptr) {
  116. Receivers = recptr;
  117. if (Receivers == nullptr) {
  118. std::cerr << "nullptr Receivers in emearth1d.cpp " << std::endl;
  119. return;
  120. }
  121. // This has an implicit need to first set a source before receivers, users
  122. // will not expect this. Fix
  123. if (Dipole != nullptr) {
  124. switch (FieldsToCalculate) {
  125. case E:
  126. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  127. break;
  128. case H:
  129. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  130. break;
  131. case BOTH:
  132. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  133. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  134. break;
  135. }
  136. } else if (Antenna != nullptr) {
  137. switch (FieldsToCalculate) {
  138. case E:
  139. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  140. break;
  141. case H:
  142. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  143. break;
  144. case BOTH:
  145. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  146. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  147. break;
  148. }
  149. }
  150. }
  151. void EMEarth1D::AttachLayeredEarthEM( std::shared_ptr<LayeredEarthEM> earthptr) {
  152. Earth = earthptr;
  153. }
  154. void EMEarth1D::AttachWireAntenna(std::shared_ptr<WireAntenna> antennae) {
  155. this->Antenna = antennae;
  156. }
  157. void EMEarth1D::SetFieldsToCalculate(const FIELDCALCULATIONS &calc) {
  158. FieldsToCalculate = calc;
  159. }
  160. void EMEarth1D::SetHankelTransformMethod( const HANKELTRANSFORMTYPE &type) {
  161. HankelType = type;
  162. }
  163. void EMEarth1D::Query() {
  164. std::cout << "EmEarth1D::Query()" << std::endl;
  165. std::cout << "Dipole " << Dipole;
  166. if (Dipole) std::cout << *Dipole << std::endl;
  167. std::cout << "Earth " << Earth;
  168. if (Earth) std::cout << *Earth << std::endl;
  169. std::cout << "Receivers " << Earth;
  170. if (Earth) std::cout << *Receivers << std::endl;
  171. std::cout << "Antenna " << Earth;
  172. if (Antenna) std::cout << *Antenna << std::endl;
  173. std::cout << "icalc " << icalc << std::endl;
  174. std::cout << "icalcinner " << icalcinner << std::endl;
  175. }
  176. // ==================== OPERATIONS ===================================
  177. void EMEarth1D::CalculateWireAntennaFields(bool progressbar) {
  178. if (Earth == nullptr) {
  179. throw NullEarth();
  180. }
  181. if (Receivers == nullptr) {
  182. throw NullReceivers();
  183. }
  184. if (Antenna == nullptr) {
  185. throw NullAntenna();
  186. }
  187. if (Dipole != nullptr) {
  188. throw DipoleSourceSpecifiedForWireAntennaCalc();
  189. }
  190. Receivers->ClearFields();
  191. // Check to make sure Receivers are set up for all calculations
  192. switch(FieldsToCalculate) {
  193. case E:
  194. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  195. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  196. break;
  197. case H:
  198. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  199. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  200. break;
  201. case BOTH:
  202. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  203. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  204. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  205. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  206. break;
  207. }
  208. if (Antenna->GetName() == std::string("PolygonalWireAntenna") || Antenna->GetName() == std::string("TEMTransmitter") ) {
  209. icalc += 1;
  210. // Check to see if they are all on a plane? If so we can do this fast
  211. if ( Antenna->IsHorizontallyPlanar() && ( HankelType == ANDERSON801 || HankelType == FHTKEY201 || HankelType==FHTKEY101 ||
  212. HankelType == FHTKEY51 || HankelType == FHTKONG61 || HankelType == FHTKONG121 ||
  213. HankelType == FHTKONG241 || HankelType == IRONS )) {
  214. std::unique_ptr<ProgressBar> mdisp;
  215. if (progressbar) {
  216. mdisp = std::make_unique< ProgressBar >( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  217. }
  218. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies();++ifreq) {
  219. Real wavef = 2.*PI* Antenna->GetFrequency(ifreq);
  220. #ifdef LEMMAUSEOMP
  221. #pragma omp parallel
  222. {
  223. #endif
  224. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  225. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  226. #ifdef LEMMAUSEOMP
  227. #pragma omp for schedule(static, 1)
  228. #endif
  229. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  230. SolveLaggedTxRxPair(irec, Hankel.get(), wavef, ifreq, AntCopy.get());
  231. if (progressbar) {
  232. ++ *mdisp;
  233. }
  234. }
  235. #ifdef LEMMAUSEOMP
  236. #pragma omp barrier
  237. }
  238. #endif
  239. }
  240. } else if (Receivers->GetNumberOfPoints() > Antenna->GetNumberOfFrequencies()) {
  241. //** Progress display bar for long calculations */
  242. std::unique_ptr<ProgressBar> mdisp;
  243. if (progressbar) {
  244. mdisp = std::make_unique< ProgressBar > ( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  245. }
  246. // parallelise across receivers
  247. #ifdef LEMMAUSEOMP
  248. #pragma omp parallel
  249. #endif
  250. { // OpenMP Parallel Block
  251. // Since these antennas change we need a local copy for each
  252. // thread.
