Lemma is an Electromagnetics API
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

EMEarth1D.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831
  1. /* This file is part of Lemma, a geophysical modelling and inversion API */
  2. /* This Source Code Form is subject to the terms of the Mozilla Public
  3. * License, v. 2.0. If a copy of the MPL was not distributed with this
  4. * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
  5. /**
  6. @file
  7. @author Trevor Irons
  8. @date 12/02/2009
  9. **/
  10. #include "EMEarth1D.h"
  11. #include "FieldPoints.h"
  12. #include "WireAntenna.h"
  13. #include "PolygonalWireAntenna.h"
  14. #ifdef LEMMAUSEOMP
  15. #include "omp.h"
  16. #endif
  17. namespace Lemma {
  18. std::ostream &operator << (std::ostream &stream, const EMEarth1D &ob) {
  19. stream << ob.Serialize() << "\n";
  20. return stream;
  21. }
  22. #ifdef KIHALEE_EM1D
  23. // Wrapper function for Fortran subroutine Em1D bi kihand
  24. // Returns E or H fields (SLOW)
  25. extern "C" { void em1dcall_(int &itype, // source
  26. int &ipol, // source
  27. int &nlay, // Earth
  28. int &nfreq, // source
  29. int &nfield, // Calculator
  30. int &nres, // Receivers
  31. int &jtype, // N/A
  32. int &jgamma, // Controller
  33. double &acc, // Controller
  34. double *dep, // Earth
  35. std::complex<double> *sig, // Earth
  36. double *susl, // Earth
  37. double *sush, // Earth
  38. double *sustau, // Earth
  39. double *susalp, // Earth
  40. double *eprl, // Earth
  41. double *eprh, // Earth
  42. double *eprtau, // Earth
  43. double *epralp, // Earth
  44. double &finit, // N/A
  45. double &flimit, // N/A
  46. double &dlimit, // N/A
  47. double &lfinc, // N/A
  48. double &tx, // Source
  49. double &ty, // Source
  50. double &tz, // Source
  51. double *rxx, // Receivers
  52. double *rxy, // Receivers
  53. double *rxz, // Receivers
  54. std::complex<double> *ex, // Receivers
  55. std::complex<double> *ey, // |
  56. std::complex<double> *ez, // |
  57. std::complex<double> *hx, // |
  58. std::complex<double> *hy, // V
  59. std::complex<double> *hz ); // ___
  60. }
  61. #endif
  62. // ==================== LIFECYCLE ===================================
  63. // TODO init large arrays here.
  64. EMEarth1D::EMEarth1D( const ctor_key& key ) : LemmaObject( key ),
  65. Dipole(nullptr), Earth(nullptr), Receivers(nullptr), Antenna(nullptr),
  66. FieldsToCalculate(BOTH), HankelType(ANDERSON801), icalcinner(0), icalc(0) {
  67. }
  68. EMEarth1D::~EMEarth1D() {
  69. }
  70. std::shared_ptr<EMEarth1D> EMEarth1D::NewSP() {
  71. return std::make_shared<EMEarth1D>(ctor_key());
  72. }
  73. YAML::Node EMEarth1D::Serialize() const {
  74. YAML::Node node = LemmaObject::Serialize();
  75. node["FieldsToCalculate"] = enum2String(FieldsToCalculate);
  76. node["HankelType"] = enum2String(HankelType);
  77. //if (Dipole != nullptr) node["Dipole"] = Dipole->Serialize();
  78. if (Earth != nullptr) node["Earth"] = Earth->Serialize();
  79. //if (Receivers != nullptr) node["Receivers"] = Receivers->Serialize(); Can be huge?
