/* This file is part of Lemma, a geophysical modelling and inversion API */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** @file @author Trevor Irons @date 12/02/2009 **/ #include "DipoleSource.h" #include "KernelEM1DManager.h" //#include "GroundedElectricDipole.h" //#include "UngroundedElectricDipole.h" //#include "MagneticDipole.h" #include "FieldPoints.h" #include "HankelTransform.h" namespace Lemma { // ==================== FRIENDS ====================== std::ostream &operator<<(std::ostream &stream, const DipoleSource &ob) { stream << ob.Serialize() << "\n"; return stream; } /* bool DipoleSource::operator == (DipoleSource& rhs) const { if (Location != rhs.Location) return false; return true; } */ // ==================== LIFECYCLE ====================== DipoleSource::DipoleSource( const ctor_key& key ) : LemmaObject( key ), Type(NOSOURCETYPE), irec(-1), Phase(0), Moment(1), KernelManager(nullptr), Receivers(nullptr), Earth(nullptr) { this->Location.setZero(); this->Phat.setZero(); } DipoleSource::DipoleSource( const YAML::Node& node, const ctor_key& key ) : LemmaObject( node, key ), Type(NOSOURCETYPE), irec(-1), Phase(0), Moment(1), KernelManager(nullptr), Receivers(nullptr), Earth(nullptr) { Type = string2Enum(node["Type"].as()); this->Location = node["Location"].as(); this->Phat.setZero(); } DipoleSource::~DipoleSource() { } std::shared_ptr DipoleSource::NewSP() { return std::make_shared ( ctor_key() ); } YAML::Node DipoleSource::Serialize() const { YAML::Node node = LemmaObject::Serialize(); node.SetTag( GetName() ); node["Type"] = enum2String(Type); node["Location"] = Location; node["Phat"] = Phat; node["Freqs"] = Freqs; node["Phase"] = Phase; node["Moment"] = Moment; return node; } std::shared_ptr< DipoleSource > DipoleSource::DeSerialize(const YAML::Node& node) { if (node.Tag() != "DipoleSource") { throw DeSerializeTypeMismatch( "DipoleSource", node.Tag()); } return std::make_shared ( node, ctor_key() ); } std::shared_ptr DipoleSource::Clone() { auto Obj = DipoleSource::NewSP(); // copy Obj->Type = Type; Obj->irec = irec; Obj->lays = lays; Obj->layr = layr; Obj->Phase = Phase; Obj->Moment = Moment; Obj->xxp = xxp; Obj->yyp = yyp; Obj->rho = rho; Obj->sp = sp; Obj->cp = cp; Obj->scp = scp; Obj->sps = sps; Obj->cps = cps; Obj->c2p = c2p; Obj->FieldsToCalculate = FieldsToCalculate; Obj->f = f; Obj->ik = ik; Obj->Location = Location; Obj->Phat = Phat; Obj->Freqs = Freqs; return Obj; } //-------------------------------------------------------------------------------------- // Class: DipoleSource // Method: GetName // Description: Class identifier //-------------------------------------------------------------------------------------- inline std::string DipoleSource::GetName ( ) const { return CName; } // ----- end of method DipoleSource::GetName ----- // ==================== ACCESS ====================== void DipoleSource::SetLocation(const Vector3r &posin) { this->Location = posin; } void DipoleSource::SetLocation(const Real &xp, const Real &yp, const Real &zp) { this->Location = Vector3r(xp, yp, zp); } void DipoleSource::SetPhase(const Real &phase) { this->Phase = phase; } void DipoleSource::SetPolarity(const DipoleSourcePolarity &pol) { static bool called = false; if (!called) { std::cerr << "\n\n=================================================================\n" << "WARNING: Use of deprecated method DipoleSource::SetPolarity(pol)\n" << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n" << "This method will be removed in future versions of Lemma" << "\n=================================================================\n"; called = true; } // Polarity = pol; // switch (Polarity) { // case POSITIVE: // Moment = std::abs(Moment); // break; // case NEGATIVE: // Moment = -std::abs(Moment); // break; // default: // throw NonValidDipolePolarity(); // }; } void DipoleSource::SetType(const DIPOLESOURCETYPE & stype) { switch (stype) { case (GROUNDEDELECTRICDIPOLE): this->Type = stype; break; case (UNGROUNDEDELECTRICDIPOLE): this->Type = stype; break; case (GROUNDINGPOINT): this->Type = stype; break; case (MAGNETICDIPOLE): this->Type = stype; break; default: throw NonValidDipoleTypeAssignment(); } } void DipoleSource::SetPolarisation(const Vector3r& pol) { this->Phat = pol / pol.norm(); } void DipoleSource::SetPolarisation(const Real& x, const Real& y, const Real& z) { Vector3r pol = (VectorXr(3) << x, y, z).finished(); this->Phat = pol / pol.norm(); } Vector3r DipoleSource::GetPolarisation() { return Phat; } DIPOLESOURCETYPE DipoleSource::GetType() { return Type; } void DipoleSource::SetPolarisation(const DipoleSourcePolarisation &pol) { static bool called = false; if (!called) { std::cout << "\n\n========================================================================================\n" << "WARNING: Use of deprecated method DipoleSource::SetPolarisation(DipleSourcePolarisation)\n" << "Use more general SetPolarisation( Vector3r ) or SetPolarisation( x, y, z );\n" << "This method will be removed in future versions of Lemma" << "\n========================================================================================\n"; called = true; } switch (pol) { case (XPOLARISATION): this->Phat = (VectorXr(3) << 1, 0, 0).finished(); break; case (YPOLARISATION): this->Phat = (VectorXr(3) << 0, 1, 0).finished(); break; case (ZPOLARISATION): this->Phat = (VectorXr(3) << 0, 0, 1).finished(); break; default: throw NonValidDipolePolarisationAssignment(); } } void DipoleSource::SetMoment(const Real &moment) { this->Moment = moment; } // ==================== OPERATIONS ===================== void DipoleSource::SetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr ReceiversIn, const int& irecin, std::shared_ptr EarthIn ) { if (Receivers != ReceiversIn) { Receivers = ReceiversIn; } if (Earth != EarthIn) { Earth = EarthIn; } if (irecin != irec) { irec = irecin; } if (FieldsToCalculate != Fields) { FieldsToCalculate = Fields; } xxp = Receivers->GetLocation(irec)[0] - Location[0]; yyp = Receivers->GetLocation(irec)[1] - Location[1]; rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm(); sp = yyp/rho; cp = xxp/rho; scp = sp*cp; sps = sp*sp; cps = cp*cp; c2p = cps-sps; f = VectorXcr::Zero(13); ik = VectorXi::Zero(13); lays = Earth->GetLayerAtThisDepth(Location[2]); layr = Earth->GetLayerAtThisDepth(Receivers->GetLocation(irec)[2]); // TODO, avoid smart pointer here maybe? KernelManager = KernelEM1DManager::NewSP(); KernelManager->SetEarth(Earth); // alternative is to use weak_ptr here, this is deep and internal, and we are safe. //KernelManager->SetDipoleSource( shared_from_this().get() , ifreq, Receivers->GetLocation(irec)[2]); KernelManager->SetDipoleSource( this, ifreq, Receivers->GetLocation(irec)[2]); //KernelManager->SetDipoleSource( this.get() , ifreq, Receivers->GetLocation(irec)[2] ); kernelFreq = Freqs(ifreq); // this is never used ReSetKernels( ifreq, Fields, Receivers, irec, Earth ); return; } void DipoleSource::SetupLight(const int& ifreq, const FIELDCALCULATIONS& Fields, const int& irecin) { xxp = Receivers->GetLocation(irec)[0] - Location[0]; yyp = Receivers->GetLocation(irec)[1] - Location[1]; rho = (Receivers->GetLocation(irec).head<2>() - Location.head<2>()).norm(); sp = yyp/rho; cp = xxp/rho; scp = sp*cp; sps = sp*sp; cps = cp*cp; c2p = cps-sps; return; } // TODO we could make the dipoles template specializations avoiding this rats nest of switch statements. Probably // not the most critical piece though void DipoleSource::ReSetKernels(const int& ifreq, const FIELDCALCULATIONS& Fields , std::shared_ptr Receivers, const int& irec, std::shared_ptr Earth ) { Vector3r Pol = Phat; switch (Type) { case (GROUNDEDELECTRICDIPOLE): if (std::abs(Pol[2]) > 0) { // z dipole switch(FieldsToCalculate) { case E: if (lays == 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } break; case H: if (lays == 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else { ik[12] = KernelManager->AddKernel( ); } break; case BOTH: if ( lays == 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } } } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole switch(FieldsToCalculate) { case E: if ( lays == 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } break; case H: if (lays == 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } break; case BOTH: if (lays == 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } break; } } break; case (GROUNDINGPOINT): if (std::abs(Pol[2]) > 0) { // z dipole switch(FieldsToCalculate) { case E: if (lays == 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } break; case H: if (lays == 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else { ik[12] = KernelManager->AddKernel( ); } break; case BOTH: if ( lays == 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } } } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole switch(FieldsToCalculate) { case E: if ( lays == 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); } else { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); } break; case H: if (lays == 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } else { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } break; case BOTH: if (lays == 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } else { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); //ik[2] = KernelManager->AddKernel( ); //ik[3] = KernelManager->AddKernel( ); ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); //ik[7] = KernelManager->AddKernel( ); //ik[8] = KernelManager->AddKernel( ); //ik[9] = KernelManager->AddKernel( ); } break; } } break; case (UNGROUNDEDELECTRICDIPOLE): if (std::abs(Pol[2]) > 0) { // z dipole switch(FieldsToCalculate) { case E: if (lays == 0 && layr == 0) { ik[11] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[11] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[11] = KernelManager->AddKernel( ); } else { ik[11] = KernelManager->AddKernel( ); } break; case H: if (lays == 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else { ik[12] = KernelManager->AddKernel( ); } break; case BOTH: if ( lays == 0 && layr == 0) { ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } else { ik[11] = KernelManager->AddKernel( ); ik[12] = KernelManager->AddKernel( ); } } } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole switch(FieldsToCalculate) { case E: if ( lays == 0 && layr == 0) { ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else { ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } break; case H: if (lays == 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } break; case BOTH: if (lays == 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } break; } } break; case (MAGNETICDIPOLE): if (std::abs(Pol[2]) > 0) { // z dipole switch (FieldsToCalculate) { case E: if (lays == 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[12] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); } else { ik[12] = KernelManager->AddKernel( ); } break; case H: if (lays == 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else { ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } break; case BOTH: if (lays == 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[12] = KernelManager->AddKernel( ); ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[12] = KernelManager->AddKernel( ); ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } else { ik[12] = KernelManager->AddKernel( ); ik[10] = KernelManager->AddKernel( ); ik[11] = KernelManager->AddKernel( ); } } } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole switch (FieldsToCalculate) { case E: if ( lays == 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } else { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); } break; case H: if ( lays == 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else if (lays > 0 && layr == 0) { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else { ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } break; case BOTH: if ( lays == 0 && layr == 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else if (lays == 0 && layr > 0) { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } else { ik[5] = KernelManager->AddKernel( ); ik[6] = KernelManager->AddKernel( ); ik[7] = KernelManager->AddKernel( ); ik[8] = KernelManager->AddKernel( ); ik[9] = KernelManager->AddKernel( ); ik[0] = KernelManager->AddKernel( ); ik[1] = KernelManager->AddKernel( ); ik[4] = KernelManager->AddKernel( ); ik[2] = KernelManager->AddKernel( ); ik[3] = KernelManager->AddKernel( ); } break; } } break; default: std::cerr << "Dipole type incorrect, in dipolesource.cpp"; exit(EXIT_FAILURE); } } void DipoleSource::UpdateFields( const int& ifreq, HankelTransform* Hankel, const Real& wavef) { Vector3r Pol = Phat; switch (Type) { case (GROUNDEDELECTRICDIPOLE): //Hankel->ComputeRelated(rho, KernelManager); if (std::abs(Pol[2]) > 0) { // z dipole switch(FieldsToCalculate) { case E: f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm(); f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm(); this->Receivers->AppendEfield(ifreq, irec, -Pol[2]*QPI*cp*f(10)*Moment, -Pol[2]*QPI*sp*f(10)*Moment, Pol[2]*QPI*f(11)*Moment); break; case H: f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12])); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*QPI*sp*f(12)*Moment, Pol[2]*QPI*cp*f(12)*Moment, 0. ); break; case BOTH: f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm(); f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm(); this->Receivers->AppendEfield(ifreq, irec, -Pol[2]*QPI*cp*f(10)*Moment, -Pol[2]*QPI*sp*f(10)*Moment, Pol[2]*QPI*f(11)*Moment ); f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12])); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*QPI*sp*f(12)*Moment, Pol[2]*QPI*cp*f(12)*Moment, 0. ); } // Fields to calculate Z polarity Electric dipole } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole switch(FieldsToCalculate) { case E: f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs(); f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs(); f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm(); f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm(); f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[1]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)), Pol[1]*Moment*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho)), Pol[1]*Moment*QPI*sp*f(4)); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); } break; case H: f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5])); f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6])); f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm(); f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm(); f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment, Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment, -Pol[1]*QPI*cp*f(9)*Moment ); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho), Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho), Pol[0]*Moment*QPI*sp*f(9) ); } break; case BOTH: f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm(); f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm(); f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm(); f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs(); f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs(); f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5])); f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6])); f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm(); f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm(); f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment , Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment, Pol[1]*QPI*sp*f(4)*Moment); this->Receivers->AppendHfield(ifreq, irec, Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment, Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment, -Pol[1]*QPI*cp*f(9)*Moment ); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho), Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho), Pol[0]*Moment*QPI*sp*f(9) ); } break; } } break; // GROUNDEDELECTRICDIPOLE case (GROUNDINGPOINT): if (std::abs(Pol[2]) > 0) { // z dipole switch(FieldsToCalculate) { case E: f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm(); f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm(); this->Receivers->AppendEfield(ifreq, irec, -Pol[2]*QPI*cp*f(10)*Moment, -Pol[2]*QPI*sp*f(10)*Moment, Pol[2]*QPI*f(11)*Moment); break; case H: f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12])); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*QPI*sp*f(12)*Moment, Pol[2]*QPI*cp*f(12)*Moment, 0. ); break; case BOTH: f(10) = Hankel->Zgauss(10, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10])) / KernelManager->GetRAWKernel(ik[10])->GetYm(); f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm(); this->Receivers->AppendEfield(ifreq, irec, -Pol[2]*QPI*cp*f(10)*Moment, -Pol[2]*QPI*sp*f(10)*Moment, Pol[2]*QPI*f(11)*Moment ); f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12])); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*QPI*sp*f(12)*Moment, Pol[2]*QPI*cp*f(12)*Moment, 