  253. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  254. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  255. #ifdef LEMMAUSEOMP
  256. #pragma omp for schedule(static, 1) //nowait
  257. #endif
  258. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  259. if (!Receivers->GetMask(irec)) {
  260. AntCopy->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  261. for (int idip=0; idip < static_cast<int>(AntCopy->GetNumberOfDipoles()); ++idip) {
  262. auto tDipole = AntCopy->GetDipoleSource(idip);
  263. //#ifdef LEMMAUSEOMP
  264. //#pragma omp for schedule(static, 1)
  265. //#endif
  266. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies();
  267. ++ifreq) {
  268. // Propogation constant in free space
  269. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  270. std::sqrt(MU0*EPSILON0);
  271. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  272. } // freq loop
  273. } // dipole loop
  274. } // mask
  275. //std::cout << "Normal Path\n";
  276. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  277. //if (irec == 1) exit(0);
  278. if (progressbar) {
  279. ++ *mdisp;
  280. }
  281. } // receiver loop
  282. } // OMP_PARALLEL BLOCK
  283. } else if (Antenna->GetNumberOfFrequencies() > 8) {
  284. // parallel across frequencies
  285. //std::cout << "freq parallel #2" << std::endl;
  286. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  287. if (!Receivers->GetMask(irec)) {
  288. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  289. #ifdef LEMMAUSEOMP
  290. #pragma omp parallel
  291. #endif
  292. { // OpenMP Parallel Block
  293. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  294. #ifdef LEMMAUSEOMP
  295. #pragma omp for schedule(static, 1)
  296. #endif
  297. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  298. for (int idip=0; idip< static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  299. auto tDipole = Antenna->GetDipoleSource(idip);
  300. // Propogation constant in free space
  301. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  302. std::sqrt(MU0*EPSILON0);
  303. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  304. } // dipole loop
  305. } // frequency loop
  306. } // OMP_PARALLEL BLOCK
  307. } // mask loop
  308. //if (Receivers->GetNumberOfPoints() > 100) {
  309. // ++ mdisp;
  310. //}
  311. } // receiver loop
  312. } // Frequency Parallel
  313. else {
  314. //std::cout << "parallel across transmitter dipoles " << std::endl;
  315. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  316. if (!Receivers->GetMask(irec)) {
  317. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  318. // std::cout << "Not Masked " << std::endl;
  319. // std::cout << "n Freqs " << Antenna->GetNumberOfFrequencies() << std::endl;
  320. // std::cout << "n Dipoles " << Antenna->GetNumberOfDipoles() << std::endl;
  321. // if ( !Antenna->GetNumberOfDipoles() ) {
  322. // std::cout << "NO DIPOLES!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
  323. // // std::cout << "rec location " << Receivers->GetLocation(irec) << std::endl;
  324. // // }
  325. #ifdef LEMMAUSEOMP
  326. #pragma omp parallel
  327. #endif
  328. { // OpenMP Parallel Block
  329. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  330. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  331. #ifdef LEMMAUSEOMP
  332. #pragma omp for schedule(static, 1)
  333. #endif
  334. for (int idip=0; idip<static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  335. //#pragma omp critical
  336. //{
  337. //cout << "idip=" << idip << "\tthread num=" << omp_get_thread_num() << '\n';
  338. //}
  339. auto tDipole = Antenna->GetDipoleSource(idip);
  340. // Propogation constant in free space
  341. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  342. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  343. } // dipole loop
  344. } // frequency loop
  345. } // OMP_PARALLEL BLOCK
  346. } // mask loop
  347. //if (Receivers->GetNumberOfPoints() > 100) {
  348. // ++ disp;
  349. //}
  350. } // receiver loop
  351. } // Polygonal parallel logic
  352. } else {
  353. std::cerr << "Lemma with WireAntenna class is currently broken"
  354. << " fix or use PolygonalWireAntenna\n" << std::endl;
  355. exit(EXIT_FAILURE);
  356. // TODO, getting wrong answer, curiously worKernel->GetKs() with MakeCalc, maybe
  357. // a threading issue, use SolveSingleTxRxPair maype instead of call
  358. // to MakeCalc3? !!!
