Lemma is an Electromagnetics API
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

DipoleSource.cpp 75KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "DipoleSource.h"
  11. #include "KernelEM1DManager.h"
  12. //#include "GroundedElectricDipole.h"
  13. //#include "UngroundedElectricDipole.h"
  14. //#include "MagneticDipole.h"
  15. #include "FieldPoints.h"
  16. #include "HankelTransform.h"
  17. namespace Lemma {
  18. // ==================== FRIENDS ======================
  19. std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) {
  20. stream << ob.Serialize() << "\n";
  21. return stream;
  22. }
  23. /*
  24. bool DipoleSource::operator == (DipoleSource& rhs) const {
  25. if (Location != rhs.Location) return false;
  26. return true;
  27. }
  28. */
  29. // ==================== LIFECYCLE ======================
  30. DipoleSource::DipoleSource( const ctor_key& key ) : LemmaObject( key ),
  31. Type(NOSOURCETYPE),
  32. irec(-1),
  33. Phase(0),
  34. Moment(1),
  35. KernelManager(nullptr),
  36. Receivers(nullptr),
  37. Earth(nullptr)
  38. {
  39. this->Location.setZero();
  40. this->Phat.setZero();
  41. }
  42. DipoleSource::DipoleSource( const YAML::Node& node, const ctor_key& key ) : LemmaObject( node, key ),
  43. Type(NOSOURCETYPE),
  44. irec(-1),
  45. Phase(0),
  46. Moment(1),
  47. KernelManager(nullptr),
  48. Receivers(nullptr),
  49. Earth(nullptr)
  50. {
  51. Type = string2Enum<DIPOLESOURCETYPE>(node["Type"].as<std::string>());
  52. this->Location = node["Location"].as<Vector3r>();
  53. this->Phat.setZero();
  54. }
  55. DipoleSource::~DipoleSource() {
  56. }
  57. std::shared_ptr<DipoleSource> DipoleSource::NewSP() {
  58. return std::make_shared<DipoleSource> ( ctor_key() );
  59. }
  60. YAML::Node DipoleSource::Serialize() const {
  61. YAML::Node node = LemmaObject::Serialize();
  62. node.SetTag( GetName() );
  63. node["Type"] = enum2String(Type);
  64. node["Location"] = Location;
  65. node["Phat"] = Phat;
  66. node["Freqs"] = Freqs;
  67. node["Phase"] = Phase;
  68. node["Moment"] = Moment;
  69. return node;
  70. }
  71. std::shared_ptr< DipoleSource > DipoleSource::DeSerialize(const YAML::Node& node) {
  72. if (node.Tag() != "DipoleSource") {
  73. throw DeSerializeTypeMismatch( "DipoleSource", node.Tag());
  74. }
  75. return std::make_shared<DipoleSource> ( node, ctor_key() );
  76. }
  77. std::shared_ptr<DipoleSource> DipoleSource::Clone() {
  78. auto Obj = DipoleSource::NewSP();
  79. // copy
  80. Obj->Type = Type;
  81. Obj->irec = irec;
  82. Obj->lays = lays;
  83. Obj->layr = layr;
  84. Obj->Phase = Phase;
  85. Obj->Moment = Moment;
  86. Obj->xxp = xxp;
  87. Obj->yyp = yyp;
  88. Obj->rho = rho;
  89. Obj->sp = sp;
  90. Obj->cp = cp;
  91. Obj->scp = scp;
  92. Obj->sps = sps;
  93. Obj->cps = cps;
  94. Obj->c2p = c2p;
  95. Obj->FieldsToCalculate = FieldsToCalculate;
  96. Obj->f = f;
  97. Obj->ik = ik;
  98. Obj->Location = Location;
  99. Obj->Phat = Phat;
  100. Obj->Freqs = Freqs;
  101. return Obj;
  102. }
  103. //--------------------------------------------------------------------------------------
  104. // Class: DipoleSource
  105. // Method: GetName
  106. // Description: Class identifier
  107. //--------------------------------------------------------------------------------------
  108. inline std::string DipoleSource::GetName ( ) const {
  109. return CName;
  110. } // ----- end of method DipoleSource::GetName -----
  111. // ==================== ACCESS ======================
  112. void DipoleSource::SetLocation(const Vector3r &posin) {
  113. this->Location = posin;
  114. }
  115. void DipoleSource::SetLocation(const Real &xp, const Real &yp,
  116. const Real &zp) {
  117. this->Location = Vector3r(xp, yp, zp);
  118. }
  119. void DipoleSource::SetPhase(const Real &phase) {
  120. this->Phase = phase;
  121. }