0. ); } // Fields to calculate Z polarity Electric dipole } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole switch(FieldsToCalculate) { case E: f(2) = 0;//Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs(); f(3) = 0;//Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs(); f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm(); f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm(); f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, 0,0,0); //Pol[1]*QPI*Moment*scp*(f(0)+f(2)), //Pol[1]*QPI*Moment*((sps*f(0)+c2p*f(1)/rho)), //Pol[1]*QPI*Moment*(f(0)+f(2)), //Pol[1]*QPI*Moment*((f(0)+f(1)/rho)), //Pol[1]*QPI*sp*f(4)*Moment); // std dipole //Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment , //Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment, //Pol[1]*QPI*sp*f(4)*Moment); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)), //-(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)), //+(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); } break; case H: f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5])); f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6])); f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm(); f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm(); f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment, Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment, -Pol[1]*QPI*cp*f(9)*Moment ); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho), Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho), Pol[0]*Moment*QPI*sp*f(9) ); } break; case BOTH: f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm(); f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm(); f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm(); f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs(); f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs(); f(5) = Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5])); f(6) = Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6])); f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm(); f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm(); f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment , Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment, Pol[1]*QPI*sp*f(4)*Moment); this->Receivers->AppendHfield(ifreq, irec, Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment, Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment, -Pol[1]*QPI*cp*f(9)*Moment ); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho), Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho), Pol[0]*Moment*QPI*sp*f(9) ); } break; } } break; // GROUNDINGPOINT case UNGROUNDEDELECTRICDIPOLE: if (std::abs(Pol[2]) > 0) { // z dipole switch(FieldsToCalculate) { case E: f(10) = 0; f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm(); this->Receivers->AppendEfield(ifreq, irec, -Pol[2]*QPI*cp*f(10)*Moment, -Pol[2]*QPI*sp*f(10)*Moment, Pol[2]*QPI*f(11)*Moment); break; case H: f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12])); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*QPI*sp*f(12)*Moment, Pol[2]*QPI*cp*f(12)*Moment, 0. ); break; case BOTH: f(10) = 0; f(11) = Hankel->Zgauss(11, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11])) / KernelManager->GetRAWKernel(ik[11])->GetYm(); this->Receivers->AppendEfield(ifreq, irec, -Pol[2]*QPI*cp*f(10)*Moment, -Pol[2]*QPI*sp*f(10)*Moment, Pol[2]*QPI*f(11)*Moment ); f(12) = Hankel->Zgauss(12, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12])); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*QPI*sp*f(12)*Moment, Pol[2]*QPI*cp*f(12)*Moment, 0. ); } // Fields to calculate Z polarity Electric dipole } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y dipole switch(FieldsToCalculate) { case E: //f(0) = 0; //f(1) = 0; //f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs(); //f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs(); //f(4) = 