Lemma is an Electromagnetics API
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

DipoleSource.cpp 72KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. @version $Id: dipolesource.cpp 203 2015-01-09 21:19:04Z tirons $
  10. **/
  11. #include "DipoleSource.h"
  12. #include "KernelEM1DManager.h"
  13. //#include "GroundedElectricDipole.h"
  14. //#include "UngroundedElectricDipole.h"
  15. //#include "MagneticDipole.h"
  16. #include "FieldPoints.h"
  17. #include "hankeltransform.h"
  18. namespace Lemma {
  19. // ==================== FRIENDS ======================
  20. std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) {
  21. stream << ob.Serialize() << "\n---\n"; // End of doc ---
  22. return stream;
  23. }
  24. // ==================== LIFECYCLE ======================
  25. DipoleSource::DipoleSource( const ctor_key& ) : LemmaObject( ),
  26. Type(NOSOURCETYPE),
  27. Phase(0),
  28. Moment(1),
  29. KernelManager(nullptr),
  30. Receivers(nullptr),
  31. Earth(nullptr)
  32. {
  33. this->Location.setZero();
  34. this->Phat.setZero();
  35. }
  36. DipoleSource::~DipoleSource() {
  37. }
  38. std::shared_ptr<DipoleSource> DipoleSource::NewSP() {
  39. return std::make_shared<DipoleSource> ( ctor_key() );
  40. }
  41. std::shared_ptr<DipoleSource> DipoleSource::Clone() {
  42. auto Obj = DipoleSource::NewSP();
  43. // copy
  44. Obj->Type = Type;
  45. Obj->irec = irec;
  46. Obj->lays = lays;
  47. Obj->layr = layr;
  48. Obj->Phase = Phase;
  49. Obj->Moment = Moment;
  50. Obj->xxp = xxp;
  51. Obj->yyp = yyp;
  52. Obj->rho = rho;
  53. Obj->sp = sp;
  54. Obj->cp = cp;
  55. Obj->scp = scp;
  56. Obj->sps = sps;
  57. Obj->cps = cps;
  58. Obj->c2p = c2p;
  59. Obj->FieldsToCalculate = FieldsToCalculate;
  60. Obj->f = f;
  61. Obj->ik = ik;
  62. Obj->Location = Location;
  63. Obj->Phat = Phat;
  64. Obj->Freqs = Freqs;
  65. return Obj;
  66. }
  67. // ==================== ACCESS ======================
  68. void DipoleSource::SetLocation(const Vector3r &posin) {
  69. this->Location = posin;
  70. }
  71. void DipoleSource::SetLocation(const Real &xp, const Real &yp,
  72. const Real &zp) {
  73. this->Location = Vector3r(xp, yp, zp);
  74. }
  75. void DipoleSource::SetPhase(const Real &phase) {
  76. this->Phase = phase;
  77. }
  78. void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) {
  79. static bool called = false;
  80. if (!called) {
  81. std::cerr << "\n\n=================================================================\n"
  82. << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n"
  83. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  84. << "This method will be removed in future versions of Lemma"
  85. << "\n=================================================================\n";
  86. called = true;
  87. }
  88. // Polarity = pol;
  89. // switch (Polarity) {
  90. // case POSITIVE:
  91. // Moment = std::abs(Moment);
  92. // break;
  93. // case NEGATIVE:
  94. // Moment = -std::abs(Moment);
  95. // break;
  96. // default:
  97. // throw NonValidDipolePolarity();
  98. // };
  99. }
  100. void DipoleSource::SetType(const DipoleSourceType & stype) {
  101. switch (stype) {
  102. case (GROUNDEDELECTRICDIPOLE):
  103. this->Type = stype;
  104. break;
  105. case (UNGROUNDEDELECTRICDIPOLE):
  106. this->Type = stype;
  107. break;
  108. case (MAGNETICDIPOLE):
  109. this->Type = stype;
  110. break;
  111. default:
  112. throw NonValidDipoleTypeAssignment();
  113. }
  114. }
  115. void DipoleSource::SetPolarisation(const Vector3r& pol) {
  116. this->Phat = pol / pol.norm();
  117. }
  118. void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) {
  119. Vector3r pol = (VectorXr(3) << x, y, z).finished();
  120. this->Phat = pol / pol.norm();
  121. }
  122. Vector3r DipoleSource::GetPolarisation() {
  123. return Phat;
  124. }
  125. DipoleSourceType DipoleSource::GetType() {
  126. return Type;
  127. }
  128. void DipoleSource::SetPolarisation(const
  129. DipoleSourcePolarisation &pol) {
  130. static bool called = false;
  131. if (!called) {
  132. std::cout << "\n\n========================================================================================\n"
  133. << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n"
  134. << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n"
  135. << "This method will be removed in future versions of Lemma"
  136. << "\n========================================================================================\n";
  137. called = true;
  138. }
  139. switch (pol) {
  140. case (XPOLARISATION):
  141. //this->Polarisation = pol;
  142. this->Phat = (VectorXr(3) << 1, 0, 0).finished();
  143. break;
  144. case (YPOLARISATION):
  145. //this->Polarisation = pol;
  146. this->Phat = (VectorXr(3) << 0, 1, 0).finished();
  147. break;
  148. case (ZPOLARISATION):
  149. //this->Polarisation = pol;
  150. this->Phat = (VectorXr(3) << 0, 0, 1).finished();
  151. break;
  152. default:
  153. throw NonValidDipolePolarisationAssignment();
  154. }
  155. }
  156. void DipoleSource::SetMoment(const Real &moment) {
  157. this->Moment = moment;
  158. }
  159. // ==================== OPERATIONS =====================
  160. void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> ReceiversIn, const int& irecin,
  161. std::shared_ptr<LayeredEarthEM> EarthIn ) {
  162. if (Receivers != ReceiversIn) {
  163. Receivers = ReceiversIn;
  164. }
  165. if (Earth != EarthIn) {
  166. Earth = EarthIn;
  167. }
  168. if (irecin != irec) {
  169. irec = irecin;
  170. }
  171. if (FieldsToCalculate != Fields) {
  172. FieldsToCalculate = Fields;
  173. }
  174. xxp = Receivers->GetLocation(irec)[0] - Location[0];
  175. yyp = Receivers->GetLocation(irec)[1] - Location[1];
  176. rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm();
  177. sp = yyp/rho;
  178. cp = xxp/rho;
  179. scp = sp*cp;
  180. sps = sp*sp;
  181. cps = cp*cp;
  182. c2p = cps-sps;
  183. f = VectorXcr::Zero(13);
  184. ik = VectorXi::Zero(13);
  185. lays = Earth->GetLayerAtThisDepth(Location[2]);
  186. layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]);
  187. KernelManager = KernelEM1DManager::NewSP();
  188. KernelManager->SetEarth(Earth);
  189. KernelManager->SetDipoleSource(shared_from_this(), ifreq, Receivers->GetLocation(irec)[2]);