  122. void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) {
  123. static bool called = false;
  124. if (!called) {
  125. std::cerr << "\n\n=================================================================\n"
  126. << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n"
  127. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  128. << "This method will be removed in future versions of Lemma"
  129. << "\n=================================================================\n";
  130. called = true;
  131. }
  132. // Polarity = pol;
  133. // switch (Polarity) {
  134. // case POSITIVE:
  135. // Moment = std::abs(Moment);
  136. // break;
  137. // case NEGATIVE:
  138. // Moment = -std::abs(Moment);
  139. // break;
  140. // default:
  141. // throw NonValidDipolePolarity();
  142. // };
  143. }
  144. void DipoleSource::SetType(const DIPOLESOURCETYPE & stype) {
  145. switch (stype) {
  146. case (GROUNDEDELECTRICDIPOLE):
  147. this->Type = stype;
  148. break;
  149. case (UNGROUNDEDELECTRICDIPOLE):
  150. this->Type = stype;
  151. break;
  152. case (MAGNETICDIPOLE):
  153. this->Type = stype;
  154. break;
  155. default:
  156. throw NonValidDipoleTypeAssignment();
  157. }
  158. }
  159. void DipoleSource::SetPolarisation(const Vector3r& pol) {
  160. this->Phat = pol / pol.norm();
  161. }
  162. void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) {
  163. Vector3r pol = (VectorXr(3) << x, y, z).finished();
  164. this->Phat = pol / pol.norm();
  165. }
  166. Vector3r DipoleSource::GetPolarisation() {
  167. return Phat;
  168. }
  169. DIPOLESOURCETYPE DipoleSource::GetType() {
  170. return Type;
  171. }
  172. void DipoleSource::SetPolarisation(const
  173. DipoleSourcePolarisation &pol) {
  174. static bool called = false;
  175. if (!called) {
  176. std::cout << "\n\n========================================================================================\n"
  177. << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n"
  178. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  179. << "This method will be removed in future versions of Lemma"
  180. << "\n========================================================================================\n";
  181. called = true;
  182. }
  183. switch (pol) {
  184. case (XPOLARISATION):
  185. this->Phat = (VectorXr(3) << 1, 0, 0).finished();
  186. break;
  187. case (YPOLARISATION):
  188. this->Phat = (VectorXr(3) << 0, 1, 0).finished();
  189. break;
  190. case (ZPOLARISATION):
  191. this->Phat = (VectorXr(3) << 0, 0, 1).finished();
  192. break;
  193. default:
  194. throw NonValidDipolePolarisationAssignment();
  195. }
  196. }
  197. void DipoleSource::SetMoment(const Real &moment) {
  198. this->Moment = moment;
  199. }
  200. // ==================== OPERATIONS =====================
  201. void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> ReceiversIn, const int& irecin,
  202. std::shared_ptr<LayeredEarthEM> EarthIn ) {
  203. if (Receivers != ReceiversIn) {
  204. Receivers = ReceiversIn;
  205. }
  206. if (Earth != EarthIn) {
  207. Earth = EarthIn;
  208. }
  209. if (irecin != irec) {
  210. irec = irecin;
  211. }
  212. if (FieldsToCalculate != Fields) {
  213. FieldsToCalculate = Fields;
  214. }
  215. xxp = Receivers->GetLocation(irec)[0] - Location[0];
  216. yyp = Receivers->GetLocation(irec)[1] - Location[1];
  217. rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm();
  218. sp = yyp/rho;
  219. cp = xxp/rho;
  220. scp = sp*cp;
  221. sps = sp*sp;
  222. cps = cp*cp;
  223. c2p = cps-sps;
  224. f = VectorXcr::Zero(13);
  225. ik = VectorXi::Zero(13);
  226. lays = Earth->GetLayerAtThisDepth(Location[2]);
  227. layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]);
  228. KernelManager = KernelEM1DManager::NewSP();
  229. KernelManager->SetEarth(Earth);
  230. // alternative is to use weak_ptr here, this is deep and internal, and we are safe.
