Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

KernelEM1DReflSpec.cpp 7.2KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 05/18/2012
  9. @version $Id: kernelem1dreflspec.cpp 169 2014-09-06 22:16:12Z tirons $
  10. **/
  11. #include "KernelEM1DReflSpec.h"
  12. namespace Lemma {
  13. template<>
  14. void KernelEM1DReflSpec<TM, INAIR, INAIR>::ComputeReflectionCoeffs(const Real& lambda) {
  15. rams = lambda*lambda;
  16. u = (rams-kk.array()).sqrt(); // CRITICAL
  17. uk = u(0);
  18. um = u(0);
  19. Zyu(1) = -u(0)/yh(0);
  20. Zyi = u.array() / yh.array();
  21. Zyd.tail<1>() = Zyi.tail<1>();
  22. // Vectorise, performance is not really any better
  23. cf.segment(1,nlay-2) = (-2.*u.segment(1, nlay-2).array() * LayerThickness.segment(1, nlay-2).array()).exp();
  24. th.segment(1,nlay-2) = (1.-cf.segment(1, nlay-2).array()) / (1.+cf.segment(1, nlay-2).array());
  25. /*
  26. for (int ilay=1; ilay<nlay-1; ++ilay) {
  27. cf(ilay) = std::exp(-(Real)(2.)*u(ilay)*LayerThickness(ilay));
  28. th(ilay) = ((Real)(1.)-cf(ilay)) / ((Real)(1.)+cf(ilay));
  29. }
  30. */
  31. // recursive, can't vectorize
  32. for (int N=nlay-2; N >= 1; --N) {
  33. Zyd(N) = Zyi(N)*(Zyd(N+1)+Zyi(N)*th(N)) / (Zyi(N)+Zyd(N+1)*th(N)) ;
  34. }
  35. //rtd(nlay-1) = 0;
  36. rtd(0) = (Zyu(1)+Zyd(1)) / (Zyu(1)-Zyd(1)) ;
  37. return;
  38. }
  39. template<>
  40. void KernelEM1DReflSpec<TE, INAIR, INAIR>::ComputeReflectionCoeffs(const Real& lambda) {
  41. rams = lambda*lambda;
  42. u = (rams-kk.array()).sqrt(); // CRITICAL
  43. uk = u(0);
  44. um = u(0);
  45. Zyu(1) = -u(0)/zh(0);
  46. Zyi = u.array() / zh.array();
  47. Zyd.tail<1>() = Zyi.tail<1>();
  48. // Vectorise
  49. cf.segment(1,nlay-2) = (-2.*u.segment(1, nlay-2).array() * LayerThickness.segment(1, nlay-2).array()).exp();
  50. th.segment(1,nlay-2) = (1.-cf.segment(1, nlay-2).array()) / (1.+cf.segment(1, nlay-2).array());
  51. /*
  52. for (int ilay=1; ilay<nlay-1; ++ilay) {
  53. cf(ilay) = std::exp(-(Real)(2.)*u(ilay)*LayerThickness(ilay));
  54. th(ilay) = ((Real)(1.)-cf(ilay)) / ((Real)(1.)+cf(ilay));
  55. }
  56. */
  57. // recursive, can't vectorize
  58. for (int N=nlay-2; N >=1; --N) {
  59. Zyd(N) = Zyi(N)*(Zyd(N+1)+Zyi(N)*th(N)) / (Zyi(N)+Zyd(N+1)*th(N)) ;
  60. }
  61. //rtd(nlay-1) = 0;
  62. rtd(0) = (Zyu(1)+Zyd(1)) / (Zyu(1)-Zyd(1)) ;
  63. return;
  64. }
  65. template<>
  66. void KernelEM1DReflSpec<TM, INAIR, INGROUND>::ComputeReflectionCoeffs(const Real& lambda) {
  67. rams = lambda*lambda;
  68. u = (rams-kk.array()).sqrt();
  69. uk = u(0);
  70. um = u(layr);
  71. Zyu(1) = -u(0)/yh(0);
  72. Zyi = u.array() / yh.array();
  73. Zyd.tail<1>() = Zyi.tail<1>();
  74. for (int ilay=1; ilay<nlay-1; ++ilay) {
  75. cf(ilay) = std::exp(-(Real)(2.)*u(ilay)*LayerThickness(ilay));
  76. th(ilay) = ((Real)(1.)-cf(ilay)) / ((Real)(1.)+cf(ilay));
  77. }
  78. // Can't use blocks, b/c recursive
  79. for (int N=1; N<lays; ++N){
  80. Zyu(N+1)=Zyi(N)*(Zyu(N)-Zyi(N)*th(N)) /
  81. (Zyi(N)-Zyu(N)*th(N)) ;
  82. }
  83. int ne = nlay-2;
  84. for (int N=ne; N >=lays+1; --N) {
  85. Zyd(N) = Zyi(N)*(Zyd(N+1)+Zyi(N)*th(N)) /
  86. (Zyi(N)+Zyd(N+1)*th(N)) ;
  87. }
  88. rtd(nlay-1) = 0;
  89. rtd(0) = (Zyu(1)+Zyd(1)) / (Zyu(1)-Zyd(1)) ;
  90. int le = layr;
  91. if (le == nlay-1) --le;
  92. for (int N=1; N<=le; ++N) {