  80. if (Antenna != nullptr) node["Antenna"] = Antenna->Serialize();
  81. node.SetTag( this->GetName() );
  82. return node;
  83. }
  84. //--------------------------------------------------------------------------------------
  85. // Class: EMEarth1D
  86. // Method: GetName
  87. // Description: Class identifier
  88. //--------------------------------------------------------------------------------------
  89. inline std::string EMEarth1D::GetName ( ) const {
  90. return CName;
  91. } // ----- end of method EMEarth1D::GetName -----
  92. // ==================== ACCESS ===================================
  93. void EMEarth1D::AttachDipoleSource( std::shared_ptr<DipoleSource> dipoleptr) {
  94. Dipole = dipoleptr;
  95. if (Receivers != nullptr) {
  96. // Check to make sure Receivers are set up for all calculations
  97. switch(FieldsToCalculate) {
  98. case E:
  99. if (Receivers->NumberOfBinsE != Dipole->GetNumberOfFrequencies())
  100. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  101. break;
  102. case H:
  103. if (Receivers->NumberOfBinsH != Dipole->GetNumberOfFrequencies())
  104. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  105. break;
  106. case BOTH:
  107. if (Receivers->NumberOfBinsH != Dipole->GetNumberOfFrequencies())
  108. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  109. if (Receivers->NumberOfBinsE != Dipole->GetNumberOfFrequencies())
  110. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  111. break;
  112. }
  113. }
  114. }
  115. void EMEarth1D::AttachFieldPoints( std::shared_ptr<FieldPoints> recptr) {
  116. Receivers = recptr;
  117. if (Receivers == nullptr) {
  118. std::cerr << "nullptr Receivers in emearth1d.cpp " << std::endl;
  119. return;
  120. }
  121. // This has an implicit need to first set a source before receivers, users
  122. // will not expect this. Fix
  123. if (Dipole != nullptr) {
  124. switch (FieldsToCalculate) {
  125. case E:
  126. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  127. break;
  128. case H:
  129. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  130. break;
  131. case BOTH:
  132. Receivers->SetNumberOfBinsE(Dipole->GetNumberOfFrequencies());
  133. Receivers->SetNumberOfBinsH(Dipole->GetNumberOfFrequencies());
  134. break;
  135. }
  136. } else if (Antenna != nullptr) {
  137. switch (FieldsToCalculate) {
  138. case E:
  139. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  140. break;
  141. case H:
  142. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  143. break;
  144. case BOTH:
  145. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  146. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  147. break;
  148. }
  149. }
  150. }
  151. void EMEarth1D::AttachLayeredEarthEM( std::shared_ptr<LayeredEarthEM> earthptr) {
  152. Earth = earthptr;
  153. }
  154. void EMEarth1D::AttachWireAntenna(std::shared_ptr<WireAntenna> antennae) {
  155. this->Antenna = antennae;
  156. }
  157. void EMEarth1D::SetFieldsToCalculate(const FIELDCALCULATIONS &calc) {
  158. FieldsToCalculate = calc;
  159. }
  160. void EMEarth1D::SetHankelTransformMethod( const HANKELTRANSFORMTYPE &type) {
  161. HankelType = type;
  162. }
  163. /*
  164. void EMEarth1D::Query() {
  165. std::cout << "EmEarth1D::Query()" << std::endl;
  166. std::cout << "Dipole " << Dipole;
  167. if (Dipole) std::cout << *Dipole << std::endl;
  168. std::cout << "Earth " << Earth;
  169. if (Earth) std::cout << *Earth << std::endl;
  170. std::cout << "Receivers " << Earth;
  171. if (Earth) std::cout << *Receivers << std::endl;
  172. std::cout << "Antenna " << Earth;
  173. if (Antenna) std::cout << *Antenna << std::endl;
  174. std::cout << "icalc " << icalc << std::endl;
  175. std::cout << "icalcinner " << icalcinner << std::endl;
  176. }
  177. */
