Galerkin FEM for elliptic PDEs
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

FEM4EllipticPDE.cpp 49KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189
  1. // ===========================================================================
  2. //
  3. // Filename: FEM4EllipticPDE.cpp
  4. //
  5. // Created: 08/16/12 18:19:57
  6. // Compiler: Tested with g++, icpc, and MSVC 2010
  7. //
  8. // Author: Trevor Irons (ti)
  9. //
  10. // Organisation: Colorado School of Mines (CSM)
  11. // United States Geological Survey (USGS)
  12. // University of Utah (UU), 2016
  13. //
  14. // Email: tirons@egi.utah.edu
  15. //
  16. // ===========================================================================
  17. /**
  18. @file
  19. @author Trevor Irons
  20. @date 08/16/12
  21. @version 0.0
  22. **/
  23. #include "FEM4EllipticPDE.h"
  24. namespace Lemma {
  25. #ifdef HAVE_YAMLCPP
  26. std::ostream &operator << (std::ostream &stream, const FEM4EllipticPDE &ob) {
  27. stream << ob.Serialize() << "\n---\n"; // End of doc --- as a direct stream should encapulste thingy
  28. return stream;
  29. }
  30. #else
  31. std::ostream &operator<<(std::ostream &stream,
  32. const FEM4EllipticPDE &ob) {
  33. stream << *(LemmaObject*)(&ob);
  34. return stream;
  35. }
  36. #endif
  37. // ==================== LIFECYCLE =======================
  38. FEM4EllipticPDE::FEM4EllipticPDE(const std::string&name) :
  39. LemmaObject(name), BndryH(10), BndrySigma(10),
  40. vtkSigma(nullptr), vtkG(nullptr), vtkGrid(nullptr), gFcn3(nullptr) {
  41. }
  42. #ifdef HAVE_YAMLCPP
  43. //--------------------------------------------------------------------------------------
  44. // Class: FEM4EllipticPDE
  45. // Method: FEM4EllipticPDE
  46. // Description: DeSerializing constructor (protected)
  47. //--------------------------------------------------------------------------------------
  48. FEM4EllipticPDE::FEM4EllipticPDE (const YAML::Node& node) : LemmaObject(node) {
  49. // TODO impliment
  50. throw std::runtime_error("FEM4ELLIPTICPDE YAML CONSTRUCTOR NOT IMPLIMENTED!");
  51. } // ----- end of method FEM4EllipticPDE::FEM4EllipticPDE (constructor) -----
  52. #endif
  53. FEM4EllipticPDE::~FEM4EllipticPDE() {
  54. }
  55. void FEM4EllipticPDE::Release() {
  56. delete this;
  57. }
  58. FEM4EllipticPDE* FEM4EllipticPDE::New( ) {
  59. FEM4EllipticPDE* Obj = new FEM4EllipticPDE("FEM4EllipticPDE");
  60. Obj->AttachTo(Obj);
  61. return Obj;
  62. }
  63. void FEM4EllipticPDE::Delete() {
  64. this->DetachFrom(this);
  65. }
  66. #ifdef HAVE_YAMLCPP
  67. //--------------------------------------------------------------------------------------
  68. // Class: FEM4EllipticPDE
  69. // Method: Serialize
  70. //--------------------------------------------------------------------------------------
  71. YAML::Node FEM4EllipticPDE::Serialize ( ) const {
  72. YAML::Node node = LemmaObject::Serialize();;
  73. node.SetTag( this->Name );
  74. // FILL IN CLASS SPECIFICS HERE
  75. return node;
  76. } // ----- end of method FEM4EllipticPDE::Serialize -----
  77. //--------------------------------------------------------------------------------------
  78. // Class: FEM4EllipticPDE
  79. // Method: DeSerialize
  80. //--------------------------------------------------------------------------------------
  81. FEM4EllipticPDE* FEM4EllipticPDE::DeSerialize ( const YAML::Node& node ) {
  82. FEM4EllipticPDE* Object = new FEM4EllipticPDE(node);
  83. Object->AttachTo(Object);
  84. DESERIALIZECHECK( node, Object )
  85. return Object ;
  86. } // ----- end of method FEM4EllipticPDE::DeSerialize -----
  87. #endif
  88. // ==================== OPERATIONS =======================
  89. void FEM4EllipticPDE::SetSigmaFunction(vtkImplicitFunction* sigma) {
  90. vtkSigma = sigma;
  91. }
  92. void FEM4EllipticPDE::SetBoundaryStep(const Real& h) {
  93. BndryH = h;
  94. }
  95. void FEM4EllipticPDE::SetGFunction(vtkImplicitFunction* g) {
  96. vtkG = g;
  97. }
  98. void FEM4EllipticPDE::SetGFunction( Real (*gFcn)(const Real&, const Real&, const Real&) ) {
  99. // vtkG = g;
  100. gFcn3 = gFcn;
  101. }
  102. void FEM4EllipticPDE::SetGrid(vtkUnstructuredGrid* grid) {
  103. vtkGrid = grid;
  104. }
  105. //--------------------------------------------------------------------------------------
  106. // Class: FEM4EllipticPDE
  107. // Method: SetVTUGridFile
  108. //--------------------------------------------------------------------------------------
  109. void FEM4EllipticPDE::SetVTUGridFile ( const std::string& fname ) {
  110. SetVTUGridFile( fname.c_str() );
  111. return ;
  112. } // ----- end of method FEM4EllipticPDE::SetVTKGridFile -----