  190. kernelFreq = Freqs(ifreq); // this is never used
  191. ReSetKernels( ifreq, Fields, Receivers, irec, Earth );
  192. return;
  193. }
  194. // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably
  195. // not the most critical piece though
  196. void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr<FieldPoints> Receivers, const int& irec,
  197. std::shared_ptr<LayeredEarthEM> Earth ) {
  198. Vector3r Pol = Phat;
  199. switch (Type) {
  200. case (GROUNDEDELECTRICDIPOLE):
  201. if (std::abs(Pol[2]) > 0) { // z dipole
  202. switch(FieldsToCalculate) {
  203. case E:
  204. if (lays == 0 && layr == 0) {
  205. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  206. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  207. } else if (lays == 0 && layr > 0) {
  208. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  209. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  210. } else if (lays > 0 && layr == 0) {
  211. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  212. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  213. } else {
  214. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  215. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  216. }
  217. break;
  218. case H:
  219. if (lays == 0 && layr == 0) {
  220. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  221. } else if (lays == 0 && layr > 0) {
  222. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  223. } else if (lays > 0 && layr == 0) {
  224. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  225. } else {
  226. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  227. }
  228. break;
  229. case BOTH:
  230. if ( lays == 0 && layr == 0) {
  231. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INAIR>( );
  232. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  233. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  234. } else if (lays == 0 && layr > 0) {
  235. ik[10] = KernelManager->AddKernel<TM, 10, INAIR, INGROUND>( );
  236. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  237. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  238. } else if (lays > 0 && layr == 0) {
  239. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INAIR>( );
  240. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  241. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  242. } else {
  243. ik[10] = KernelManager->AddKernel<TM, 10, INGROUND, INGROUND>( );
  244. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  245. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  246. }
  247. }
  248. }
  249. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  250. switch(FieldsToCalculate) {
  251. case E:
  252. if ( lays == 0 && layr == 0) {
  253. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  254. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  255. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  256. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  257. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  258. } else if (lays == 0 && layr > 0) {
  259. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  260. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  261. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  262. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  263. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  264. } else if (lays > 0 && layr == 0) {
  265. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  266. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  267. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  268. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  269. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  270. } else {
  271. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  272. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  273. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  274. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  275. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  276. }
  277. break;
  278. case H:
  279. if (lays == 0 && layr == 0) {
  280. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  281. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  282. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  283. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  284. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  285. } else if (lays == 0 && layr > 0) {
  286. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  287. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  288. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  289. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  290. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  291. } else if (lays > 0 && layr == 0) {
  292. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  293. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  294. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  295. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  296. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  297. } else {
  298. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  299. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  300. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  301. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  302. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  303. }
  304. break;
  305. case BOTH:
  306. if (lays == 0 && layr == 0) {
  307. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INAIR>( );
  308. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INAIR>( );
  309. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INAIR>( );
  310. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  311. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  312. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  313. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  314. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  315. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  316. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  317. } else if (lays == 0 && layr > 0) {
  318. ik[0] = KernelManager->AddKernel<TM, 0, INAIR, INGROUND>( );
  319. ik[1] = KernelManager->AddKernel<TM, 1, INAIR, INGROUND>( );
  320. ik[4] = KernelManager->AddKernel<TM, 4, INAIR, INGROUND>( );