  178. // ==================== OPERATIONS ===================================
  179. void EMEarth1D::CalculateWireAntennaFields(bool progressbar) {
  180. if (Earth == nullptr) {
  181. throw NullEarth();
  182. }
  183. if (Receivers == nullptr) {
  184. throw NullReceivers();
  185. }
  186. if (Antenna == nullptr) {
  187. throw NullAntenna();
  188. }
  189. if (Dipole != nullptr) {
  190. throw DipoleSourceSpecifiedForWireAntennaCalc();
  191. }
  192. Receivers->ClearFields();
  193. // Check to make sure Receivers are set up for all calculations
  194. switch(FieldsToCalculate) {
  195. case E:
  196. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  197. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  198. break;
  199. case H:
  200. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  201. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  202. break;
  203. case BOTH:
  204. if (Receivers->NumberOfBinsH != Antenna->GetNumberOfFrequencies())
  205. Receivers->SetNumberOfBinsH(Antenna->GetNumberOfFrequencies());
  206. if (Receivers->NumberOfBinsE != Antenna->GetNumberOfFrequencies())
  207. Receivers->SetNumberOfBinsE(Antenna->GetNumberOfFrequencies());
  208. break;
  209. }
  210. if (Antenna->GetName() == std::string("PolygonalWireAntenna") || Antenna->GetName() == std::string("TEMTransmitter") ) {
  211. icalc += 1;
  212. // Check to see if they are all on a plane? If so we can do this fast
  213. if ( Antenna->IsHorizontallyPlanar() && ( HankelType == ANDERSON801 || HankelType == FHTKEY201 || HankelType==FHTKEY101 ||
  214. HankelType == FHTKEY51 || HankelType == FHTKONG61 || HankelType == FHTKONG121 ||
  215. HankelType == FHTKONG241 || HankelType == IRONS )) {
  216. std::unique_ptr<ProgressBar> mdisp;
  217. if (progressbar) {
  218. mdisp = std::make_unique< ProgressBar >( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  219. }
  220. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies();++ifreq) {
  221. Real wavef = 2.*PI* Antenna->GetFrequency(ifreq);
  222. #ifdef LEMMAUSEOMP
  223. #pragma omp parallel
  224. {
  225. #endif
  226. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  227. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  228. #ifdef LEMMAUSEOMP
  229. #pragma omp for schedule(static, 1)
  230. #endif
  231. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  232. SolveLaggedTxRxPair(irec, Hankel.get(), wavef, ifreq, AntCopy.get());
  233. if (progressbar) {
  234. ++ *mdisp;
  235. }
  236. }
  237. #ifdef LEMMAUSEOMP
  238. #pragma omp barrier
  239. }
  240. #endif
  241. }
  242. } else if (Receivers->GetNumberOfPoints() > Antenna->GetNumberOfFrequencies()) {
  243. /* Progress display bar for long calculations */
  244. std::unique_ptr<ProgressBar> mdisp;
  245. if (progressbar) {
  246. mdisp = std::make_unique< ProgressBar > ( Receivers->GetNumberOfPoints()*Antenna->GetNumberOfFrequencies() );
  247. }
  248. // parallelise across receivers
  249. #ifdef LEMMAUSEOMP
  250. #pragma omp parallel
  251. #endif
  252. { // OpenMP Parallel Block
  253. // Since these antennas change we need a local copy for each
  254. // thread.
  255. auto AntCopy = static_cast<PolygonalWireAntenna*>(Antenna.get())->ClonePA();
  256. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  257. #ifdef LEMMAUSEOMP
  258. #pragma omp for schedule(static, 1) //nowait
  259. #endif
  260. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  261. if (!Receivers->GetMask(irec)) {
  262. AntCopy->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  263. for (int idip=0; idip < static_cast<int>(AntCopy->GetNumberOfDipoles()); ++idip) {
  264. auto tDipole = AntCopy->GetDipoleSource(idip);
  265. //#ifdef LEMMAUSEOMP
  266. //#pragma omp for schedule(static, 1)
  267. //#endif
  268. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies();
