Galerkin FEM for elliptic PDEs
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

sphereBox.geo 4.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. /* This file is part of Lemma, a geophysical modelling and inversion API.
  2. * More information is available at http://lemmasoftware.org
  3. */
  4. /* This Source Code Form is subject to the terms of the Mozilla Public
  5. * License, v. 2.0. If a copy of the MPL was not distributed with this
  6. * file, You can obtain one at http://mozilla.org/MPL/2.0/.
  7. */
  8. D0 = 10; // Top of magnet
  9. D1 = 11; // Bottom of magnet
  10. radius = 2.25; // Radius of the damn thing
  11. lc = radius; // 0.25; // Target element size
  12. // Total Solution Space
  13. Box = 3*radius; // The down side of potential
  14. X0 = -Box;
  15. X1 = Box;
  16. Y0 = -Box;
  17. Y1 = Box;
  18. Z0 = -Box;
  19. Z1 = Box;
  20. cellSize=lc; //300;
  21. dd = 0 ; // 1e-5; //cellSize; // .01;
  22. pio2=Pi/2;
  23. /////////////////////////////////////
  24. // Large Bounding box
  25. pp = newp;
  26. Point(pp) = {X0, Y0, Z0, lc};
  27. Point(pp+1) = {X1, Y0, Z0, lc};
  28. Point(pp+2) = {X1, Y1, Z0, lc};
  29. Point(pp+3) = {X0, Y1, Z0, lc};
  30. lv = newl;
  31. Line(lv) = {pp,pp+1};
  32. Line(lv+1) = {pp+1,pp+2};
  33. Line(lv+2) = {pp+2,pp+3};
  34. Line(lv+3) = {pp+3,pp};
  35. Line Loop(lv+4) = {lv, lv+1, lv+2, lv+3};
  36. // Hard coded doom
  37. Plane Surface(125) = {lv+4};
  38. //v = newv;
  39. v[] = Extrude {0, 0, Z1-Z0} { Surface{125}; };
  40. // // Calculate offset effect
  41. // theta = Asin(dd/radius);
  42. // rr = radius * Cos(theta);
  43. //
  44. // ///////////////////////////////////
  45. // // Positive half sphere
  46. // // create inner 1/8 shell
  47. // p0 = newp;
  48. // Point(p0) = { 0, 0, 0, cellSize}; // origin
  49. // Point(p0+1) = { -rr, 0, dd, cellSize};
  50. // Point(p0+2) = { 0, rr, dd, cellSize};
  51. // Point(p0+3) = { 0, 0, radius, cellSize};
  52. // Point(p0+4) = { 0, 0, dd, cellSize}; // origin
  53. //
  54. // c0 = newc;
  55. // Circle(c0 ) = {p0+1, p0+4, p0+2}; // Tricky, This one needs to be offset!
  56. // Circle(c0+1) = {p0+3, p0, p0+1};
  57. // Circle(c0+2) = {p0+3, p0, p0+2};
  58. //
  59. // Line Loop(10) = {c0, -(c0+2), c0+1} ;
  60. // Ruled Surface (60) = {10};
  61. //
  62. // ////////////////////////////////////////////////////////////
  63. // // Negative half sphere
  64. // p = newp;
  65. // Point( p) = { 0, 0, 0, cellSize};
  66. // Point(p+1) = { -rr, 0, -dd, cellSize};
  67. // Point(p+2) = { 0, rr, -dd, cellSize};
  68. // Point(p+3) = { 0, 0, -radius, cellSize};
  69. // Point(p+4) = { 0, 0, -dd, cellSize};
  70. //
  71. // cc = newc;
  72. // Circle(cc ) = {p+1, p+4, p+2};
  73. // Circle(cc+1) = {p+3, p, p+1};
  74. // Circle(cc+2) = {p+3, p, p+2};
  75. //
  76. // Circle(cc+3) = {p+3, p, p+2};
  77. // Circle(cc+4) = {p+3, p, p+2};
  78. // Circle(cc+5) = {p+3, p, p+2};
  79. //
  80. // ccl = newl;
  81. // Line(ccl) = { p0+3, p+3 };
  82. //
  83. // Line Loop(11) = {cc, -(cc+2), cc+1} ;
  84. // Ruled Surface (61) = {11};
  85. //
  86. // // create remaining 7/8 inner shells
  87. // t1[] = Rotate {{0,0,1},{0,0,0},pio2 } {Duplicata{Surface{60};}};
  88. // t2[] = Rotate {{0,0,1},{0,0,0},pio2*2} {Duplicata{Surface{60};}};
  89. // t3[] = Rotate {{0,0,1},{0,0,0},pio2*3} {Duplicata{Surface{60};}};
  90. // //
  91. // t4[] = Rotate {{0,0,1},{0,0,0},pio2 } {Duplicata{Surface{61};}};
  92. // t5[] = Rotate {{0,0,1},{0,0,0},pio2*2} {Duplicata{Surface{61};}};
  93. // t6[] = Rotate {{0,0,1},{0,0,0},pio2*3} {Duplicata{Surface{61};}};
  94. //
  95. // /* This is GOOD */
  96. // Surface{60} In Volume{v[1]};
  97. // Surface{t1[0]} In Volume{v[1]};
  98. // Surface{t2[0]} In Volume{v[1]};
  99. // Surface{t3[0]} In Volume{v[1]};
  100. //
  101. // Surface{61} In Volume{v[1]};
  102. // Surface{t4[0]} In Volume{v[1]};
  103. // Surface{t5[0]} In Volume{v[1]};
  104. // Surface{t6[0]} In Volume{v[1]};
  105. //
  106. // ///////////////////////////////////////////////
  107. // // Attractor Field
  108. //
  109. // //Field[1] = Attractor;
  110. // //Field[1].NodesList = {p}; //0, p0+1, p0+2, p0+3, p0+4, p, p+1, p+2, p+3, p+4};
  111. //
  112. // //Field[2] = MathEval;
  113. // //Field[2].F = Sprintf("(2.25 - F1)^2 + %g", cellSize*10 ); // WORKS
  114. // //Field[2].F = Sprintf("(%g - F1)^2 + %g", radius, 2*cellSize );
  115. // //Background Field = 2;
  116. //
  117. // // Don't extend the elements sizes from the boundary inside the domain
  118. // //Mesh.CharacteristicLengthExtendFromBoundary = 0;
  119. //
  120. // Physical Volume(1) = {v[1]};
  121. // To create the mesh run
  122. // gmsh sphere.gmsh -2 -v 0 -format msh -o sphere.msh
  123. //gmsh -3 -format msh1 -o outfile.msh sphere.geo