  231. KernelManager->SetDipoleSource( shared_from_this().get() , ifreq, Receivers->GetLocation(irec)[2]);
  232. //KernelManager->SetDipoleSource( this.get() , ifreq, Receivers->GetLocation(irec)[2] );
  233. kernelFreq = Freqs(ifreq); // this is never used
  234. ReSetKernels( ifreq, Fields, Receivers, irec, Earth );
  235. return;
  236. }
  237. // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably
  238. // not the most critical piece though
  239. void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields ,
  240. std::shared_ptr<FieldPoints> Receivers, const int& irec,
  241. std::shared_ptr<LayeredEarthEM> Earth ) {
  242. Vector3r Pol = Phat;
  243. switch (Type) {
  244. case (GROUNDEDELECTRICDIPOLE):
  245. if (std::abs(Pol[2]) > 0) { // z dipole
  246. switch(FieldsToCalculate) {
  247. case E:
  248. if (lays == 0 && layr == 0) {
  249. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  250. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  251. } else if (lays == 0 && layr > 0) {
  252. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  253. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  254. } else if (lays > 0 && layr == 0) {
  255. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  256. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  257. } else {
  258. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  259. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  260. }
  261. break;
  262. case H:
  263. if (lays == 0 && layr == 0) {
  264. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  265. } else if (lays == 0 && layr > 0) {
  266. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  267. } else if (lays > 0 && layr == 0) {
  268. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  269. } else {
  270. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  271. }
  272. break;
  273. case BOTH:
  274. if ( lays == 0 && layr == 0) {
  275. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  276. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  277. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  278. } else if (lays == 0 && layr > 0) {
  279. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  280. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  281. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  282. } else if (lays > 0 && layr == 0) {
  283. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  284. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  285. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  286. } else {
  287. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  288. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  289. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  290. }
  291. }
  292. }
  293. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  294. switch(FieldsToCalculate) {
  295. case E:
  296. if ( lays == 0 && layr == 0) {
  297. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  298. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  299. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  300. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  301. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  302. } else if (lays == 0 && layr > 0) {
  303. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  304. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  305. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  306. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  307. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  308. } else if (lays > 0 && layr == 0) {
  309. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  310. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  311. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  312. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  313. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  314. } else {
  315. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  316. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  317. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  318. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  319. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  320. }
  321. break;
  322. case H:
  323. if (lays == 0 && layr == 0) {
  324. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  325. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  326. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  327. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  328. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  329. } else if (lays == 0 && layr > 0) {
  330. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  331. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  332. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  333. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  334. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  335. } else if (lays > 0 && layr == 0) {
  336. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  337. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  338. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  339. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  340. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  341. } else {
  342. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  343. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  344. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  345. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  346. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  347. }
  348. break;
  349. case BOTH:
  350. if (lays == 0 && layr == 0) {
  351. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  352. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  353. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  354. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  355. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  356. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  357. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  358. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  359. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  360. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  361. } else if (lays == 0 && layr > 0) {
  362. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  363. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  364. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  365. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  366. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  367. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  368. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  369. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  370. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  371. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  372. } else if (lays > 0 && layr == 0) {