  269. ++ifreq) {
  270. // Propogation constant in free space
  271. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  272. std::sqrt(MU0*EPSILON0);
  273. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  274. } // freq loop
  275. } // dipole loop
  276. } // mask
  277. //std::cout << "Normal Path\n";
  278. //std::cout << Receivers->GetHfield(0, irec) << std::endl;
  279. //if (irec == 1) exit(0);
  280. if (progressbar) {
  281. ++ *mdisp;
  282. }
  283. } // receiver loop
  284. } // OMP_PARALLEL BLOCK
  285. } else if (Antenna->GetNumberOfFrequencies() > 8) {
  286. // parallel across frequencies
  287. //std::cout << "freq parallel #2" << std::endl;
  288. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  289. if (!Receivers->GetMask(irec)) {
  290. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  291. #ifdef LEMMAUSEOMP
  292. #pragma omp parallel
  293. #endif
  294. { // OpenMP Parallel Block
  295. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  296. #ifdef LEMMAUSEOMP
  297. #pragma omp for schedule(static, 1)
  298. #endif
  299. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  300. for (int idip=0; idip< static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  301. auto tDipole = Antenna->GetDipoleSource(idip);
  302. // Propogation constant in free space
  303. Real wavef = tDipole->GetAngularFrequency(ifreq) *
  304. std::sqrt(MU0*EPSILON0);
  305. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  306. } // dipole loop
  307. } // frequency loop
  308. } // OMP_PARALLEL BLOCK
  309. } // mask loop
  310. //if (Receivers->GetNumberOfPoints() > 100) {
  311. // ++ mdisp;
  312. //}
  313. } // receiver loop
  314. } // Frequency Parallel
  315. else {
  316. //std::cout << "parallel across transmitter dipoles " << std::endl;
  317. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  318. if (!Receivers->GetMask(irec)) {
  319. static_cast<PolygonalWireAntenna*>(Antenna.get())->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  320. // std::cout << "Not Masked " << std::endl;
  321. // std::cout << "n Freqs " << Antenna->GetNumberOfFrequencies() << std::endl;
  322. // std::cout << "n Dipoles " << Antenna->GetNumberOfDipoles() << std::endl;
  323. // if ( !Antenna->GetNumberOfDipoles() ) {
  324. // std::cout << "NO DIPOLES!!!!!!!!!!!!!!!!!!!!!!!!!!\n";
  325. // // std::cout << "rec location " << Receivers->GetLocation(irec) << std::endl;
  326. // // }
  327. #ifdef LEMMAUSEOMP
  328. #pragma omp parallel
  329. #endif
  330. { // OpenMP Parallel Block
  331. auto Hankel = HankelTransformFactory::NewSP( HankelType );
  332. for (int ifreq=0; ifreq<Antenna->GetNumberOfFrequencies(); ++ifreq) {
  333. #ifdef LEMMAUSEOMP
  334. #pragma omp for schedule(static, 1)
  335. #endif
  336. for (int idip=0; idip<static_cast<int>(Antenna->GetNumberOfDipoles()); ++idip) {
  337. //#pragma omp critical
  338. //{
  339. //cout << "idip=" << idip << "\tthread num=" << omp_get_thread_num() << '\n';
  340. //}
  341. auto tDipole = Antenna->GetDipoleSource(idip);
  342. // Propogation constant in free space
  343. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  344. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  345. } // dipole loop
  346. } // frequency loop
  347. } // OMP_PARALLEL BLOCK
  348. } // mask loop
  349. //if (Receivers->GetNumberOfPoints() > 100) {
  350. // ++ disp;
  351. //}
  352. } // receiver loop
  353. } // Polygonal parallel logic
  354. } else {
  355. std::cerr << "Lemma with WireAntenna class is currently broken"
  356. << " fix or use PolygonalWireAntenna\n" << std::endl;
  357. exit(EXIT_FAILURE);
  358. // TODO, getting wrong answer, curiously worKernel->GetKs() with MakeCalc, maybe
  359. // a threading issue, use SolveSingleTxRxPair maype instead of call
  360. // to MakeCalc3? !!!
