Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

wireantenna.cpp 9.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. // ===========================================================================
  2. //
  3. // Filename: utdipolesource.cpp
  4. //
  5. // Description:
  6. //
  7. // Version: 0.0
  8. // Created: 12/02/2009 11:57:14 AM
  9. // Revision: none
  10. // Compiler: g++ (c++)
  11. //
  12. // Author: Trevor Irons (ti)
  13. //
  14. // Organisation: Colorado School of Mines (CSM)
  15. // United States Geological Survey (USGS)
  16. //
  17. // Email: tirons@mines.edu, tirons@usgs.gov
  18. //
  19. // This program is free software: you can redistribute it and/or modify
  20. // it under the terms of the GNU General Public License as published by
  21. // the Free Software Foundation, either version 3 of the License, or
  22. // (at your option) any later version.
  23. //
  24. // This program is distributed in the hope that it will be useful,
  25. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. // GNU General Public License for more details.
  28. //
  29. // You should have received a copy of the GNU General Public License
  30. // along with this program. If not, see <http://www.gnu.org/licenses/>.
  31. //
  32. // ===========================================================================
  33. #include <iostream>
  34. #include <fstream>
  35. #include "dipolesource.h"
  36. #include "layeredearth.h"
  37. #include "receiverpoints.h"
  38. #include "emearth1d.h"
  39. #include "WireAntenna.h"
  40. #include "PolygonalWireAntenna.h"
  41. #if LEMMAUSEVTK
  42. #include "vtkRenderer.h"
  43. #include "vtkRenderWindow.h"
  44. #include "vtkRenderWindowInteractor.h"
  45. #include "vtkRenderLargeImage.h"
  46. #include "vtkPNGWriter.h"
  47. #endif // ----- not LEMMA_USE_VTK -----
  48. // For testing purposes disable VTK and run scale.sh
  49. //#undef LEMMAUSEVTK
  50. #include "timer.h"
  51. using namespace Lemma;
  52. double randDouble(double low, double high) {
  53. //srand(time(0));
  54. double temp;
  55. /* swap low & high around if the user makes no sense */
  56. if (low > high) {
  57. temp = low;
  58. low = high;
  59. high = temp;
  60. }
  61. /* calculate the random number & return it */
  62. temp = (rand() / (static_cast<double>(RAND_MAX) + 1.0))
  63. * (high - low) + low;
  64. return temp;
  65. }
  66. int main() {
  67. // Keep track of time
  68. jsw_timer timer;
  69. srand(time(0));
  70. PolygonalWireAntenna *pa = PolygonalWireAntenna::New();
  71. pa->SetNumberOfFrequencies(1);
  72. pa->SetFrequency(0, 1000);
  73. pa->SetNumberOfPoints(5);
  74. pa->SetPoint(0, Vector3r( 0, 0, -.001));
  75. pa->SetPoint(1, Vector3r( 100, 0, -.001));
  76. pa->SetPoint(2, Vector3r( 100, 100, -.001));
  77. pa->SetPoint(3, Vector3r( 0, 100, -.001));
  78. pa->SetPoint(4, Vector3r( 0, 0, -.001));
  79. pa->SetCurrent(1.);
  80. pa->SetNumberOfTurns(1);
  81. //Vector3r rp = Vector3r::Random(3);
  82. //rp << 150., 10, 0.;
  83. //rp << -27.1456, 15.2350, -1e-3;
  84. //rp << randDouble(-35,35), randDouble(-35,35), randDouble(-35,35);
  85. //rp << 3.22806, -13.1548, 14.9695;
  86. //rp.setRandom(3);
  87. //std::cout << "rp " << rp.transpose() << std::endl;
  88. //pa->ApproximateWithElectricDipoles(rp);
  89. WireAntenna *wire = WireAntenna::New();
  90. wire->SetNumberOfPoints(5);