  373. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  374. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  375. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  376. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  377. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  378. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  379. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  380. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  381. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  382. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  383. } else {
  384. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  385. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  386. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  387. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  388. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  389. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  390. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  391. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  392. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  393. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  394. }
  395. break;
  396. }
  397. }
  398. break;
  399. case (UNGROUNDEDELECTRICDIPOLE):
  400. if (std::abs(Pol[2]) > 0) { // z dipole
  401. switch(FieldsToCalculate) {
  402. case E:
  403. if (lays == 0 && layr == 0) {
  404. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  405. } else if (lays == 0 && layr > 0) {
  406. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  407. } else if (lays > 0 && layr == 0) {
  408. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  409. } else {
  410. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  411. }
  412. break;
  413. case H:
  414. if (lays == 0 && layr == 0) {
  415. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  416. } else if (lays == 0 && layr > 0) {
  417. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  418. } else if (lays > 0 && layr == 0) {
  419. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  420. } else {
  421. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  422. }
  423. break;
  424. case BOTH:
  425. if ( lays == 0 && layr == 0) {
  426. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  427. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  428. } else if (lays == 0 && layr > 0) {
  429. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  430. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  431. } else if (lays > 0 && layr == 0) {
  432. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  433. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  434. } else {
  435. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  436. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  437. }
  438. }
  439. }
  440. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  441. switch(FieldsToCalculate) {
  442. case E:
  443. if ( lays == 0 && layr == 0) {
  444. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  445. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  446. } else if (lays == 0 && layr > 0) {
  447. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  448. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  449. } else if (lays > 0 && layr == 0) {
  450. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  451. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  452. } else {
  453. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  454. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  455. }
  456. break;
  457. case H:
  458. if (lays == 0 && layr == 0) {
  459. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  460. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  461. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  462. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  463. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  464. } else if (lays == 0 && layr > 0) {
  465. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  466. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  467. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  468. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  469. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  470. } else if (lays > 0 && layr == 0) {
  471. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  472. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  473. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  474. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  475. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  476. } else {
  477. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  478. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  479. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  480. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  481. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  482. }
  483. break;
  484. case BOTH:
  485. if (lays == 0 && layr == 0) {
  486. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  487. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  488. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  489. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  490. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  491. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  492. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  493. } else if (lays == 0 && layr > 0) {
  494. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  495. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  496. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  497. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  498. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  499. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  500. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  501. } else if (lays > 0 && layr == 0) {
  502. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  503. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  504. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  505. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  506. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  507. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  508. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  509. } else {
  510. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  511. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  512. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  513. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  514. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  515. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  516. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  517. }