  359. for (unsigned int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  360. this->Dipole = Antenna->GetDipoleSource(idip);
  361. MakeCalc3();
  362. //++disp;
  363. }
  364. this->Dipole = nullptr;
  365. }
  366. }
  367. #ifdef KIHALEE_EM1D
  368. void EMEarth1D::MakeCalc() {
  369. int itype; // 1 = elec, 2 = mag
  370. switch (this->Dipole->GetDipoleSourceType()) {
  371. case (GROUNDEDELECTRICDIPOLE) :
  372. itype = 1;
  373. break;
  374. case (MAGNETICDIPOLE) :
  375. itype = 2;
  376. break;
  377. case (UNGROUNDEDELECTRICDIPOLE) :
  378. std::cerr << "Fortran routine cannot calculate ungrounded"
  379. "electric dipole\n";
  380. default:
  381. throw NonValidDipoleType();
  382. }
  383. int ipol ;
  384. Vector3r Pol = this->Dipole->GetPolarisation();
  385. if (std::abs(Pol[0]-1) < 1e-5) {
  386. ipol = 1;
  387. } else if (std::abs(Pol[1]-1) < 1e-5) {
  388. ipol = 2;
  389. } else if (std::abs(Pol[2]-1) < 1e-5) {
  390. ipol = 3;
  391. } else {
  392. std::cerr << "Fortran routine cannot calculate arbitrary "
  393. "dipole polarisation, set to x, y, or z\n";
  394. }
  395. int nlay = Earth->GetNumberOfNonAirLayers();
  396. if (nlay > MAXLAYERS) {
  397. std::cerr << "FORTRAN CODE CAN ONLY HANDLE " << MAXLAYERS
  398. << " LAYERS\n";
  399. throw EarthModelWithMoreThanMaxLayers();
  400. }
  401. int nfreq = 1; // number of freqs
  402. int nfield; // field output 1 = elec, 2 = mag, 3 = both
  403. switch (FieldsToCalculate) {
  404. case E:
  405. nfield = 1;
  406. break;
  407. case H:
  408. nfield = 2;
  409. break;
  410. case BOTH:
  411. nfield = 3;
  412. break;
  413. default:
  414. throw 7;
  415. }
  416. int nres = Receivers->GetNumberOfPoints();
  417. int jtype = 3; // form ouf output,
  418. // 1 = horizontal,
  419. // 2 = down hole,
  420. // 3 = freq sounding
  421. // 4 = down hole logging
  422. int jgamma = 0; // Units 0 = MKS (H->A/m and E->V/m)
  423. // 1 = h->Gammas E->V/m
  424. double acc = 0.; // Tolerance
  425. // TODO, fix FORTRAN calls so these arrays can be nlay long, not
  426. // MAXLAYERS.