  321. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  322. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  323. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  324. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  325. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  326. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  327. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  328. } else if (lays > 0 && layr == 0) {
  329. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INAIR>( );
  330. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INAIR>( );
  331. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INAIR>( );
  332. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  333. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  334. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  335. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  336. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  337. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  338. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  339. } else {
  340. ik[0] = KernelManager->AddKernel<TM, 0, INGROUND, INGROUND>( );
  341. ik[1] = KernelManager->AddKernel<TM, 1, INGROUND, INGROUND>( );
  342. ik[4] = KernelManager->AddKernel<TM, 4, INGROUND, INGROUND>( );
  343. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  344. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  345. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  346. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  347. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  348. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  349. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  350. }
  351. break;
  352. }
  353. }
  354. break;
  355. case (UNGROUNDEDELECTRICDIPOLE):
  356. if (std::abs(Pol[2]) > 0) { // z dipole
  357. switch(FieldsToCalculate) {
  358. case E:
  359. if (lays == 0 && layr == 0) {
  360. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  361. } else if (lays == 0 && layr > 0) {
  362. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  363. } else if (lays > 0 && layr == 0) {
  364. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  365. } else {
  366. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  367. }
  368. break;
  369. case H:
  370. if (lays == 0 && layr == 0) {
  371. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  372. } else if (lays == 0 && layr > 0) {
  373. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  374. } else if (lays > 0 && layr == 0) {
  375. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  376. } else {
  377. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  378. }
  379. break;
  380. case BOTH:
  381. if ( lays == 0 && layr == 0) {
  382. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INAIR>( );
  383. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INAIR>( );
  384. } else if (lays == 0 && layr > 0) {
  385. ik[11] = KernelManager->AddKernel<TM, 11, INAIR, INGROUND>( );
  386. ik[12] = KernelManager->AddKernel<TM, 12, INAIR, INGROUND>( );
  387. } else if (lays > 0 && layr == 0) {
  388. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INAIR>( );
  389. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INAIR>( );
  390. } else {
  391. ik[11] = KernelManager->AddKernel<TM, 11, INGROUND, INGROUND>( );
  392. ik[12] = KernelManager->AddKernel<TM, 12, INGROUND, INGROUND>( );
  393. }
  394. }
  395. }
  396. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  397. switch(FieldsToCalculate) {
  398. case E:
  399. if ( lays == 0 && layr == 0) {
  400. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  401. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  402. } else if (lays == 0 && layr > 0) {
  403. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  404. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  405. } else if (lays > 0 && layr == 0) {
  406. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  407. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  408. } else {
  409. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  410. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  411. }
  412. break;
  413. case H:
  414. if (lays == 0 && layr == 0) {
  415. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  416. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  417. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  418. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  419. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  420. } else if (lays == 0 && layr > 0) {
  421. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  422. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  423. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  424. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  425. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  426. } else if (lays > 0 && layr == 0) {
  427. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  428. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  429. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  430. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  431. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  432. } else {
  433. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  434. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  435. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  436. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  437. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  438. }
  439. break;
  440. case BOTH:
  441. if (lays == 0 && layr == 0) {
  442. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INAIR>( );
  443. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INAIR>( );
  444. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INAIR>( );
  445. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INAIR>( );
  446. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INAIR>( );
  447. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INAIR>( );
  448. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INAIR>( );
  449. } else if (lays == 0 && layr > 0) {
  450. ik[5] = KernelManager->AddKernel<TM, 5, INAIR, INGROUND>( );
  451. ik[6] = KernelManager->AddKernel<TM, 6, INAIR, INGROUND>( );