  518. break;
  519. }
  520. }
  521. break;
  522. case (MAGNETICDIPOLE):
  523. if (std::abs(Pol[2]) > 0) { // z dipole
  524. switch (FieldsToCalculate) {
  525. case E:
  526. if (lays == 0 && layr == 0) {
  527. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  528. } else if (lays == 0 && layr > 0) {
  529. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  530. } else if (lays > 0 && layr == 0) {
  531. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  532. } else {
  533. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  534. }
  535. break;
  536. case H:
  537. if (lays == 0 && layr == 0) {
  538. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  539. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  540. } else if (lays == 0 && layr > 0) {
  541. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  542. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  543. } else if (lays > 0 && layr == 0) {
  544. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  545. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  546. } else {
  547. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  548. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  549. }
  550. break;
  551. case BOTH:
  552. if (lays == 0 && layr == 0) {
  553. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  554. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  555. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  556. } else if (lays == 0 && layr > 0) {
  557. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  558. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  559. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  560. } else if (lays > 0 && layr == 0) {
  561. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  562. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  563. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  564. } else {
  565. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  566. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  567. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  568. }
  569. }
  570. }
  571. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  572. switch (FieldsToCalculate) {
  573. case E:
  574. if ( lays == 0 && layr == 0) {
  575. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  576. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  577. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  578. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  579. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  580. } else if (lays == 0 && layr > 0) {
  581. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  582. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  583. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  584. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  585. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  586. } else if (lays > 0 && layr == 0) {
  587. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INAIR>( );
  588. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INAIR>( );
  589. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INAIR>( );
  590. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INAIR>( );
  591. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INAIR>( );
  592. } else {
  593. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  594. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  595. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  596. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  597. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  598. }
  599. break;
  600. case H:
  601. if ( lays == 0 && layr == 0) {
  602. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  603. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  604. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  605. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  606. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  607. } else if (lays == 0 && layr > 0) {
  608. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  609. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  610. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  611. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  612. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  613. } else if (lays > 0 && layr == 0) {
  614. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INAIR>( );
  615. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INAIR>( );
  616. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INAIR>( );
  617. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INAIR>( );
  618. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INAIR>( );
  619. } else {
  620. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  621. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  622. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  623. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  624. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  625. }
  626. break;
  627. case BOTH:
  628. if ( lays == 0 && layr == 0) {
  629. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  630. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  631. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  632. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  633. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  634. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  635. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  636. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  637. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  638. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  639. } else if (lays == 0 && layr > 0) {
  640. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  641. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  642. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  643. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  644. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  645. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  646. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  647. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  648. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  649. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  650. } else {