  91. wire->SetPoint(0, Vector3r( 0, 0, -1e-3));
  92. wire->SetPoint(1, Vector3r( 10, 0, -1e-3));
  93. wire->SetPoint(2, Vector3r( 10, 10, -1e-3));
  94. wire->SetPoint(3, Vector3r( 0, 10, -1e-3));
  95. wire->SetPoint(4, Vector3r( 0, 0, -1e-3));
  96. // TODO change wire antennae to use my class
  97. //wire->SetNumberOfFrequencies(1);
  98. wire->SetCurrent(1.);
  99. wire->SetNumberOfFrequencies(1);
  100. wire->SetFrequency(0, 1000);
  101. wire->SetNumberOfTurns(1);
  102. //wire->ApproximateWithElectricDipoles(5);
  103. // Define model
  104. VectorXcr sigma(2);
  105. sigma << Complex(0.,0), Complex(.1,0);
  106. VectorXr thick(1);
  107. thick << 10;
  108. LayeredEarthEM *earth = LayeredEarthEM::New();
  109. earth->SetNumberOfLayers(2);
  110. earth->SetLayerConductivity(sigma);
  111. //earth->SetLayerThickness(thick);
  112. // Receivers
  113. ReceiverPoints *receivers = ReceiverPoints::New();
  114. Vector3r loc;
  115. Real ox = 50.561 ;
  116. Real oy = 105.235 ;
  117. Real depth = -3.75e1;
  118. Real depth2 = depth;
  119. Real dx = 1.;
  120. int nz = 1;
  121. receivers->SetNumberOfReceivers(nz);
  122. int ir = 0;
  123. for (int iz=0; iz<nz; ++iz) {
  124. loc << ox, oy, depth;
  125. receivers->SetLocation(ir, loc);
  126. depth += dx;
  127. ++ ir;
  128. }
  129. // EmEarth
  130. EMEarth1D *EmEarth = EMEarth1D::New();
  131. //EmEarth->AttachWireAntenna(wire);
  132. EmEarth->AttachWireAntenna(pa);
  133. EmEarth->AttachLayeredEarthEM(earth);
  134. EmEarth->AttachReceiverPoints(receivers);
  135. EmEarth->SetFieldsToCalculate(H);
  136. //EmEarth->SetHankelTransformMethod(GAUSSIANQUADRATURE);
  137. // Do calculation
  138. timer.begin();
  139. EmEarth->CalculateWireAntennaFields();
  140. Real paTime = timer.end();
  141. std::cout << "Polygonal wire antennae time: " << paTime << "\n";
  142. //EmEarth->AttachWireAntenna(wire);
  143. //timer.begin();
  144. //EmEarth->CalculateWireAntennaFields();
  145. //Real waTime = timer.end();
  146. //std::cout << "Fixed wire antennae time: " << waTime << "\n";
  147. depth = depth2;
  148. std::fstream real("reale_lay.dat", std::ios::out);
  149. std::fstream imag("image_lay.dat", std::ios::out);
  150. std::fstream hreal("real_lay.dat", std::ios::out);
  151. std::fstream himag("imag_lay.dat", std::ios::out);
  152. for (int iz=0; iz<nz; ++iz) {
  153. Vector3cr temp = receivers->GetEfield(0,iz);
  154. real << ox << "\t" << oy << "\t" << depth << "\t"
  155. << temp(0).real() << "\t" << temp(1).real()
  156. << "\t" << temp(2).real() << std::endl;
  157. imag << ox << "\t" << oy << "\t" << depth << "\t"
  158. << std::imag(temp(0)) << "\t" << std::imag(temp(1))
  159. << "\t" << std::imag(temp(2)) << std::endl;
  160. temp = receivers->GetHfield(0, iz);
  161. hreal << ox << "\t" << oy << "\t" << depth << "\t"
  162. << std::real(temp(0)) << "\t" << std::real(temp(1))
  163. << "\t" << std::real(temp(2)) << std::endl;
  164. himag << ox << "\t" << oy << "\t" << depth << "\t"
  165. << std::imag(temp(0)) << "\t" << std::imag(temp(1))
  166. << "\t" << std::imag(temp(2)) << std::endl;
  167. depth += dx;
  168. }
  169. real.close();
  170. imag.close();
  171. hreal.close();
  172. himag.close();
  173. EmEarth->Delete();
  174. receivers->Delete();
  175. earth->Delete();
  176. //wire->Delete();
  177. #if LEMMAUSEVTK
  178. // Create the usual rendering stuff.