  93. rtd(N) = (Zyi(N)-Zyd(N+1)) / (Zyi(N)+Zyd(N+1)) ;
  94. }
  95. return;
  96. }
  97. template<>
  98. void KernelEM1DReflSpec<TE, INAIR, INGROUND>::ComputeReflectionCoeffs(const Real& lambda) {
  99. rams = lambda*lambda;
  100. u = (rams-kk.array()).sqrt();
  101. uk = u(0);
  102. um = u(layr);
  103. Zyu(1) = -u(0)/zh(0);
  104. Zyi = u.array() / zh.array();
  105. Zyd.tail<1>() = Zyi.tail<1>();
  106. for (int ilay=1; ilay<nlay-1; ++ilay) {
  107. cf(ilay) = std::exp(-(Real)(2.)*u(ilay)*LayerThickness(ilay));
  108. th(ilay) = ((Real)(1.)-cf(ilay)) / ((Real)(1.)+cf(ilay));
  109. }
  110. // Can't use blocks, b/c recursive
  111. for (int N=1; N<lays; ++N){
  112. Zyu(N+1)=Zyi(N)*(Zyu(N)-Zyi(N)*th(N)) /
  113. (Zyi(N)-Zyu(N)*th(N)) ;
  114. }
  115. int ne = nlay-2;
  116. for (int N=ne; N >=lays+1; --N) {
  117. Zyd(N) = Zyi(N)*(Zyd(N+1)+Zyi(N)*th(N)) /
  118. (Zyi(N)+Zyd(N+1)*th(N)) ;
  119. }
  120. rtd(nlay-1) = 0;
  121. rtd(0) = (Zyu(1)+Zyd(1)) / (Zyu(1)-Zyd(1)) ;
  122. int le = layr;
  123. if (le == nlay-1) --le;
  124. for (int N=1; N<=le; ++N) {
  125. rtd(N) = (Zyi(N)-Zyd(N+1)) / (Zyi(N)+Zyd(N+1)) ;
  126. }
  127. return;
  128. }
  129. template<>
  130. void KernelEM1DReflSpec<TM, INAIR, INAIR>::PreComputePotentialTerms( ) {
  131. relIud = 0;
  132. if (rx_z<= tx_z) relIud=1;
  133. relCon = rtd(0)*std::exp(u(0)*(rx_z+tx_z));
  134. Real adz = std::abs(rx_z - tx_z);
  135. relenukadz = std::exp(-uk*adz); // Singular source term
  136. }
  137. template<>
  138. void KernelEM1DReflSpec<TE, INAIR, INAIR>::PreComputePotentialTerms( ) {
  139. relIud = 0;
  140. if (rx_z<= tx_z) relIud=1;
  141. relCon = rtd(0)*std::exp(u(0)*(rx_z+tx_z));
  142. Real adz = std::abs(rx_z - tx_z);
  143. relenukadz = std::exp(-uk*adz); // Singular source term
  144. }
  145. template<>
  146. void KernelEM1DReflSpec<TM, INAIR, INGROUND>::PreComputePotentialTerms( ) {
  147. Complex dd = ((Real)(1.)+rtd(1)*cf(1));
  148. rel_a = ((Real)(1.) + rtd(0)) / dd;
  149. if (layr >= 2) {
  150. for (int n=2; n<=layr; ++n) {
  151. rel_a *= ((Real)(1.)+rtd(n-1));
  152. if (n < nlay-1) {
  153. rel_a /= ((Real)(1.)+rtd(n)*cf(n));
  154. }
  155. }
  156. }
  157. Complex p(0,0);
  158. for (int n=1; n<=layr; ++n) {
  159. Complex ut = u(0);
  160. if (n>1) {
  161. ut = u(n-1);
  162. }
  163. p += (u(n)-ut) * LayerDepth(n-1);
  164. }
  165. relexp_pbs1 = std::exp(uk*tx_z-um*rx_z+ p);
  166. if (layr < Earth->GetNumberOfLayers()-1) {
  167. relexp_pbs2 = std::exp(uk*tx_z-um*((Real)(2.)*LayerDepth(layr)-rx_z)+p);
  168. }
  169. }
  170. template<>
  171. void KernelEM1DReflSpec<TE, INAIR, INGROUND>::PreComputePotentialTerms( ) {
  172. Complex dd = ((Real)(1.)+rtd(1)*cf(1));
  173. rel_a = ((Real)(1.) + rtd(0)) / dd;
  174. if (layr >= 2) {
  175. for (int n=2; n<=layr; ++n) {
  176. rel_a *= ((Real)(1.)+rtd(n-1));
  177. if (n < nlay-1) {
  178. rel_a /= ((Real)(1.)+rtd(n)*cf(n));
  179. }
  180. }
  181. }
  182. Complex p(0,0);
  183. for (int n=1; n<=layr; ++n) {
  184. Complex ut = u(0);
  185. if (n>1) {
  186. ut = u(n-1);
  187. }
  188. p += (u(n)-ut) * LayerDepth(n-1);
  189. }
  190. relexp_pbs1 = std::exp(uk*tx_z-um*rx_z+ p);
  191. if (layr < Earth->GetNumberOfLayers()-1) {
  192. relexp_pbs2 = std::exp(uk*tx_z-um*((Real)(2.)*LayerDepth(layr)-rx_z)+p);
  193. }
  194. }
  195. } // ----- end of Lemma name -----