  427. // Model Parameters
  428. double *dep = new double[MAXLAYERS];
  429. dep[0] = 0.; // We always say air starts at 0
  430. for (int ilay=1; ilay<Earth->GetNumberOfLayers(); ++ilay) {
  431. dep[ilay] = dep[ilay-1] + Earth->GetLayerThickness(ilay);
  432. //std::cout << "Depth " << dep[ilay] << std::endl;
  433. }
  434. std::complex<double> *sig = new std::complex<double> [MAXLAYERS];
  435. for (int ilay=1; ilay<=nlay; ++ilay) {
  436. sig[ilay-1] = (std::complex<double>)(Earth->GetLayerConductivity(ilay));
  437. }
  438. // TODO, pass these into Fortran call, and return Cole-Cole model
  439. // parameters. Right now this does nothing
  440. //std::complex<double> *sus = new std::complex<double>[MAXLAYERS];
  441. //std::complex<double> *epr = new std::complex<double>[MAXLAYERS];
  442. // Cole-Cole model stuff
  443. double *susl = new double[MAXLAYERS];
  444. for (int ilay=1; ilay<=nlay; ++ilay) {
  445. susl[ilay-1] = Earth->GetLayerLowFreqSusceptibility(ilay);
  446. }
  447. double *sush = new double[MAXLAYERS];
  448. for (int ilay=1; ilay<=nlay; ++ilay) {
  449. sush[ilay-1] = Earth->GetLayerHighFreqSusceptibility(ilay);
  450. }
  451. double *sustau = new double[MAXLAYERS];
  452. for (int ilay=1; ilay<=nlay; ++ilay) {
  453. sustau[ilay-1] = Earth->GetLayerTauSusceptibility(ilay);
  454. }
  455. double *susalp = new double[MAXLAYERS];
  456. for (int ilay=1; ilay<=nlay; ++ilay) {
  457. susalp[ilay-1] = Earth->GetLayerBreathSusceptibility(ilay);
  458. }
  459. double *eprl = new double[MAXLAYERS];
  460. for (int ilay=1; ilay<=nlay; ++ilay) {
  461. eprl[ilay-1] = Earth->GetLayerLowFreqPermitivity(ilay);
  462. }
  463. double *eprh = new double[MAXLAYERS];
  464. for (int ilay=1; ilay<=nlay; ++ilay) {
  465. eprh[ilay-1] = Earth->GetLayerHighFreqPermitivity(ilay);
  466. }
  467. double *eprtau = new double[MAXLAYERS];
  468. for (int ilay=1; ilay<=nlay; ++ilay) {
  469. eprtau[ilay-1] = Earth->GetLayerTauPermitivity(ilay);
  470. }
  471. double *epralp = new double[MAXLAYERS];
  472. for (int ilay=1; ilay<=nlay; ++ilay) {
  473. epralp[ilay-1] = Earth->GetLayerBreathPermitivity(ilay);
  474. }
  475. // Freq stuff
  476. double finit = Dipole->GetFrequency(0); //(1000); // Starting freq
  477. double flimit = Dipole->GetFrequency(0); //(1000); // max freq
  478. double dlimit = Dipole->GetFrequency(0); //(1000); // difusion limit
  479. double lfinc(1); // no. freq per decade
  480. // tx location jtype != 4
  481. double txx = Dipole->GetLocation(0); // (0.);
  482. double txy = Dipole->GetLocation(1); // (0.);
  483. double txz = Dipole->GetLocation(2); // (0.);
  484. // rx position
  485. // TODO, fix Fortran program to not waste this memory
  486. // maybe
  487. const int MAXREC = 15;
  488. double *rxx = new double [MAXREC];
  489. double *rxy = new double [MAXREC];
  490. double *rxz = new double [MAXREC];
  491. std::complex<double> *ex = new std::complex<double>[MAXREC];
  492. std::complex<double> *ey = new std::complex<double>[MAXREC];
  493. std::complex<double> *ez = new std::complex<double>[MAXREC];
  494. std::complex<double> *hx = new std::complex<double>[MAXREC];
  495. std::complex<double> *hy = new std::complex<double>[MAXREC];
  496. std::complex<double> *hz = new std::complex<double>[MAXREC];
  497. int nres2 = MAXREC;
  498. int ii=0;
  499. for (ii=0; ii<nres-MAXREC; ii+=MAXREC) {
  500. for (int ir=0; ir<MAXREC; ++ir) {
  501. //Vector3r pos = Receivers->GetLocation(ii+ir);
  502. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  503. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  504. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  505. }
  506. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  507. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  508. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  509. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  510. hx, hy, hz);
  511. // Scale By Moment
  512. for (int ir=0; ir<MAXREC; ++ir) {