  179. vtkRenderer *renderer = vtkRenderer::New();
  180. vtkRenderWindow *renWin = vtkRenderWindow::New();
  181. vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
  182. // Line of tx
  183. vtkLineSource *vline = vtkLineSource::New();
  184. vtkTubeFilter *vTube = vtkTubeFilter::New();
  185. vtkPolyDataMapper *vMapper = vtkPolyDataMapper::New();
  186. vtkActor *vActor = vtkActor::New();
  187. vline->SetPoint1(0,0,0);
  188. vline->SetPoint2(10,0,0);
  189. vTube->SetInputConnection(vline->GetOutputPort());
  190. vTube->SetRadius(.2);
  191. vTube->SetNumberOfSides(6);
  192. vMapper->SetInputConnection(vTube->GetOutputPort());
  193. vActor->SetMapper(vMapper);
  194. vActor->GetProperty()->SetColor(0.0, .0, 1.0);
  195. vActor->GetProperty()->SetOpacity(.15);
  196. renderer->AddActor(vActor);
  197. vtkLineSource *vline2 = vtkLineSource::New();
  198. vtkTubeFilter *vTube2 = vtkTubeFilter::New();
  199. vtkPolyDataMapper *vMapper2 = vtkPolyDataMapper::New();
  200. vtkActor *vActor2 = vtkActor::New();
  201. vline2->SetPoint1(10,0,0);
  202. vline2->SetPoint2(10,10,0);
  203. vTube2->SetInputConnection(vline2->GetOutputPort());
  204. vTube2->SetRadius(.2);
  205. vTube2->SetNumberOfSides(6);
  206. vMapper2->SetInputConnection(vTube2->GetOutputPort());
  207. vActor2->SetMapper(vMapper2);
  208. vActor2->GetProperty()->SetColor(0.0, .0, 1.0);
  209. vActor2->GetProperty()->SetOpacity(.15);
  210. renderer->AddActor(vActor2);
  211. vtkLineSource *vline3 = vtkLineSource::New();
  212. vtkTubeFilter *vTube3 = vtkTubeFilter::New();
  213. vtkPolyDataMapper *vMapper3 = vtkPolyDataMapper::New();
  214. vtkActor *vActor3 = vtkActor::New();
  215. vline3->SetPoint1(10,10,0);
  216. vline3->SetPoint2(0,10,0);
  217. vTube3->SetInputConnection(vline3->GetOutputPort());
  218. vTube3->SetRadius(.2);
  219. vTube3->SetNumberOfSides(6);
  220. vMapper3->SetInputConnection(vTube3->GetOutputPort());
  221. vActor3->SetMapper(vMapper3);
  222. vActor3->GetProperty()->SetColor(0.0, .0, 1.0);
  223. vActor3->GetProperty()->SetOpacity(.15);
  224. renderer->AddActor(vActor3);
  225. vtkLineSource *vline4 = vtkLineSource::New();
  226. vtkTubeFilter *vTube4 = vtkTubeFilter::New();
  227. vtkPolyDataMapper *vMapper4 = vtkPolyDataMapper::New();
  228. vtkActor *vActor4 = vtkActor::New();
  229. vline4->SetPoint1(0,10,0);
  230. vline4->SetPoint2(0,0,0);
  231. vTube4->SetInputConnection(vline4->GetOutputPort());
  232. vTube4->SetRadius(.2);
  233. vTube4->SetNumberOfSides(6);
  234. vMapper4->SetInputConnection(vTube4->GetOutputPort());
  235. vActor4->SetMapper(vMapper4);
  236. vActor4->GetProperty()->SetColor(0.0, .0, 1.0);
  237. vActor4->GetProperty()->SetOpacity(.15);
  238. renderer->AddActor(vActor4);
  239. loc << 50, 50, -1e-3;
  240. pa->ApproximateWithElectricDipoles(loc);
  241. vtkActor **pdipActors = new vtkActor*[pa->GetNumberOfDipoles()];
  242. std::cout << "Wire approximated with " << pa->GetNumberOfDipoles() << std::endl;
  243. for (int id=0; id<pa->GetNumberOfDipoles(); ++id) {
  244. pdipActors[id] = pa->GetVtkActor(id);
  245. renderer->AddActor(pdipActors[id]);
  246. }
  247. /*
  248. vtkActor **dipActors = new vtkActor*[wire->GetNumberOfDipoles()];
  249. for (int id=0; id<wire->GetNumberOfDipoles(); ++id) {
  250. dipActors[id] = wire->GetVtkActor(id);
  251. renderer->AddActor(dipActors[id]);
  252. }
  253. */
  254. renderer->SetBackground(1,1,1);
  255. // Render the window
  256. renWin->AddRenderer(renderer);
  257. renWin->SetWindowName("Wire antennae");
  258. iren->SetRenderWindow(renWin);
  259. iren->Initialize();
  260. iren->Start();
  261. iren->Render();
  262. #if 0
  263. cout << "Enter File name?: ";
  264. std::string pngName;
  265. std::cin >> pngName;
  266. vtkPNGWriter *pngwrite = vtkPNGWriter::New();
  267. vtkRenderLargeImage *renlarge = vtkRenderLargeImage::New();
  268. renlarge->SetInput(renderer);
  269. renlarge->SetMagnification(2);
  270. pngwrite->SetInputConnection(renlarge->GetOutputPort());
  271. pngName.append(".png");
  272. pngwrite->SetFileName(pngName.c_str());
  273. pngwrite->Write();
  274. #endif
  275. #endif // ----- not LEMMA_USE_VTK -----
  276. //std::cout << *pa << std::endl;
  277. //pa->Delete();
  278. return 0;
  279. }