  651. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  652. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  653. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  654. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  655. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  656. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  657. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  658. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  659. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  660. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  661. }
  662. break;
  663. }
  664. }
  665. break;
  666. default:
  667. std::cerr << "Dipole type incorrect, in dipolesource.cpp";
  668. exit(EXIT_FAILURE);
  669. }
  670. }
  671. void DipoleSource::UpdateFields( const int& ifreq, HankelTransform* Hankel, const Real& wavef) {
  672. Vector3r Pol = Phat;
  673. switch (Type) {
  674. case (GROUNDEDELECTRICDIPOLE):
  675. //Hankel->ComputeRelated(rho, KernelManager);
  676. if (std::abs(Pol[2]) > 0) { // z dipole
  677. switch(FieldsToCalculate) {
  678. case E:
  679. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  680. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  681. this->Receivers->AppendEfield(ifreq, irec,
  682. -Pol[2]*QPI*cp*f(10)*Moment,
  683. -Pol[2]*QPI*sp*f(10)*Moment,
  684. Pol[2]*QPI*f(11)*Moment);
  685. break;
  686. case H:
  687. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  688. this->Receivers->AppendHfield(ifreq, irec,
  689. -Pol[2]*QPI*sp*f(12)*Moment,
  690. Pol[2]*QPI*cp*f(12)*Moment,
  691. 0. );
  692. break;
  693. case BOTH:
  694. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm();
  695. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  696. this->Receivers->AppendEfield(ifreq, irec,
  697. -Pol[2]*QPI*cp*f(10)*Moment,
  698. -Pol[2]*QPI*sp*f(10)*Moment,
  699. Pol[2]*QPI*f(11)*Moment );
  700. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  701. this->Receivers->AppendHfield(ifreq, irec,
  702. -Pol[2]*QPI*sp*f(12)*Moment,
  703. Pol[2]*QPI*cp*f(12)*Moment,
  704. 0. );
  705. } // Fields to calculate Z polarity Electric dipole
  706. }
  707. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole
  708. switch(FieldsToCalculate) {
  709. case E:
  710. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  711. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  712. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  713. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  714. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  715. if (std::abs(Pol[1]) > 0) {
  716. this->Receivers->AppendEfield(ifreq, irec,
  717. Pol[1]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  718. Pol[1]*Moment*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho)),
  719. Pol[1]*Moment*QPI*sp*f(4));
  720. }
  721. if (std::abs(Pol[0]) > 0) {
  722. this->Receivers->AppendEfield(ifreq, irec,
  723. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  724. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  725. Pol[0]*Moment*QPI*cp*f(4) );
  726. }
  727. break;
  728. case H:
  729. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  730. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  731. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  732. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  733. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  734. if (std::abs(Pol[1]) > 0) {
  735. this->Receivers->AppendHfield(ifreq, irec,
  736. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  737. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  738. -Pol[1]*QPI*cp*f(9)*Moment );
  739. }
  740. if (std::abs(Pol[0]) > 0) {
  741. this->Receivers->AppendHfield(ifreq, irec,
  742. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  743. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  744. Pol[0]*Moment*QPI*sp*f(9) );
  745. }
  746. break;
  747. case BOTH:
  748. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm();
  749. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm();
  750. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm();
  751. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  752. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  753. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  754. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  755. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  756. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  757. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  758. if (std::abs(Pol[1]) > 0) {
  759. this->Receivers->AppendEfield(ifreq, irec,
  760. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  761. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  762. Pol[1]*QPI*sp*f(4)*Moment);
  763. this->Receivers->AppendHfield(ifreq, irec,
  764. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  765. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  766. -Pol[1]*QPI*cp*f(9)*Moment );
  767. }
  768. if (std::abs(Pol[0]) > 0) {
  769. this->Receivers->AppendEfield(ifreq, irec,
  770. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  771. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  772. Pol[0]*Moment*QPI*cp*f(4) );
  773. this->Receivers->AppendHfield(ifreq, irec,
  774. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  775. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  776. Pol[0]*Moment*QPI*sp*f(9) );
  777. }
  778. break;
  779. }
  780. }
  781. break; // GROUNDEDELECTRICDIPOLE
  782. case UNGROUNDEDELECTRICDIPOLE:
  783. if (std::abs(Pol[2]) > 0) { // z dipole
  784. switch(FieldsToCalculate) {
  785. case E:
  786. f(10) = 0;
  787. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  788. this->Receivers->AppendEfield(ifreq, irec,
  789. -Pol[2]*QPI*cp*f(10)*Moment,
  790. -Pol[2]*QPI*sp*f(10)*Moment,
  791. Pol[2]*QPI*f(11)*Moment);
  792. break;
  793. case H:
  794. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  795. this->Receivers->AppendHfield(ifreq, irec,
  796. -Pol[2]*QPI*sp*f(12)*Moment,
  797. Pol[2]*QPI*cp*f(12)*Moment,
  798. 0. );
  799. break;
  800. case BOTH:
  801. f(10) = 0;
  802. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm();
  803. this->Receivers->AppendEfield(ifreq, irec,
  804. -Pol[2]*QPI*cp*f(10)*Moment,
  805. -Pol[2]*QPI*sp*f(10)*Moment,
  806. Pol[2]*QPI*f(11)*Moment );
  807. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]));
  808. this->Receivers->AppendHfield(ifreq, irec,
  809. -Pol[2]*QPI*sp*f(12)*Moment,
  810. Pol[2]*QPI*cp*f(12)*Moment,
  811. 0. );
  812. } // Fields to calculate Z polarity Electric dipole
  813. }
  814. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole
  815. switch(FieldsToCalculate) {
  816. case E:
  817. f(0) = 0;
  818. f(1) = 0;
  819. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs();
  820. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs();
  821. f(4) = 0;