  361. for (unsigned int idip=0; idip<Antenna->GetNumberOfDipoles(); ++idip) {
  362. this->Dipole = Antenna->GetDipoleSource(idip);
  363. MakeCalc3();
  364. //++disp;
  365. }
  366. this->Dipole = nullptr;
  367. }
  368. }
  369. #ifdef KIHALEE_EM1D
  370. void EMEarth1D::MakeCalc() {
  371. int itype; // 1 = elec, 2 = mag
  372. switch (this->Dipole->GetDipoleSourceType()) {
  373. case (GROUNDEDELECTRICDIPOLE) :
  374. itype = 1;
  375. break;
  376. case (MAGNETICDIPOLE) :
  377. itype = 2;
  378. break;
  379. case (UNGROUNDEDELECTRICDIPOLE) :
  380. std::cerr << "Fortran routine cannot calculate ungrounded"
  381. "electric dipole\n";
  382. default:
  383. throw NonValidDipoleType();
  384. }
  385. int ipol ;
  386. Vector3r Pol = this->Dipole->GetPolarisation();
  387. if (std::abs(Pol[0]-1) < 1e-5) {
  388. ipol = 1;
  389. } else if (std::abs(Pol[1]-1) < 1e-5) {
  390. ipol = 2;
  391. } else if (std::abs(Pol[2]-1) < 1e-5) {
  392. ipol = 3;
  393. } else {
  394. std::cerr << "Fortran routine cannot calculate arbitrary "
  395. "dipole polarisation, set to x, y, or z\n";
  396. }
  397. int nlay = Earth->GetNumberOfNonAirLayers();
  398. if (nlay > MAXLAYERS) {
  399. std::cerr << "FORTRAN CODE CAN ONLY HANDLE " << MAXLAYERS
  400. << " LAYERS\n";
  401. throw EarthModelWithMoreThanMaxLayers();
  402. }
  403. int nfreq = 1; // number of freqs
  404. int nfield; // field output 1 = elec, 2 = mag, 3 = both
  405. switch (FieldsToCalculate) {
  406. case E:
  407. nfield = 1;
  408. break;
  409. case H:
  410. nfield = 2;
  411. break;
  412. case BOTH:
  413. nfield = 3;
  414. break;
  415. default:
  416. throw 7;
  417. }
  418. int nres = Receivers->GetNumberOfPoints();
  419. int jtype = 3; // form ouf output,
  420. // 1 = horizontal,
  421. // 2 = down hole,
  422. // 3 = freq sounding
  423. // 4 = down hole logging
  424. int jgamma = 0; // Units 0 = MKS (H->A/m and E->V/m)
  425. // 1 = h->Gammas E->V/m
  426. double acc = 0.; // Tolerance
  427. // TODO, fix FORTRAN calls so these arrays can be nlay long, not
  428. // MAXLAYERS.
  429. // Model Parameters
  430. double *dep = new double[MAXLAYERS];
  431. dep[0] = 0.; // We always say air starts at 0
  432. for (int ilay=1; ilay<Earth->GetNumberOfLayers(); ++ilay) {
  433. dep[ilay] = dep[ilay-1] + Earth->GetLayerThickness(ilay);
  434. //std::cout << "Depth " << dep[ilay] << std::endl;
  435. }
  436. std::complex<double> *sig = new std::complex<double> [MAXLAYERS];
  437. for (int ilay=1; ilay<=nlay; ++ilay) {
  438. sig[ilay-1] = (std::complex<double>)(Earth->GetLayerConductivity(ilay));
  439. }
  440. // TODO, pass these into Fortran call, and return Cole-Cole model
  441. // parameters. Right now this does nothing
  442. //std::complex<double> *sus = new std::complex<double>[MAXLAYERS];
  443. //std::complex<double> *epr = new std::complex<double>[MAXLAYERS];
  444. // Cole-Cole model stuff
  445. double *susl = new double[MAXLAYERS];
  446. for (int ilay=1; ilay<=nlay; ++ilay) {
  447. susl[ilay-1] = Earth->GetLayerLowFreqSusceptibility(ilay);
  448. }
  449. double *sush = new double[MAXLAYERS];
  450. for (int ilay=1; ilay<=nlay; ++ilay) {
  451. sush[ilay-1] = Earth->GetLayerHighFreqSusceptibility(ilay);
  452. }
  453. double *sustau = new double[MAXLAYERS];
  454. for (int ilay=1; ilay<=nlay; ++ilay) {
  455. sustau[ilay-1] = Earth->GetLayerTauSusceptibility(ilay);
  456. }
  457. double *susalp = new double[MAXLAYERS];
  458. for (int ilay=1; ilay<=nlay; ++ilay) {
  459. susalp[ilay-1] = Earth->GetLayerBreathSusceptibility(ilay);