  452. ik[2] = KernelManager->AddKernel<TE, 2, INAIR, INGROUND>( );
  453. ik[3] = KernelManager->AddKernel<TE, 3, INAIR, INGROUND>( );
  454. ik[7] = KernelManager->AddKernel<TE, 7, INAIR, INGROUND>( );
  455. ik[8] = KernelManager->AddKernel<TE, 8, INAIR, INGROUND>( );
  456. ik[9] = KernelManager->AddKernel<TE, 9, INAIR, INGROUND>( );
  457. } else if (lays > 0 && layr == 0) {
  458. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INAIR>( );
  459. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INAIR>( );
  460. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INAIR>( );
  461. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INAIR>( );
  462. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INAIR>( );
  463. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INAIR>( );
  464. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INAIR>( );
  465. } else {
  466. ik[5] = KernelManager->AddKernel<TM, 5, INGROUND, INGROUND>( );
  467. ik[6] = KernelManager->AddKernel<TM, 6, INGROUND, INGROUND>( );
  468. ik[2] = KernelManager->AddKernel<TE, 2, INGROUND, INGROUND>( );
  469. ik[3] = KernelManager->AddKernel<TE, 3, INGROUND, INGROUND>( );
  470. ik[7] = KernelManager->AddKernel<TE, 7, INGROUND, INGROUND>( );
  471. ik[8] = KernelManager->AddKernel<TE, 8, INGROUND, INGROUND>( );
  472. ik[9] = KernelManager->AddKernel<TE, 9, INGROUND, INGROUND>( );
  473. }
  474. break;
  475. }
  476. }
  477. break;
  478. case (MAGNETICDIPOLE):
  479. if (std::abs(Pol[2]) > 0) { // z dipole
  480. switch (FieldsToCalculate) {
  481. case E:
  482. if (lays == 0 && layr == 0) {
  483. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  484. } else if (lays == 0 && layr > 0) {
  485. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  486. } else if (lays > 0 && layr == 0) {
  487. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  488. } else {
  489. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  490. }
  491. break;
  492. case H:
  493. if (lays == 0 && layr == 0) {
  494. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  495. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  496. } else if (lays == 0 && layr > 0) {
  497. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  498. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  499. } else if (lays > 0 && layr == 0) {
  500. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  501. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  502. } else {
  503. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  504. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  505. }
  506. break;
  507. case BOTH:
  508. if (lays == 0 && layr == 0) {
  509. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INAIR>( );
  510. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INAIR>( );
  511. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INAIR>( );
  512. } else if (lays == 0 && layr > 0) {
  513. ik[12] = KernelManager->AddKernel<TE, 12, INAIR, INGROUND>( );
  514. ik[10] = KernelManager->AddKernel<TE, 10, INAIR, INGROUND>( );
  515. ik[11] = KernelManager->AddKernel<TE, 11, INAIR, INGROUND>( );
  516. } else if (lays > 0 && layr == 0) {
  517. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INAIR>( );
  518. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INAIR>( );
  519. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INAIR>( );
  520. } else {
  521. ik[12] = KernelManager->AddKernel<TE, 12, INGROUND, INGROUND>( );
  522. ik[10] = KernelManager->AddKernel<TE, 10, INGROUND, INGROUND>( );
  523. ik[11] = KernelManager->AddKernel<TE, 11, INGROUND, INGROUND>( );
  524. }
  525. }
  526. }
  527. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  528. switch (FieldsToCalculate) {
  529. case E:
  530. if ( lays == 0 && layr == 0) {
  531. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  532. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  533. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  534. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  535. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  536. } else if (lays == 0 && layr > 0) {
  537. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  538. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  539. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  540. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  541. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  542. } else if (lays > 0 && layr == 0) {
  543. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INAIR>( );
  544. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INAIR>( );
  545. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INAIR>( );
  546. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INAIR>( );
  547. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INAIR>( );
  548. } else {
  549. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  550. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  551. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  552. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  553. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  554. }
  555. break;
  556. case H:
  557. if ( lays == 0 && layr == 0) {
  558. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  559. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  560. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  561. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  562. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  563. } else if (lays == 0 && layr > 0) {
  564. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  565. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  566. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  567. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  568. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  569. } else if (lays > 0 && layr == 0) {
  570. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INAIR>( );
  571. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INAIR>( );
  572. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INAIR>( );
  573. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INAIR>( );
  574. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INAIR>( );
  575. } else {