  513. ex[ir] *= Dipole->GetMoment();
  514. ey[ir] *= Dipole->GetMoment();
  515. ez[ir] *= Dipole->GetMoment();
  516. hx[ir] *= Dipole->GetMoment();
  517. hy[ir] *= Dipole->GetMoment();
  518. hz[ir] *= Dipole->GetMoment();
  519. // Append values instead of setting them
  520. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  521. (Complex)(ey[ir]),
  522. (Complex)(ez[ir]) );
  523. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  524. (Complex)(hy[ir]),
  525. (Complex)(hz[ir]) );
  526. }
  527. }
  528. //ii += MAXREC;
  529. nres2 = 0;
  530. // Perform last positions
  531. for (int ir=0; ir<nres-ii; ++ir) {
  532. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  533. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  534. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  535. ++nres2;
  536. }
  537. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  538. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  539. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  540. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  541. hx, hy, hz);
  542. // Scale By Moment
  543. for (int ir=0; ir<nres-ii; ++ir) {
  544. ex[ir] *= Dipole->GetMoment();
  545. ey[ir] *= Dipole->GetMoment();
  546. ez[ir] *= Dipole->GetMoment();
  547. hx[ir] *= Dipole->GetMoment();
  548. hy[ir] *= Dipole->GetMoment();
  549. hz[ir] *= Dipole->GetMoment();
  550. // Append values instead of setting them
  551. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  552. (Complex)(ey[ir]),
  553. (Complex)(ez[ir]) );
  554. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  555. (Complex)(hy[ir]),
  556. (Complex)(hz[ir]) );
  557. }
  558. delete [] sig;
  559. delete [] dep;
  560. //delete [] sus;
  561. //delete [] epr;
  562. delete [] susl;
  563. delete [] sush;
  564. delete [] susalp;
  565. delete [] sustau;
  566. delete [] eprl;
  567. delete [] eprh;
  568. delete [] epralp;
  569. delete [] eprtau;
  570. delete [] rxx;
  571. delete [] rxy;
  572. delete [] rxz;
  573. delete [] ex;
  574. delete [] ey;
  575. delete [] ez;
  576. delete [] hx;
  577. delete [] hy;
  578. delete [] hz;
  579. }
  580. #endif
  581. void EMEarth1D::SolveSingleTxRxPair (const int &irec, HankelTransform *Hankel, const Real &wavef, const int &ifreq,
  582. DipoleSource *tDipole) {
  583. ++icalcinner;
  584. // The PGI compilers fail on the below line, and others like it.
  585. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  586. //Real rho = ( ((Receivers->GetLocation(irec) - tDipole->GetLocation()).head(2)).eval() ).norm();
  587. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  588. Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  589. tDipole->UpdateFields( ifreq, Hankel, wavef );
  590. }
  591. // void EMEarth1D::SolveSingleTxRxPair (const int &irec, std::shared_ptr<HankelTransform> Hankel, const Real &wavef, const int &ifreq,
  592. // std::shared_ptr<DipoleSource> tDipole) {
  593. // ++icalcinner;
  594. // Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  595. // tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  596. // //Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  597. // //tDipole->UpdateFields( ifreq, Hankel, wavef );
  598. // }
  599. void EMEarth1D::SolveLaggedTxRxPair(const int &irec, HankelTransform* Hankel,
  600. const Real &wavef, const int &ifreq, PolygonalWireAntenna* antenna) {
  601. antenna->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  602. // Determine the min and max arguments
  603. Real rhomin = 1e9;
  604. Real rhomax = 1e-9;
  605. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  606. auto tDipole = antenna->GetDipoleSource(idip);
  607. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  608. rhomin = std::min(rhomin, rho);
  609. rhomax = std::max(rhomax, rho);
  610. }
  611. // Determine number of lagged convolutions to do
  612. int nlag = 1; // (Key==0) We need an extra for some reason for stability? Maybe in Spline?