  460. }
  461. double *eprl = new double[MAXLAYERS];
  462. for (int ilay=1; ilay<=nlay; ++ilay) {
  463. eprl[ilay-1] = Earth->GetLayerLowFreqPermitivity(ilay);
  464. }
  465. double *eprh = new double[MAXLAYERS];
  466. for (int ilay=1; ilay<=nlay; ++ilay) {
  467. eprh[ilay-1] = Earth->GetLayerHighFreqPermitivity(ilay);
  468. }
  469. double *eprtau = new double[MAXLAYERS];
  470. for (int ilay=1; ilay<=nlay; ++ilay) {
  471. eprtau[ilay-1] = Earth->GetLayerTauPermitivity(ilay);
  472. }
  473. double *epralp = new double[MAXLAYERS];
  474. for (int ilay=1; ilay<=nlay; ++ilay) {
  475. epralp[ilay-1] = Earth->GetLayerBreathPermitivity(ilay);
  476. }
  477. // Freq stuff
  478. double finit = Dipole->GetFrequency(0); //(1000); // Starting freq
  479. double flimit = Dipole->GetFrequency(0); //(1000); // max freq
  480. double dlimit = Dipole->GetFrequency(0); //(1000); // difusion limit
  481. double lfinc(1); // no. freq per decade
  482. // tx location jtype != 4
  483. double txx = Dipole->GetLocation(0); // (0.);
  484. double txy = Dipole->GetLocation(1); // (0.);
  485. double txz = Dipole->GetLocation(2); // (0.);
  486. // rx position
  487. // TODO, fix Fortran program to not waste this memory
  488. // maybe
  489. const int MAXREC = 15;
  490. double *rxx = new double [MAXREC];
  491. double *rxy = new double [MAXREC];
  492. double *rxz = new double [MAXREC];
  493. std::complex<double> *ex = new std::complex<double>[MAXREC];
  494. std::complex<double> *ey = new std::complex<double>[MAXREC];
  495. std::complex<double> *ez = new std::complex<double>[MAXREC];
  496. std::complex<double> *hx = new std::complex<double>[MAXREC];
  497. std::complex<double> *hy = new std::complex<double>[MAXREC];
  498. std::complex<double> *hz = new std::complex<double>[MAXREC];
  499. int nres2 = MAXREC;
  500. int ii=0;
  501. for (ii=0; ii<nres-MAXREC; ii+=MAXREC) {
  502. for (int ir=0; ir<MAXREC; ++ir) {
  503. //Vector3r pos = Receivers->GetLocation(ii+ir);
  504. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  505. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  506. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  507. }
  508. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  509. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  510. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  511. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  512. hx, hy, hz);
  513. // Scale By Moment
  514. for (int ir=0; ir<MAXREC; ++ir) {
  515. ex[ir] *= Dipole->GetMoment();
  516. ey[ir] *= Dipole->GetMoment();
  517. ez[ir] *= Dipole->GetMoment();
  518. hx[ir] *= Dipole->GetMoment();
  519. hy[ir] *= Dipole->GetMoment();
  520. hz[ir] *= Dipole->GetMoment();
  521. // Append values instead of setting them
  522. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  523. (Complex)(ey[ir]),
  524. (Complex)(ez[ir]) );
  525. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  526. (Complex)(hy[ir]),
  527. (Complex)(hz[ir]) );
  528. }
  529. }
  530. //ii += MAXREC;
  531. nres2 = 0;
  532. // Perform last positions
  533. for (int ir=0; ir<nres-ii; ++ir) {
  534. rxx[ir] = Receivers->GetLocation(ii+ir)[0];
  535. rxy[ir] = Receivers->GetLocation(ii+ir)[1];
  536. rxz[ir] = Receivers->GetLocation(ii+ir)[2];
  537. ++nres2;
  538. }
  539. em1dcall_(itype, ipol, nlay, nfreq, nfield, nres2, jtype,
  540. jgamma, acc, dep, sig, susl, sush, sustau, susalp,
  541. eprl, eprh, eprtau, epralp, finit, flimit, dlimit,
  542. lfinc, txx, txy, txz, rxx, rxy, rxz, ex, ey, ez,
  543. hx, hy, hz);