  576. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  577. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  578. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  579. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  580. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  581. }
  582. break;
  583. case BOTH:
  584. if ( lays == 0 && layr == 0) {
  585. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INAIR>( );
  586. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INAIR>( );
  587. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INAIR>( );
  588. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INAIR>( );
  589. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INAIR>( );
  590. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INAIR>( );
  591. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INAIR>( );
  592. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INAIR>( );
  593. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INAIR>( );
  594. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INAIR>( );
  595. } else if (lays == 0 && layr > 0) {
  596. ik[5] = KernelManager->AddKernel<TE, 5, INAIR, INGROUND>( );
  597. ik[6] = KernelManager->AddKernel<TE, 6, INAIR, INGROUND>( );
  598. ik[7] = KernelManager->AddKernel<TM, 7, INAIR, INGROUND>( );
  599. ik[8] = KernelManager->AddKernel<TM, 8, INAIR, INGROUND>( );
  600. ik[9] = KernelManager->AddKernel<TM, 9, INAIR, INGROUND>( );
  601. ik[0] = KernelManager->AddKernel<TE, 0, INAIR, INGROUND>( );
  602. ik[1] = KernelManager->AddKernel<TE, 1, INAIR, INGROUND>( );
  603. ik[4] = KernelManager->AddKernel<TE, 4, INAIR, INGROUND>( );
  604. ik[2] = KernelManager->AddKernel<TM, 2, INAIR, INGROUND>( );
  605. ik[3] = KernelManager->AddKernel<TM, 3, INAIR, INGROUND>( );
  606. } else {
  607. ik[5] = KernelManager->AddKernel<TE, 5, INGROUND, INGROUND>( );
  608. ik[6] = KernelManager->AddKernel<TE, 6, INGROUND, INGROUND>( );
  609. ik[7] = KernelManager->AddKernel<TM, 7, INGROUND, INGROUND>( );
  610. ik[8] = KernelManager->AddKernel<TM, 8, INGROUND, INGROUND>( );
  611. ik[9] = KernelManager->AddKernel<TM, 9, INGROUND, INGROUND>( );
  612. ik[0] = KernelManager->AddKernel<TE, 0, INGROUND, INGROUND>( );
  613. ik[1] = KernelManager->AddKernel<TE, 1, INGROUND, INGROUND>( );
  614. ik[4] = KernelManager->AddKernel<TE, 4, INGROUND, INGROUND>( );
  615. ik[2] = KernelManager->AddKernel<TM, 2, INGROUND, INGROUND>( );
  616. ik[3] = KernelManager->AddKernel<TM, 3, INGROUND, INGROUND>( );
  617. }
  618. break;
  619. }
  620. }
  621. break;
  622. default:
  623. std::cerr << "Dipole type incorrect, in dipolesource.cpp";
  624. exit(EXIT_FAILURE);
  625. }
  626. }
  627. void DipoleSource::UpdateFields( const int& ifreq, std::shared_ptr<HankelTransform> Hankel, const Real& wavef) {
  628. Vector3r Pol = Phat;
  629. switch (Type) {
  630. case (GROUNDEDELECTRICDIPOLE):
  631. //Hankel->ComputeRelated(rho, KernelManager);
  632. if (std::abs(Pol[2]) > 0) { // z dipole
  633. switch(FieldsToCalculate) {
  634. case E:
  635. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetKernel(ik[10])) / KernelManager->GetKernel(ik[10])->GetYm();
  636. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  637. std::cout.precision(12);
  638. this->Receivers->AppendEfield(ifreq, irec,
  639. -Pol[2]*QPI*cp*f(10)*Moment,
  640. -Pol[2]*QPI*sp*f(10)*Moment,
  641. Pol[2]*QPI*f(11)*Moment);
  642. break;
  643. case H:
  644. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  645. this->Receivers->AppendHfield(ifreq, irec,
  646. -Pol[2]*QPI*sp*f(12)*Moment,
  647. Pol[2]*QPI*cp*f(12)*Moment,
  648. 0. );
  649. break;
  650. case BOTH:
  651. f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetKernel(ik[10])) / KernelManager->GetKernel(ik[10])->GetYm();
  652. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  653. this->Receivers->AppendEfield(ifreq, irec,
  654. -Pol[2]*QPI*cp*f(10)*Moment,
  655. -Pol[2]*QPI*sp*f(10)*Moment,
  656. Pol[2]*QPI*f(11)*Moment );
  657. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  658. this->Receivers->AppendHfield(ifreq, irec,
  659. -Pol[2]*QPI*sp*f(12)*Moment,
  660. Pol[2]*QPI*cp*f(12)*Moment,
  661. 0. );
  662. } // Fields to calculate Z polarity Electric dipole
  663. }
  664. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  665. switch(FieldsToCalculate) {
  666. case E:
  667. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(ik[2])->GetZs();
  668. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(ik[3])->GetZs();
  669. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetKernel(ik[0])) / KernelManager->GetKernel(ik[0])->GetYm();
  670. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetKernel(ik[1])) / KernelManager->GetKernel(ik[1])->GetYm();
  671. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetKernel(ik[4])) / KernelManager->GetKernel(ik[4])->GetYm();
  672. if (std::abs(Pol[1]) > 0) {
  673. this->Receivers->AppendEfield(ifreq, irec,
  674. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  675. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  676. Pol[1]*QPI*sp*f(4)*Moment);
  677. }
  678. if (std::abs(Pol[0]) > 0) {
  679. this->Receivers->AppendEfield(ifreq, irec,
  680. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  681. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  682. Pol[0]*Moment*QPI*cp*f(4) );
  683. }
  684. break;
  685. case H:
  686. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  687. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  688. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  689. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  690. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  691. if (std::abs(Pol[1]) > 0) {
  692. this->Receivers->AppendHfield(ifreq, irec,
  693. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  694. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  695. -Pol[1]*QPI*cp*f(9)*Moment );
  696. }
  697. if (std::abs(Pol[0]) > 0) {
  698. this->Receivers->AppendHfield(ifreq, irec,
  699. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  700. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  701. Pol[0]*Moment*QPI*sp*f(9) );
  702. }
  703. break;
  704. case BOTH:
  705. f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetKernel(ik[0])) / KernelManager->GetKernel(ik[0])->GetYm();