  613. Real lrho ( 1.0 * rhomax );
  614. while ( lrho > rhomin ) {
  615. nlag += 1;
  616. lrho *= Hankel->GetABSER();
  617. }
  618. auto tDipole = antenna->GetDipoleSource(0);
  619. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  620. // Instead we should pass the antenna into this so that Hankel hass all the rho arguments...
  621. Hankel->ComputeLaggedRelated( 1.0*rhomax, nlag, tDipole->GetKernelManager() );
  622. // Sort the dipoles by rho
  623. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  624. // Can we avoid these two lines, and instead vary the moment of the previous tDipole?
  625. // SetKernels is somewhat heavy
  626. auto rDipole = antenna->GetDipoleSource(idip);
  627. //tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth); // expensive, and not used
  628. tDipole->SetLocation( rDipole->GetLocation() );
  629. tDipole->SetMoment( rDipole->GetMoment() );
  630. tDipole->SetPolarisation( rDipole->GetPolarisation() );
  631. tDipole->SetupLight( ifreq, FieldsToCalculate, irec );
  632. // Pass Hankel2 a message here so it knows which one to return in Zgauss!
  633. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  634. Hankel->SetLaggedArg( rho );
  635. tDipole->UpdateFields( ifreq, Hankel, wavef );
  636. }
  637. }
  638. //////////////////////////////////////////////////////////
  639. // Thread safe OO Reimplimentation of KiHand's
  640. // EM1DNEW.for programme
  641. void EMEarth1D::MakeCalc3() {
  642. if ( Dipole == nullptr ) throw NullDipoleSource();
  643. if (Earth == nullptr) throw NullEarth();
  644. if (Receivers == nullptr) throw NullReceivers();
  645. #ifdef LEMMAUSEOMP
  646. #pragma omp parallel
  647. #endif
  648. { // OpenMP Parallel Block
  649. #ifdef LEMMAUSEOMP
  650. int tid = omp_get_thread_num();
  651. int nthreads = omp_get_num_threads();
  652. #else
  653. int tid=0;
  654. int nthreads=1;
  655. #endif
  656. auto tDipole = Dipole->Clone();
  657. std::shared_ptr<HankelTransform> Hankel;
  658. switch (HankelType) {
  659. case ANDERSON801:
  660. Hankel = FHTAnderson801::NewSP();
  661. break;
  662. case CHAVE:
  663. Hankel = GQChave::NewSP();
  664. break;
  665. case FHTKEY201:
  666. Hankel = FHTKey201::NewSP();
  667. break;
  668. case FHTKEY101:
  669. Hankel = FHTKey101::NewSP();
  670. break;
  671. case FHTKEY51:
  672. Hankel = FHTKey51::NewSP();
  673. break;
  674. case QWEKEY:
  675. Hankel = QWEKey::NewSP();
  676. break;
  677. default:
  678. std::cerr << "Hankel transform cannot be created\n";
  679. exit(EXIT_FAILURE);
  680. }
  681. if ( tDipole->GetNumberOfFrequencies() < Receivers->GetNumberOfPoints() ) {
  682. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies(); ++ifreq) {
  683. // Propogation constant in free space being input to Hankel
  684. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  685. for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  686. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  687. }
  688. }
  689. } else {
  690. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  691. for (int ifreq=tid; ifreq<tDipole->GetNumberOfFrequencies(); ifreq+=nthreads) {
  692. // Propogation constant in free space being input to Hankel
  693. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  694. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  695. }
  696. }
  697. }
  698. } // OpenMP Parallel Block
  699. }
  700. NullReceivers::NullReceivers() :
  701. runtime_error("nullptr RECEIVERS") {}
  702. NullAntenna::NullAntenna() :
  703. runtime_error("nullptr ANTENNA") {}
  704. NullInstrument::NullInstrument(LemmaObject* ptr) :
  705. runtime_error("nullptr INSTRUMENT") {
  706. std::cout << "Thrown by instance of "
  707. << ptr->GetName() << std::endl;
  708. }
  709. DipoleSourceSpecifiedForWireAntennaCalc::
  710. DipoleSourceSpecifiedForWireAntennaCalc() :
  711. runtime_error("DIPOLE SOURCE SPECIFIED FOR WIRE ANTENNA CALC"){}
  712. } // end of Lemma Namespace