  544. // Scale By Moment
  545. for (int ir=0; ir<nres-ii; ++ir) {
  546. ex[ir] *= Dipole->GetMoment();
  547. ey[ir] *= Dipole->GetMoment();
  548. ez[ir] *= Dipole->GetMoment();
  549. hx[ir] *= Dipole->GetMoment();
  550. hy[ir] *= Dipole->GetMoment();
  551. hz[ir] *= Dipole->GetMoment();
  552. // Append values instead of setting them
  553. this->Receivers->AppendEfield(0, ii+ir, (Complex)(ex[ir]),
  554. (Complex)(ey[ir]),
  555. (Complex)(ez[ir]) );
  556. this->Receivers->AppendHfield(0, ii+ir, (Complex)(hx[ir]),
  557. (Complex)(hy[ir]),
  558. (Complex)(hz[ir]) );
  559. }
  560. delete [] sig;
  561. delete [] dep;
  562. //delete [] sus;
  563. //delete [] epr;
  564. delete [] susl;
  565. delete [] sush;
  566. delete [] susalp;
  567. delete [] sustau;
  568. delete [] eprl;
  569. delete [] eprh;
  570. delete [] epralp;
  571. delete [] eprtau;
  572. delete [] rxx;
  573. delete [] rxy;
  574. delete [] rxz;
  575. delete [] ex;
  576. delete [] ey;
  577. delete [] ez;
  578. delete [] hx;
  579. delete [] hy;
  580. delete [] hz;
  581. }
  582. #endif
  583. void EMEarth1D::SolveSingleTxRxPair (const int &irec, HankelTransform *Hankel, const Real &wavef, const int &ifreq,
  584. DipoleSource *tDipole) {
  585. ++icalcinner;
  586. // The PGI compilers fail on the below line, and others like it.
  587. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  588. //Real rho = ( ((Receivers->GetLocation(irec) - tDipole->GetLocation()).head(2)).eval() ).norm();
  589. tDipole->SetKernels( ifreq, FieldsToCalculate, Receivers, irec, Earth );
  590. Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  591. tDipole->UpdateFields( ifreq, Hankel, wavef );
  592. }
  593. // void EMEarth1D::SolveSingleTxRxPair (const int &irec, std::shared_ptr<HankelTransform> Hankel, const Real &wavef, const int &ifreq,
  594. // std::shared_ptr<DipoleSource> tDipole) {
  595. // ++icalcinner;
  596. // Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  597. // tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  598. // //Hankel->ComputeRelated( rho, tDipole->GetKernelManager() );
  599. // //tDipole->UpdateFields( ifreq, Hankel, wavef );
  600. // }
  601. void EMEarth1D::SolveLaggedTxRxPair(const int &irec, HankelTransform* Hankel,
  602. const Real &wavef, const int &ifreq, PolygonalWireAntenna* antenna) {
  603. antenna->ApproximateWithElectricDipoles(Receivers->GetLocation(irec));
  604. // Determine the min and max arguments
  605. Real rhomin = 1e9;
  606. Real rhomax = 1e-9;
  607. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  608. auto tDipole = antenna->GetDipoleSource(idip);
  609. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  610. rhomin = std::min(rhomin, rho);
  611. rhomax = std::max(rhomax, rho);
  612. }
  613. // Determine number of lagged convolutions to do
  614. int nlag = 1; // (Key==0) We need an extra for some reason for stability? Maybe in Spline?
  615. Real lrho ( 1.0 * rhomax );
  616. while ( lrho > rhomin ) {
  617. nlag += 1;
  618. lrho *= Hankel->GetABSER();
  619. }
  620. auto tDipole = antenna->GetDipoleSource(0);
  621. tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth);
  622. // Instead we should pass the antenna into this so that Hankel hass all the rho arguments...
  623. Hankel->ComputeLaggedRelated( 1.0*rhomax, nlag, tDipole->GetKernelManager() );
  624. // Sort the dipoles by rho
  625. for (unsigned int idip=0; idip<antenna->GetNumberOfDipoles(); ++idip) {
  626. // Can we avoid these two lines, and instead vary the moment of the previous tDipole?