  706. f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetKernel(ik[1])) / KernelManager->GetKernel(ik[1])->GetYm();
  707. f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetKernel(ik[4])) / KernelManager->GetKernel(ik[4])->GetYm();
  708. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(ik[2])->GetZs();
  709. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(ik[3])->GetZs();
  710. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  711. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  712. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  713. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  714. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  715. if (std::abs(Pol[1]) > 0) {
  716. this->Receivers->AppendEfield(ifreq, irec,
  717. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  718. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  719. Pol[1]*QPI*sp*f(4)*Moment);
  720. this->Receivers->AppendHfield(ifreq, irec,
  721. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  722. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  723. -Pol[1]*QPI*cp*f(9)*Moment );
  724. }
  725. if (std::abs(Pol[0]) > 0) {
  726. this->Receivers->AppendEfield(ifreq, irec,
  727. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  728. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  729. Pol[0]*Moment*QPI*cp*f(4) );
  730. this->Receivers->AppendHfield(ifreq, irec,
  731. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  732. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  733. Pol[0]*Moment*QPI*sp*f(9) );
  734. }
  735. break;
  736. }
  737. }
  738. break; // GROUNDEDELECTRICDIPOLE
  739. case UNGROUNDEDELECTRICDIPOLE:
  740. //Hankel->ComputeRelated(rho, KernelManager);
  741. if (std::abs(Pol[2]) > 0) { // z dipole
  742. switch(FieldsToCalculate) {
  743. case E:
  744. f(10) = 0;
  745. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  746. this->Receivers->AppendEfield(ifreq, irec,
  747. -Pol[2]*QPI*cp*f(10)*Moment,
  748. -Pol[2]*QPI*sp*f(10)*Moment,
  749. Pol[2]*QPI*f(11)*Moment);
  750. break;
  751. case H:
  752. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  753. this->Receivers->AppendHfield(ifreq, irec,
  754. -Pol[2]*QPI*sp*f(12)*Moment,
  755. Pol[2]*QPI*cp*f(12)*Moment,
  756. 0. );
  757. break;
  758. case BOTH:
  759. f(10) = 0;
  760. f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetKernel(ik[11])) / KernelManager->GetKernel(ik[11])->GetYm();
  761. this->Receivers->AppendEfield(ifreq, irec,
  762. -Pol[2]*QPI*cp*f(10)*Moment,
  763. -Pol[2]*QPI*sp*f(10)*Moment,
  764. Pol[2]*QPI*f(11)*Moment );
  765. f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetKernel(ik[12]));
  766. this->Receivers->AppendHfield(ifreq, irec,
  767. -Pol[2]*QPI*sp*f(12)*Moment,
  768. Pol[2]*QPI*cp*f(12)*Moment,
  769. 0. );
  770. } // Fields to calculate Z polarity Electric dipole
  771. }
  772. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // y dipole
  773. switch(FieldsToCalculate) {
  774. case E:
  775. f(0) = 0;
  776. f(1) = 0;
  777. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(ik[2])->GetZs();
  778. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(ik[3])->GetZs();
  779. f(4) = 0;
  780. if (std::abs(Pol[1]) > 0) {
  781. this->Receivers->AppendEfield(ifreq, irec,
  782. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment,
  783. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  784. Pol[1]*QPI*sp*f(4)*Moment);
  785. }
  786. if (std::abs(Pol[0]) > 0) {
  787. this->Receivers->AppendEfield(ifreq, irec,
  788. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  789. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  790. Pol[0]*Moment*QPI*cp*f(4) );
  791. }
  792. break;
  793. case H:
  794. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  795. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  796. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  797. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  798. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  799. if (std::abs(Pol[1]) > 0) {
  800. this->Receivers->AppendHfield(ifreq, irec,
  801. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  802. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  803. -Pol[1]*QPI*cp*f(9)*Moment );
  804. // Analytic whole space solution could go here
  805. }
  806. if (std::abs(Pol[0]) > 0) {
  807. this->Receivers->AppendHfield(ifreq, irec,
  808. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  809. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  810. Pol[0]*Moment*QPI*sp*f(9) );
  811. // Analytic whole space solution
  812. }
  813. break;
  814. case BOTH:
  815. f(0) = 0;
  816. f(1) = 0;
  817. f(4) = 0;
  818. f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetKernel(ik[2])) * KernelManager->GetKernel(0)->GetZs();
  819. f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetKernel(ik[3])) * KernelManager->GetKernel(1)->GetZs();
  820. f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetKernel(ik[5]));
  821. f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetKernel(ik[6]));
  822. f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetZs()/KernelManager->GetKernel(ik[7])->GetZm();
  823. f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetZs()/KernelManager->GetKernel(ik[8])->GetZm();
  824. f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetZs()/KernelManager->GetKernel(ik[9])->GetZm();
  825. if (std::abs(Pol[1]) > 0) {
  826. this->Receivers->AppendEfield(ifreq, irec,
  827. Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment ,
  828. Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment,
  829. Pol[1]*QPI*sp*f(4)*Moment);
  830. this->Receivers->AppendHfield(ifreq, irec,
  831. Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment,
  832. Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment,
  833. -Pol[1]*QPI*cp*f(9)*Moment );
  834. }
  835. if (std::abs(Pol[0]) > 0) {
  836. this->Receivers->AppendEfield(ifreq, irec,
  837. Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)),
  838. Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)),
  839. Pol[0]*Moment*QPI*cp*f(4) );
  840. this->Receivers->AppendHfield(ifreq, irec,
  841. Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho),
  842. Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho),