0; f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(ik[2])->GetZs(); f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(ik[3])->GetZs(); f(0) = Hankel->Zgauss(0, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0])) / KernelManager->GetRAWKernel(ik[0])->GetYm(); f(1) = Hankel->Zgauss(1, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1])) / KernelManager->GetRAWKernel(ik[1])->GetYm(); f(4) = Hankel->Zgauss(4, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4])) / KernelManager->GetRAWKernel(ik[4])->GetYm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment, Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment, Pol[1]*QPI*sp*f(4)*Moment); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); } break; case H: // TI - Comparisons with Amira show slight better agreement when neglecting these grounding terms f(5) = 0; //Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5])); f(6) = 0; //Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6])); f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm(); f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm(); f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment, Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment, -Pol[1]*QPI*cp*f(9)*Moment ); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho), Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho), Pol[0]*Moment*QPI*sp*f(9) ); } break; case BOTH: f(0) = 0; f(1) = 0; f(4) = 0; f(2) = Hankel->Zgauss(2, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2])) * KernelManager->GetRAWKernel(0)->GetZs(); f(3) = Hankel->Zgauss(3, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3])) * KernelManager->GetRAWKernel(1)->GetZs(); f(5) = 0;//Hankel->Zgauss(5, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5])); f(6) = 0;//Hankel->Zgauss(6, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6])); f(7) = Hankel->Zgauss(7, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetZs()/KernelManager->GetRAWKernel(ik[7])->GetZm(); f(8) = Hankel->Zgauss(8, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetZs()/KernelManager->GetRAWKernel(ik[8])->GetZm(); f(9) = Hankel->Zgauss(9, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetZs()/KernelManager->GetRAWKernel(ik[9])->GetZm(); if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[1]*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho))*Moment , Pol[1]*QPI*((sps*f(0)+c2p*f(1)/rho)-(cps*f(2)-c2p*f(3)/rho))*Moment, Pol[1]*QPI*sp*f(4)*Moment); this->Receivers->AppendHfield(ifreq, irec, Pol[1]*QPI*(sps*f(5)+c2p*f(6)/rho-cps*f(7)+c2p*f(8)/rho)*Moment, Pol[1]*QPI*scp*(-f(5)+(Real)(2.)*f(6)/rho-f(7)+(Real)(2.)*f(8)/rho)*Moment, -Pol[1]*QPI*cp*f(9)*Moment ); } if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*((cps*f(0)-c2p*f(1)/rho)-(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*((f(0)-(Real)(2.)*f(1)/rho)+(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*scp*(f(5)-(Real)(2.)*f(6)/rho+f(7)-(Real)(2.)*f(8)/rho), Pol[0]*Moment*QPI*(-cps*f(5)+c2p*f(6)/rho+sps*f(7)+c2p*f(8)/rho), Pol[0]*Moment*QPI*sp*f(9) ); } break; } } break; // UNGROUNDEDELECTRICDIPOLE case MAGNETICDIPOLE: //Hankel->ComputeRelated(rho, KernelManager); if (std::abs(Pol[2]) > 0) { // z dipole switch(FieldsToCalculate) { case E: f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs(); this->Receivers->AppendEfield(ifreq, irec, Pol[2]*Moment*QPI*sp*f(12), -Pol[2]*Moment*QPI*cp*f(12), 0); break; case H: f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm(); f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm(); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*Moment*QPI*cp*f(10), -Pol[2]*Moment*QPI*sp*f(10), Pol[2]*Moment*QPI*f(11) ); break; case BOTH: f(12)=Hankel->Zgauss(12, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[12]))*KernelManager->GetRAWKernel(ik[12])->GetZs(); f(10)=Hankel->Zgauss(10, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[10]))*KernelManager->GetRAWKernel(ik[10])->GetZs()/KernelManager->GetRAWKernel(ik[10])->GetZm(); f(11)=Hankel->Zgauss(11, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[11]))*KernelManager->GetRAWKernel(ik[11])->GetZs()/KernelManager->GetRAWKernel(ik[11])->GetZm(); this->Receivers->AppendEfield(ifreq, irec, Pol[2]*Moment*QPI*sp*f(12), -Pol[2]*Moment*QPI*cp*f(12), 0); this->Receivers->AppendHfield(ifreq, irec, -Pol[2]*Moment*QPI*cp*f(10), -Pol[2]*Moment*QPI*sp*f(10), Pol[2]*Moment*QPI*f(11) ); break; } } if (std::abs(Pol[1]) > 0 || std::abs(Pol[0]) > 0) { // x or y grounded HED dipole switch (FieldsToCalculate) { case E: f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs(); f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs(); f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm(); f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm(); f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm(); if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)), Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)), Pol[0]*Moment*QPI*sp*f(9)); } if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)), Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)), -Pol[1]*Moment*QPI*cp*f(9) ); } break; case H: f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm(); f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm(); f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm(); f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs(); f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs(); if (std::abs(Pol[0]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); } if (std::abs(Pol[1]) > 0) { this->Receivers->AppendHfield(ifreq, irec, Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)), Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)), Pol[1]*Moment*QPI*sp*f(4)); } break; case BOTH: f(5) = Hankel->Zgauss(5, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[5]))*KernelManager->GetRAWKernel(ik[5])->GetZs(); f(6) = Hankel->Zgauss(6, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[6]))*KernelManager->GetRAWKernel(ik[6])->GetZs(); f(7) = Hankel->Zgauss(7, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[7]))*KernelManager->GetRAWKernel(ik[7])->GetKs()/KernelManager->GetRAWKernel(ik[7])->GetYm(); f(8) = Hankel->Zgauss(8, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[8]))*KernelManager->GetRAWKernel(ik[8])->GetKs()/KernelManager->GetRAWKernel(ik[8])->GetYm(); f(9) = Hankel->Zgauss(9, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[9]))*KernelManager->GetRAWKernel(ik[9])->GetKs()/KernelManager->GetRAWKernel(ik[9])->GetYm(); f(0) = Hankel->Zgauss(0, TE, 0, rho, wavef, KernelManager->GetRAWKernel(ik[0]))*KernelManager->GetRAWKernel(ik[0])->GetZs()/KernelManager->GetRAWKernel(ik[0])->GetZm(); f(1) = Hankel->Zgauss(1, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[1]))*KernelManager->GetRAWKernel(ik[1])->GetZs()/KernelManager->GetRAWKernel(ik[1])->GetZm(); f(4) = Hankel->Zgauss(4, TE, 1, rho, wavef, KernelManager->GetRAWKernel(ik[4]))*KernelManager->GetRAWKernel(ik[4])->GetZs()/KernelManager->GetRAWKernel(ik[4])->GetZm(); f(2) = Hankel->Zgauss(2, TM, 0, rho, wavef, KernelManager->GetRAWKernel(ik[2]))*KernelManager->GetRAWKernel(ik[2])->GetKs(); f(3) = Hankel->Zgauss(3, TM, 1, rho, wavef, KernelManager->GetRAWKernel(ik[3]))*KernelManager->GetRAWKernel(ik[3])->GetKs(); if (std::abs(Pol[0]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[0]*Moment*QPI*scp*((-f(5)+(Real)(2.)*f(6)/rho)+(f(7)-(Real)(2.)*f(8)/rho)), Pol[0]*Moment*QPI*((cps*f(5)-c2p*f(6)/rho)+(sps*f(7)+c2p*f(8)/rho)), Pol[0]*Moment*QPI*sp*f(9)); this->Receivers->AppendHfield(ifreq, irec, Pol[0]*Moment*QPI*(cps*f(0)-c2p*f(1)/rho+(sps*f(2)+c2p*f(3)/rho)), Pol[0]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)), Pol[0]*Moment*QPI*cp*f(4) ); } if (std::abs(Pol[1]) > 0) { this->Receivers->AppendEfield(ifreq, irec, Pol[1]*Moment*QPI*(-(sps*f(5)+c2p*f(6)/rho)-(cps*f(7)-c2p*f(8)/rho)), Pol[1]*Moment*QPI*scp*((f(5)-(Real)(2.)*f(6)/rho)-(f(7)-(Real)(2.)*f(8)/rho)), -Pol[1]*Moment*QPI*cp*f(9) ); this->Receivers->AppendHfield(ifreq, irec, Pol[1]*Moment*QPI*scp*(f(0)-(Real)(2.)*f(1)/rho-(f(2)-(Real)(2.)*f(3)/rho)), Pol[1]*Moment*QPI*(sps*f(0)+c2p*f(1)/rho+(cps*f(2)-c2p*f(3)/rho)), Pol[1]*Moment*QPI*sp*f(4)); } break; } } break; case NOSOURCETYPE: throw NonValidDipoleType(this); } // Source Type Switch } // ==================== INQUIRY ====================== std::shared_ptr DipoleSource::GetKernelManager() { return KernelManager; } Vector3r DipoleSource::GetLocation() { return this->Location; } #ifdef LEMMAUSEVTK vtkActor* DipoleSource::GetVtkActor() { vtkActor* vActor; vtkLineSource* vLineSource; vtkTubeFilter* vTube; vtkPolyDataMapper* vMapper; vtkRegularPolygonSource* vCircleSource; vLineSource = vtkLineSource::New(); vTube = vtkTubeFilter::New(); vMapper = vtkPolyDataMapper::New(); vCircleSource = vtkRegularPolygonSource::New(); VectorXr M0 = Location - .5*Moment*Phat; VectorXr M1 = Location + .5*Moment*Phat; vActor = vtkActor::New(); switch (Type) { case GROUNDEDELECTRICDIPOLE: vLineSource->SetPoint1( M0(0), M0(1), M0(2)); vLineSource->SetPoint2( M1(0), M1(1), M1(2)); vTube->SetInputConnection(vLineSource->GetOutputPort()); vTube->SetRadius(.1 * std::abs(Moment)); vTube->SetNumberOfSides(6); vTube->SetCapping(1); vMapper->SetInputConnection(vTube->GetOutputPort()); vActor->SetMapper(vMapper); vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]); break; case UNGROUNDEDELECTRICDIPOLE: vLineSource->SetPoint1( M0(0), M0(1), M0(2)); vLineSource->SetPoint2( M1(0), M1(1), M1(2)); vTube->SetInputConnection(vLineSource->GetOutputPort()); vTube->SetRadius(.1 * std::abs(Moment)); vTube->SetNumberOfSides(6); vTube->SetCapping(1); vMapper->SetInputConnection(vTube->GetOutputPort()); vActor->SetMapper(vMapper); //vActor->GetProperty()->SetColor(Phat[0], Phat[1], Phat[2]); vActor->GetProperty()->SetColor(rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX), rand()/(Real)(RAND_MAX)); vActor->GetProperty()->SetOpacity(1.); break; case MAGNETICDIPOLE: vCircleSource->SetCenter(Location(0), Location(1), Location(2)); vCircleSource->SetNumberOfSides(360); vCircleSource->SetNormal(Phat[0], Phat[1], Phat[2]); vCircleSource->SetRadius(0.2); // .2 m radius vCircleSource->SetGeneratePolygon(false); vCircleSource->SetGeneratePolyline(true); vCircleSource->Update(); vTube->SetInputConnection(vCircleSource->GetOutputPort()); //vTube->SetRadius( max((float)(*xCoords->GetTuple(nx)), // (float)(*yCoords->GetTuple(ny))) / 100); vTube->SetRadius(.1*std::abs(Moment)); vTube->SetNumberOfSides(6); vTube->SetCapping(1); vMapper->SetInputConnection(vTube->GetOutputPort()); vActor->SetMapper(vMapper); vActor->GetProperty()->SetColor(.9,.2,.9); break; default: throw NonValidDipoleType(); } vLineSource->Delete(); vCircleSource->Delete(); vTube->Delete(); vMapper->Delete(); return vActor; } #endif Real DipoleSource::GetLocation(const int& coordinate) { switch (coordinate) { case (0): return this->Location.x(); //break; // implicit case (1): return this->Location.y(); //break; // implicit case (2): return this->Location.z(); //break; // implicit default: throw NonValidLocationCoordinate( ); } } DIPOLESOURCETYPE DipoleSource::GetDipoleSourceType() { return this->Type; } //DipoleSourcePolarisation DipoleSource::GetDipoleSourcePolarisation() { // return this->Polarisation; //} Real DipoleSource::GetAngularFrequency(const int& ifreq) { return 2.*PI*this->Freqs(ifreq); } Real DipoleSource::GetFrequency(const int& ifreq) { return this->Freqs(ifreq); } VectorXr DipoleSource::GetFrequencies( ) { return this->Freqs; } Real DipoleSource::GetPhase() { return this->Phase; } Real DipoleSource::GetMoment() { return this->Moment; } int DipoleSource::GetNumberOfFrequencies() { return (int)(this->Freqs.size()); } void DipoleSource::SetNumberOfFrequencies(const int &nfreq){ Freqs.resize(nfreq); Freqs.setZero(); } void DipoleSource::SetFrequency(const int &ifreq, const Real &freq){ Freqs(ifreq) = freq; } void DipoleSource::SetFrequencies(const VectorXr &freqs){ Freqs = freqs; } ///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////// // Error classes NullDipoleSource::NullDipoleSource() : runtime_error( "NULL VALUED DIPOLE SOURCE") {} NonValidDipoleTypeAssignment::NonValidDipoleTypeAssignment( ) : runtime_error( "NON VALID DIPOLE TYPE ASSIGNMENT") { } NonValidDipoleType::NonValidDipoleType( LemmaObject* ptr ) : runtime_error( "NON VALID DIPOLE TYPE") { std::cout << "Thrown by instance of " << ptr->GetName() << std::endl; } NonValidDipoleType::NonValidDipoleType( ) : runtime_error( "NON VALID DIPOLE TYPE") { } NonValidDipolePolarity::NonValidDipolePolarity () : runtime_error( "NON VALID DIPOLE POLARITY") { } NonValidDipolePolarisation::NonValidDipolePolarisation( ) : runtime_error( "NON VALID DIPOLE TYPE") { } NonValidDipolePolarisationAssignment:: NonValidDipolePolarisationAssignment( ) : runtime_error( "NON VALID DIPOLE POLARISATION ASSIGNMENT") { } NonValidLocationCoordinate::NonValidLocationCoordinate( ) : runtime_error( "NON VALID LOCATION COORDINATE REQUESTED") { } }