  822. if (std::abs(Pol[1]) > 0) {
  823. this->Receivers->AppendEfield(ifreq, irec,
  824. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  825. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  826. Pol[1]*QPI*sp*f(4)*Moment);
  827. }
  828. if (std::abs(Pol[0]) > 0) {
  829. this->Receivers->AppendEfield(ifreq, irec,
  830. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  831. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  832. Pol[0]*Moment*QPI*cp*f(4) );
  833. }
  834. break;
  835. case H:
  836. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  837. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  838. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  839. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  840. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  841. if (std::abs(Pol[1]) > 0) {
  842. this->Receivers->AppendHfield(ifreq, irec,
  843. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  844. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  845. -Pol[1]*QPI*cp*f(9)*Moment );
  846. // Analytic whole space solution could go here
  847. }
  848. if (std::abs(Pol[0]) > 0) {
  849. this->Receivers->AppendHfield(ifreq, irec,
  850. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  851. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  852. Pol[0]*Moment*QPI*sp*f(9) );
  853. // Analytic whole space solution
  854. }
  855. break;
  856. case BOTH:
  857. f(0) = 0;
  858. f(1) = 0;
  859. f(4) = 0;
  860. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(0)->GetZs();
  861. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(1)->GetZs();
  862. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]));
  863. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]));
  864. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm();
  865. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm();
  866. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm();
  867. if (std::abs(Pol[1]) > 0) {
  868. this->Receivers->AppendEfield(ifreq, irec,
  869. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  870. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  871. Pol[1]*QPI*sp*f(4)*Moment);
  872. this->Receivers->AppendHfield(ifreq, irec,
  873. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  874. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  875. -Pol[1]*QPI*cp*f(9)*Moment );
  876. }
  877. if (std::abs(Pol[0]) > 0) {
  878. this->Receivers->AppendEfield(ifreq, irec,
  879. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  880. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  881. Pol[0]*Moment*QPI*cp*f(4) );
  882. this->Receivers->AppendHfield(ifreq, irec,
  883. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  884. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  885. Pol[0]*Moment*QPI*sp*f(9) );
  886. }
  887. break;
  888. }
  889. }
  890. break; // UNGROUNDEDELECTRICDIPOLE
  891. case MAGNETICDIPOLE:
  892. //Hankel->ComputeRelated(rho, KernelManager);
  893. if (std::abs(Pol[2]) > 0) { // z dipole
  894. switch(FieldsToCalculate) {
  895. case E:
  896. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  897. this->Receivers->AppendEfield(ifreq, irec,
  898. Pol[2]*Moment*QPI*sp*f(12),
  899. -Pol[2]*Moment*QPI*cp*f(12),
  900. 0);
  901. break;
  902. case H:
  903. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  904. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  905. this->Receivers->AppendHfield(ifreq, irec,
  906. -Pol[2]*Moment*QPI*cp*f(10),
  907. -Pol[2]*Moment*QPI*sp*f(10),
  908. Pol[2]*Moment*QPI*f(11) );
  909. break;
  910. case BOTH:
  911. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs();
  912. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm();
  913. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm();
  914. this->Receivers->AppendEfield(ifreq, irec,
  915. Pol[2]*Moment*QPI*sp*f(12),
  916. -Pol[2]*Moment*QPI*cp*f(12),
  917. 0);
  918. this->Receivers->AppendHfield(ifreq, irec,
  919. -Pol[2]*Moment*QPI*cp*f(10),
  920. -Pol[2]*Moment*QPI*sp*f(10),
  921. Pol[2]*Moment*QPI*f(11) );
  922. break;
  923. }
  924. }
  925. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  926. switch (FieldsToCalculate) {
  927. case E:
  928. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  929. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  930. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  931. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  932. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  933. if (std::abs(Pol[0]) > 0) {
  934. this->Receivers->AppendEfield(ifreq, irec,
  935. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  936. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  937. Pol[0]*Moment*QPI*sp*f(9));
  938. }
  939. if (std::abs(Pol[1]) > 0) {
  940. this->Receivers->AppendEfield(ifreq, irec,
  941. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  942. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  943. -Pol[1]*Moment*QPI*cp*f(9) );
  944. }
  945. break;
  946. case H:
  947. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  948. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  949. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  950. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  951. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  952. if (std::abs(Pol[0]) > 0) {
  953. this->Receivers->AppendHfield(ifreq, irec,
  954. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  955. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  956. Pol[0]*Moment*QPI*cp*f(4) );
  957. }
  958. if (std::abs(Pol[1]) > 0) {
  959. this->Receivers->AppendHfield(ifreq, irec,
  960. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  961. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  962. Pol[1]*Moment*QPI*sp*f(4));
  963. }
  964. break;
  965. case BOTH:
  966. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs();
  967. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs();
  968. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm();
  969. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm();
  970. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm();
  971. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm();
  972. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm();
  973. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm();
  974. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs();
  975. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs();
  976. if (std::abs(Pol[0]) > 0) {
  977. this->Receivers->AppendEfield(ifreq, irec,
  978. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  979. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  980. Pol[0]*Moment*QPI*sp*f(9));