  843. Pol[0]*Moment*QPI*sp*f(9) );
  844. }
  845. break;
  846. }
  847. }
  848. break; // UNGROUNDEDELECTRICDIPOLE
  849. case MAGNETICDIPOLE:
  850. //Hankel->ComputeRelated(rho, KernelManager);
  851. if (std::abs(Pol[2]) > 0) { // z dipole
  852. switch(FieldsToCalculate) {
  853. case E:
  854. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetKernel(ik[12]))*KernelManager->GetKernel(ik[12])->GetZs();
  855. this->Receivers->AppendEfield(ifreq, irec,
  856. Pol[2]*Moment*QPI*sp*f(12),
  857. -Pol[2]*Moment*QPI*cp*f(12),
  858. 0);
  859. break;
  860. case H:
  861. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetKernel(ik[10]))*KernelManager->GetKernel(ik[10])->GetZs()/KernelManager->GetKernel(ik[10])->GetZm();
  862. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetKernel(ik[11]))*KernelManager->GetKernel(ik[11])->GetZs()/KernelManager->GetKernel(ik[11])->GetZm();
  863. this->Receivers->AppendHfield(ifreq, irec,
  864. -Pol[2]*Moment*QPI*cp*f(10),
  865. -Pol[2]*Moment*QPI*sp*f(10),
  866. Pol[2]*Moment*QPI*f(11) );
  867. break;
  868. case BOTH:
  869. f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetKernel(ik[12]))*KernelManager->GetKernel(ik[12])->GetZs();
  870. f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetKernel(ik[10]))*KernelManager->GetKernel(ik[10])->GetZs()/KernelManager->GetKernel(ik[10])->GetZm();
  871. f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetKernel(ik[11]))*KernelManager->GetKernel(ik[11])->GetZs()/KernelManager->GetKernel(ik[11])->GetZm();
  872. this->Receivers->AppendEfield(ifreq, irec,
  873. Pol[2]*Moment*QPI*sp*f(12),
  874. -Pol[2]*Moment*QPI*cp*f(12),
  875. 0);
  876. this->Receivers->AppendHfield(ifreq, irec,
  877. -Pol[2]*Moment*QPI*cp*f(10),
  878. -Pol[2]*Moment*QPI*sp*f(10),
  879. Pol[2]*Moment*QPI*f(11) );
  880. break;
  881. }
  882. }
  883. if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole
  884. switch (FieldsToCalculate) {
  885. case E:
  886. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetKernel(ik[5]))*KernelManager->GetKernel(ik[5])->GetZs();
  887. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetKernel(ik[6]))*KernelManager->GetKernel(ik[6])->GetZs();
  888. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetKs()/KernelManager->GetKernel(ik[7])->GetYm();
  889. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetKs()/KernelManager->GetKernel(ik[8])->GetYm();
  890. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetKs()/KernelManager->GetKernel(ik[9])->GetYm();
  891. if (std::abs(Pol[0]) > 0) {
  892. this->Receivers->AppendEfield(ifreq, irec,
  893. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  894. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  895. Pol[0]*Moment*QPI*sp*f(9));
  896. }
  897. if (std::abs(Pol[1]) > 0) {
  898. this->Receivers->AppendEfield(ifreq, irec,
  899. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  900. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  901. -Pol[1]*Moment*QPI*cp*f(9) );
  902. }
  903. break;
  904. case H:
  905. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetKernel(ik[0]))*KernelManager->GetKernel(ik[0])->GetZs()/KernelManager->GetKernel(ik[0])->GetZm();
  906. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetKernel(ik[1]))*KernelManager->GetKernel(ik[1])->GetZs()/KernelManager->GetKernel(ik[1])->GetZm();
  907. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetKernel(ik[4]))*KernelManager->GetKernel(ik[4])->GetZs()/KernelManager->GetKernel(ik[4])->GetZm();
  908. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetKernel(ik[2]))*KernelManager->GetKernel(ik[2])->GetKs();
  909. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetKernel(ik[3]))*KernelManager->GetKernel(ik[3])->GetKs();
  910. if (std::abs(Pol[0]) > 0) {
  911. this->Receivers->AppendHfield(ifreq, irec,
  912. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  913. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  914. Pol[0]*Moment*QPI*cp*f(4) );
  915. }
  916. if (std::abs(Pol[1]) > 0) {
  917. this->Receivers->AppendHfield(ifreq, irec,
  918. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  919. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  920. Pol[1]*Moment*QPI*sp*f(4));
  921. }
  922. break;
  923. case BOTH:
  924. f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetKernel(ik[5]))*KernelManager->GetKernel(ik[5])->GetZs();
  925. f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetKernel(ik[6]))*KernelManager->GetKernel(ik[6])->GetZs();
  926. f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetKernel(ik[7]))*KernelManager->GetKernel(ik[7])->GetKs()/KernelManager->GetKernel(ik[7])->GetYm();
  927. f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetKernel(ik[8]))*KernelManager->GetKernel(ik[8])->GetKs()/KernelManager->GetKernel(ik[8])->GetYm();
  928. f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetKernel(ik[9]))*KernelManager->GetKernel(ik[9])->GetKs()/KernelManager->GetKernel(ik[9])->GetYm();
  929. f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetKernel(ik[0]))*KernelManager->GetKernel(ik[0])->GetZs()/KernelManager->GetKernel(ik[0])->GetZm();
  930. f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetKernel(ik[1]))*KernelManager->GetKernel(ik[1])->GetZs()/KernelManager->GetKernel(ik[1])->GetZm();
  931. f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetKernel(ik[4]))*KernelManager->GetKernel(ik[4])->GetZs()/KernelManager->GetKernel(ik[4])->GetZm();
  932. f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetKernel(ik[2]))*KernelManager->GetKernel(ik[2])->GetKs();
  933. f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetKernel(ik[3]))*KernelManager->GetKernel(ik[3])->GetKs();
  934. if (std::abs(Pol[0]) > 0) {
  935. this->Receivers->AppendEfield(ifreq, irec,
  936. Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)),
  937. Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)),
  938. Pol[0]*Moment*QPI*sp*f(9));
  939. this->Receivers->AppendHfield(ifreq, irec,
  940. Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)),
  941. Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  942. Pol[0]*Moment*QPI*cp*f(4) );
  943. }
  944. if (std::abs(Pol[1]) > 0) {
  945. this->Receivers->AppendEfield(ifreq, irec,