  627. // SetKernels is somewhat heavy
  628. auto rDipole = antenna->GetDipoleSource(idip);
  629. //tDipole->SetKernels(ifreq, FieldsToCalculate, Receivers, irec, Earth); // expensive, and not used
  630. tDipole->SetLocation( rDipole->GetLocation() );
  631. tDipole->SetMoment( rDipole->GetMoment() );
  632. tDipole->SetPolarisation( rDipole->GetPolarisation() );
  633. tDipole->SetupLight( ifreq, FieldsToCalculate, irec );
  634. // Pass Hankel2 a message here so it knows which one to return in Zgauss!
  635. Real rho = (Receivers->GetLocation(irec).head<2>() - tDipole->GetLocation().head<2>()).norm();
  636. Hankel->SetLaggedArg( rho );
  637. tDipole->UpdateFields( ifreq, Hankel, wavef );
  638. }
  639. }
  640. //////////////////////////////////////////////////////////
  641. // Thread safe OO Reimplimentation of KiHand's
  642. // EM1DNEW.for programme
  643. void EMEarth1D::MakeCalc3() {
  644. if ( Dipole == nullptr ) throw NullDipoleSource();
  645. if (Earth == nullptr) throw NullEarth();
  646. if (Receivers == nullptr) throw NullReceivers();
  647. #ifdef LEMMAUSEOMP
  648. #pragma omp parallel
  649. #endif
  650. { // OpenMP Parallel Block
  651. #ifdef LEMMAUSEOMP
  652. int tid = omp_get_thread_num();
  653. int nthreads = omp_get_num_threads();
  654. #else
  655. int tid=0;
  656. int nthreads=1;
  657. #endif
  658. auto tDipole = Dipole->Clone();
  659. std::shared_ptr<HankelTransform> Hankel;
  660. switch (HankelType) {
  661. case ANDERSON801:
  662. Hankel = FHTAnderson801::NewSP();
  663. break;
  664. case CHAVE:
  665. Hankel = GQChave::NewSP();
  666. break;
  667. case FHTKEY201:
  668. Hankel = FHTKey201::NewSP();
  669. break;
  670. case FHTKEY101:
  671. Hankel = FHTKey101::NewSP();
  672. break;
  673. case FHTKEY51:
  674. Hankel = FHTKey51::NewSP();
  675. break;
  676. case QWEKEY:
  677. Hankel = QWEKey::NewSP();
  678. break;
  679. default:
  680. std::cerr << "Hankel transform cannot be created\n";
  681. exit(EXIT_FAILURE);
  682. }
  683. if ( tDipole->GetNumberOfFrequencies() < Receivers->GetNumberOfPoints() ) {
  684. for (int ifreq=0; ifreq<tDipole->GetNumberOfFrequencies(); ++ifreq) {
  685. // Propogation constant in free space being input to Hankel
  686. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  687. for (int irec=tid; irec<Receivers->GetNumberOfPoints(); irec+=nthreads) {
  688. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  689. }
  690. }
  691. } else {
  692. for (int irec=0; irec<Receivers->GetNumberOfPoints(); ++irec) {
  693. for (int ifreq=tid; ifreq<tDipole->GetNumberOfFrequencies(); ifreq+=nthreads) {
  694. // Propogation constant in free space being input to Hankel
  695. Real wavef = tDipole->GetAngularFrequency(ifreq) * std::sqrt(MU0*EPSILON0);
  696. SolveSingleTxRxPair(irec, Hankel.get(), wavef, ifreq, tDipole.get());
  697. }
  698. }
  699. }
  700. } // OpenMP Parallel Block
  701. }
  702. NullReceivers::NullReceivers() :
  703. runtime_error("nullptr RECEIVERS") {}
  704. NullAntenna::NullAntenna() :
  705. runtime_error("nullptr ANTENNA") {}
  706. NullInstrument::NullInstrument(LemmaObject* ptr) :
  707. runtime_error("nullptr INSTRUMENT") {
  708. std::cout << "Thrown by instance of "
  709. << ptr->GetName() << std::endl;
  710. }
  711. DipoleSourceSpecifiedForWireAntennaCalc::
  712. DipoleSourceSpecifiedForWireAntennaCalc() :
  713. runtime_error("DIPOLE SOURCE SPECIFIED FOR WIRE ANTENNA CALC"){}
  714. } // end of Lemma Namespace