  981. this->Receivers->AppendHfield(ifreq, irec,
  982. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  983. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  984. Pol[0]*Moment*QPI*cp*f(4) );
  985. }
  986. if (std::abs(Pol[1]) > 0) {
  987. this->Receivers->AppendEfield(ifreq, irec,
  988. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  989. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  990. -Pol[1]*Moment*QPI*cp*f(9) );
  991. this->Receivers->AppendHfield(ifreq, irec,
  992. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  993. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  994. Pol[1]*Moment*QPI*sp*f(4));
  995. }
  996. break;
  997. }
  998. }
  999. break;
  1000. case NOSOURCETYPE:
  1001. throw NonValidDipoleType(this);
  1002. } // Source Type Switch
  1003. }
  1004. // ==================== INQUIRY ======================
  1005. std::shared_ptr<KernelEM1DManager> DipoleSource::GetKernelManager() {
  1006. return KernelManager;
  1007. }
  1008. Vector3r DipoleSource::GetLocation() {
  1009. return this->Location;
  1010. }
  1011. #ifdef LEMMAUSEVTK
  1012. vtkActor* DipoleSource::GetVtkActor() {
  1013. vtkActor* vActor;
  1014. vtkLineSource* vLineSource;
  1015. vtkTubeFilter* vTube;
  1016. vtkPolyDataMapper* vMapper;
  1017. vtkRegularPolygonSource* vCircleSource;
  1018. vLineSource = vtkLineSource::New();
  1019. vTube = vtkTubeFilter::New();
  1020. vMapper = vtkPolyDataMapper::New();
  1021. vCircleSource = vtkRegularPolygonSource::New();
  1022. VectorXr M0 = Location - .5*Moment*Phat;
  1023. VectorXr M1 = Location + .5*Moment*Phat;
  1024. vActor = vtkActor::New();
  1025. switch (Type) {
  1026. case GROUNDEDELECTRICDIPOLE:
  1027. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1028. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1029. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1030. vTube->SetRadius(.1 * std::abs(Moment));
  1031. vTube->SetNumberOfSides(6);
  1032. vTube->SetCapping(1);
  1033. vMapper->SetInputConnection(vTube->GetOutputPort());
  1034. vActor->SetMapper(vMapper);
  1035. vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1036. break;
  1037. case UNGROUNDEDELECTRICDIPOLE:
  1038. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  1039. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  1040. vTube->SetInputConnection(vLineSource->GetOutputPort());
  1041. vTube->SetRadius(.1 * std::abs(Moment));
  1042. vTube->SetNumberOfSides(6);
  1043. vTube->SetCapping(1);
  1044. vMapper->SetInputConnection(vTube->GetOutputPort());
  1045. vActor->SetMapper(vMapper);
  1046. //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1047. vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX));
  1048. vActor->GetProperty()->SetOpacity(1.);
  1049. break;
  1050. case MAGNETICDIPOLE:
  1051. vCircleSource->SetCenter(Location(0), Location(1),
  1052. Location(2));
  1053. vCircleSource->SetNumberOfSides(360);
  1054. vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]);
  1055. vCircleSource->SetRadius(0.2); // .2 m radius
  1056. vCircleSource->SetGeneratePolygon(false);
  1057. vCircleSource->SetGeneratePolyline(true);
  1058. vCircleSource->Update();
  1059. vTube->SetInputConnection(vCircleSource->GetOutputPort());
  1060. //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)),
  1061. // (float)(*yCoords->GetTuple(ny))) / 100);
  1062. vTube->SetRadius(.1*std::abs(Moment));
  1063. vTube->SetNumberOfSides(6);
  1064. vTube->SetCapping(1);
  1065. vMapper->SetInputConnection(vTube->GetOutputPort());
  1066. vActor->SetMapper(vMapper);
  1067. vActor->GetProperty()->SetColor(.9,.2,.9);
  1068. break;
  1069. default:
  1070. throw NonValidDipoleType();
  1071. }
  1072. vLineSource->Delete();
  1073. vCircleSource->Delete();
  1074. vTube->Delete();
  1075. vMapper->Delete();
  1076. return vActor;
  1077. }
  1078. #endif
  1079. Real DipoleSource::GetLocation(const int& coordinate) {
  1080. switch (coordinate) {
  1081. case (0):
  1082. return this->Location.x();
  1083. //break; // implicit
  1084. case (1):
  1085. return this->Location.y();
  1086. //break; // implicit
  1087. case (2):
  1088. return this->Location.z();
  1089. //break; // implicit
  1090. default:
  1091. throw NonValidLocationCoordinate( );
  1092. }
  1093. }
  1094. DIPOLESOURCETYPE DipoleSource::GetDipoleSourceType() {
  1095. return this->Type;
  1096. }
  1097. //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() {
  1098. // return this->Polarisation;
  1099. //}
  1100. Real DipoleSource::GetAngularFrequency(const int& ifreq) {
  1101. return 2.*PI*this->Freqs(ifreq);
  1102. }
  1103. Real DipoleSource::GetFrequency(const int& ifreq) {
  1104. return this->Freqs(ifreq);
  1105. }
  1106. VectorXr DipoleSource::GetFrequencies( ) {
  1107. return this->Freqs;
  1108. }
  1109. Real DipoleSource::GetPhase() {
  1110. return this->Phase;
  1111. }
  1112. Real DipoleSource::GetMoment() {
  1113. return this->Moment;
  1114. }
  1115. int DipoleSource::GetNumberOfFrequencies() {
  1116. return (int)(this->Freqs.size());
  1117. }
  1118. void DipoleSource::SetNumberOfFrequencies(const int &nfreq){
  1119. Freqs.resize(nfreq);
  1120. Freqs.setZero();
  1121. }
  1122. void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){
  1123. Freqs(ifreq) = freq;
  1124. }
  1125. void DipoleSource::SetFrequencies(const VectorXr &freqs){
  1126. Freqs = freqs;
  1127. }
  1128. /////////////////////////////////////////////////////////////////
  1129. /////////////////////////////////////////////////////////////////
  1130. // Error classes
  1131. NullDipoleSource::NullDipoleSource() :
  1132. runtime_error( "NULL VALUED DIPOLE SOURCE") {}
  1133. NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) :
  1134. runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { }
  1135. NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) :
  1136. runtime_error( "NON VALID DIPOLE TYPE") {
  1137. std::cout << "Thrown by instance of "
  1138. << ptr->GetName() << std::endl;
  1139. }
  1140. NonValidDipoleType::NonValidDipoleType( ) :
  1141. runtime_error( "NON VALID DIPOLE TYPE") { }
  1142. NonValidDipolePolarity::NonValidDipolePolarity () :
  1143. runtime_error( "NON VALID DIPOLE POLARITY") { }
  1144. NonValidDipolePolarisation::NonValidDipolePolarisation( ) :
  1145. runtime_error( "NON VALID DIPOLE TYPE") { }
  1146. NonValidDipolePolarisationAssignment::
  1147. NonValidDipolePolarisationAssignment( ) :
  1148. runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { }
  1149. NonValidLocationCoordinate::NonValidLocationCoordinate( ) :
  1150. runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { }
  1151. }