  946. Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)),
  947. Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)),
  948. -Pol[1]*Moment*QPI*cp*f(9) );
  949. this->Receivers->AppendHfield(ifreq, irec,
  950. Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)),
  951. Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)),
  952. Pol[1]*Moment*QPI*sp*f(4));
  953. }
  954. break;
  955. }
  956. }
  957. break;
  958. case NOSOURCETYPE:
  959. throw NonValidDipoleType(this);
  960. } // Source Type Switch
  961. }
  962. // ==================== INQUIRY ======================
  963. std::shared_ptr<KernelEM1DManager> DipoleSource::GetKernelManager() {
  964. return KernelManager;
  965. }
  966. Vector3r DipoleSource::GetLocation() {
  967. return this->Location;
  968. }
  969. #ifdef LEMMAUSEVTK
  970. vtkActor* DipoleSource::GetVtkActor() {
  971. vtkActor* vActor;
  972. vtkLineSource* vLineSource;
  973. vtkTubeFilter* vTube;
  974. vtkPolyDataMapper* vMapper;
  975. vtkRegularPolygonSource* vCircleSource;
  976. vLineSource = vtkLineSource::New();
  977. vTube = vtkTubeFilter::New();
  978. vMapper = vtkPolyDataMapper::New();
  979. vCircleSource = vtkRegularPolygonSource::New();
  980. VectorXr M0 = Location - .5*Moment*Phat;
  981. VectorXr M1 = Location + .5*Moment*Phat;
  982. vActor = vtkActor::New();
  983. switch (Type) {
  984. case GROUNDEDELECTRICDIPOLE:
  985. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  986. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  987. vTube->SetInputConnection(vLineSource->GetOutputPort());
  988. vTube->SetRadius(.1 * std::abs(Moment));
  989. vTube->SetNumberOfSides(6);
  990. vTube->SetCapping(1);
  991. vMapper->SetInputConnection(vTube->GetOutputPort());
  992. vActor->SetMapper(vMapper);
  993. vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  994. break;
  995. case UNGROUNDEDELECTRICDIPOLE:
  996. vLineSource->SetPoint1( M0(0), M0(1), M0(2));
  997. vLineSource->SetPoint2( M1(0), M1(1), M1(2));
  998. vTube->SetInputConnection(vLineSource->GetOutputPort());
  999. vTube->SetRadius(.1 * std::abs(Moment));
  1000. vTube->SetNumberOfSides(6);
  1001. vTube->SetCapping(1);
  1002. vMapper->SetInputConnection(vTube->GetOutputPort());
  1003. vActor->SetMapper(vMapper);
  1004. //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]);
  1005. vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX));
  1006. vActor->GetProperty()->SetOpacity(1.);
  1007. break;
  1008. case MAGNETICDIPOLE:
  1009. vCircleSource->SetCenter(Location(0), Location(1),
  1010. Location(2));
  1011. vCircleSource->SetNumberOfSides(360);
  1012. vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]);
  1013. vCircleSource->SetRadius(0.2); // .2 m radius
  1014. vCircleSource->SetGeneratePolygon(false);
  1015. vCircleSource->SetGeneratePolyline(true);
  1016. vCircleSource->Update();
  1017. vTube->SetInputConnection(vCircleSource->GetOutputPort());
  1018. //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)),
  1019. // (float)(*yCoords->GetTuple(ny))) / 100);
  1020. vTube->SetRadius(.1*std::abs(Moment));
  1021. vTube->SetNumberOfSides(6);
  1022. vTube->SetCapping(1);
  1023. vMapper->SetInputConnection(vTube->GetOutputPort());
  1024. vActor->SetMapper(vMapper);
  1025. vActor->GetProperty()->SetColor(.9,.2,.9);
  1026. break;
  1027. default:
  1028. throw NonValidDipoleType();
  1029. }
  1030. vLineSource->Delete();
  1031. vCircleSource->Delete();
  1032. vTube->Delete();
  1033. vMapper->Delete();
  1034. return vActor;
  1035. }
  1036. #endif
  1037. Real DipoleSource::GetLocation(const int& coordinate) {
  1038. switch (coordinate) {
  1039. case (0):
  1040. return this->Location.x();
  1041. break;
  1042. case (1):
  1043. return this->Location.y();
  1044. break;
  1045. case (2):
  1046. return this->Location.z();
  1047. break;
  1048. default:
  1049. throw NonValidLocationCoordinate( );
  1050. }
  1051. }
  1052. DipoleSourceType DipoleSource::GetDipoleSourceType() {
  1053. return this->Type;
  1054. }
  1055. //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() {
  1056. // return this->Polarisation;
  1057. //}
  1058. Real DipoleSource::GetAngularFrequency(const int& ifreq) {
  1059. return 2.*PI*this->Freqs(ifreq);
  1060. }
  1061. Real DipoleSource::GetFrequency(const int& ifreq) {
  1062. return this->Freqs(ifreq);
  1063. }
  1064. VectorXr DipoleSource::GetFrequencies( ) {
  1065. return this->Freqs;
  1066. }
  1067. Real DipoleSource::GetPhase() {
  1068. return this->Phase;
  1069. }
  1070. Real DipoleSource::GetMoment() {
  1071. return this->Moment;
  1072. }
  1073. int DipoleSource::GetNumberOfFrequencies() {
  1074. return this->Freqs.size();
  1075. }
  1076. void DipoleSource::SetNumberOfFrequencies(const int &nfreq){
  1077. Freqs.resize(nfreq);
  1078. Freqs.setZero();
  1079. }
  1080. void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){
  1081. Freqs(ifreq) = freq;
  1082. }
  1083. void DipoleSource::SetFrequencies(const VectorXr &freqs){
  1084. Freqs = freqs;
  1085. }
  1086. /////////////////////////////////////////////////////////////////
  1087. /////////////////////////////////////////////////////////////////
  1088. // Error classes
  1089. NullDipoleSource::NullDipoleSource() :
  1090. runtime_error( "NULL VALUED DIPOLE SOURCE") {}
  1091. NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) :
  1092. runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { }
  1093. NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) :
  1094. runtime_error( "NON VALID DIPOLE TYPE") {
  1095. std::cout << "Thrown by instance of "
  1096. << ptr->GetName() << std::endl;
  1097. }
  1098. NonValidDipoleType::NonValidDipoleType( ) :
  1099. runtime_error( "NON VALID DIPOLE TYPE") { }
  1100. NonValidDipolePolarity::NonValidDipolePolarity () :
  1101. runtime_error( "NON VALID DIPOLE POLARITY") { }
  1102. NonValidDipolePolarisation::NonValidDipolePolarisation( ) :
  1103. runtime_error( "NON VALID DIPOLE TYPE") { }
  1104. NonValidDipolePolarisationAssignment::
  1105. NonValidDipolePolarisationAssignment( ) :
  1106. runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { }
  1107. NonValidLocationCoordinate::NonValidLocationCoordinate( ) :
  1108. runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { }
  1109. }