  113. //--------------------------------------------------------------------------------------
  114. // Class: FEM4EllipticPDE
  115. // Method: SetVTUGridFile
  116. //--------------------------------------------------------------------------------------
  117. void FEM4EllipticPDE::SetVTUGridFile ( const char* fname ) {
  118. std::cout << "Loading VTK .vtu file " << fname;
  119. vtkXMLUnstructuredGridReader* MeshReader = vtkXMLUnstructuredGridReader::New();
  120. MeshReader->SetFileName(fname);
  121. MeshReader->Update();
  122. //vtkGrid->DeepCopy( MeshReader->GetOutput() );
  123. //vtkGrid->ShallowCopy( MeshReader->GetOutput() );
  124. vtkGrid = MeshReader->GetOutput();
  125. if (!vtkGrid->GetNumberOfCells()) {
  126. throw std::runtime_error("In FEM4EllipticPDE::SetVTUGridFile NUMBER OF CELLS = 0");
  127. }
  128. if (!vtkGrid->GetNumberOfPoints()) {
  129. throw std::runtime_error("In FEM4EllipticPDE::SetVTUGridFile NUMBER OF POINTS = 0");
  130. }
  131. MeshReader->Delete();
  132. std::cout << " Finished! " << std::endl;
  133. return ;
  134. } // ----- end of method FEM4EllipticPDE::SetVTKGridFile -----
  135. //--------------------------------------------------------------------------------------
  136. // Class: FEM4EllipticPDE
  137. // Method: GetConnectedPoints
  138. // (C) Joe Capriotti 2013
  139. //--------------------------------------------------------------------------------------
  140. vtkSmartPointer<vtkIdList> FEM4EllipticPDE::GetConnectedPoints(const int& id0) {
  141. vtkSmartPointer<vtkIdList> pointIds = vtkSmartPointer<vtkIdList>::New();
  142. vtkSmartPointer<vtkIdList> cellList = vtkSmartPointer<vtkIdList>::New();
  143. vtkGrid->GetPointCells(id0, cellList);
  144. for(int i=0;i<cellList->GetNumberOfIds(); ++i){
  145. vtkCell* cell = vtkGrid->GetCell(cellList->GetId(i));
  146. if(cell->GetNumberOfEdges() > 0){
  147. for(int j=0; j<cell->GetNumberOfEdges(); ++j){
  148. vtkCell* edge = cell->GetEdge(j);
  149. vtkIdList* edgePoints=edge->GetPointIds();
  150. if(edgePoints->GetId(0)==id0){
  151. pointIds->InsertUniqueId(edgePoints->GetId(1));
  152. } else if(edgePoints->GetId(1)==id0){
  153. pointIds->InsertUniqueId(edgePoints->GetId(0));
  154. }
  155. }
  156. }
  157. }
  158. return pointIds;
  159. } // ----- end of method FEM4EllipticPDE::GetConnectedPoints -----
  160. Real FEM4EllipticPDE::dist(Real r0[3], Real r1[3]) {
  161. Real rm0 = r1[0] - r0[0];
  162. Real rm1 = r1[1] - r0[1];
  163. Real rm2 = r1[2] - r0[2];
  164. return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
  165. }
  166. Real FEM4EllipticPDE::dist(const Vector3r& r0, const Vector3r& r1) {
  167. Real rm0 = r1[0] - r0[0];
  168. Real rm1 = r1[1] - r0[1];
  169. Real rm2 = r1[2] - r0[2];
  170. return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
  171. }
  172. //--------------------------------------------------------------------------------------
  173. // Class: FEM4EllipticPDE
  174. // Method: SetupDC
  175. //--------------------------------------------------------------------------------------
  176. void FEM4EllipticPDE::SetupDC ( DCSurvey* Survey, const int& ij ) {
  177. ////////////////////////////////////////////////////////////
  178. // Load vector g, solution vector u
  179. std::cout << "\nBuilding load vector (g)" << std::endl;
  180. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  181. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
  182. int iia(0);
  183. Real jja(0);
  184. Survey->GetA( ij, iia, jja );
  185. //g(ii) = jj;
  186. int iib(0);
  187. Real jjb(0);
  188. Survey->GetB( ij, iib, jjb );
  189. //g(ii) = jj;
  190. /* 3D Phi */
  191. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  192. // Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  193. // for (int ii=0; ii<4; ++ii) {
  194. // double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  195. // C(ii, 0) = 1;
  196. // C(ii, 1) = pts[0];
  197. // C(ii, 2) = pts[1];
  198. // C(ii, 3) = pts[2];
  199. // }
  200. // Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  201. //
  202. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  203. int ID[4];
  204. ID[0] = Ids->GetId(0);
  205. ID[1] = Ids->GetId(1);
  206. ID[2] = Ids->GetId(2);
  207. ID[3] = Ids->GetId(3);
  208. //Real V = C.determinant(); // volume of tetrahedra
  209. Real sum(0);
  210. if (ID[0] == iia || ID[1] == iia || ID[2] == iia || ID[3] == iia ) {
  211. std::cout << "Caught A electrode, injecting " << iia << std::endl;
  212. //sum = 10;
  213. //g(ID[iia]) += jja;
  214. g(iia) += jja;
  215. }
  216. if (ID[0] == iib || ID[1] == iib || ID[2] == iib || ID[3] == iib) {
  217. //sum = -10;
  218. std::cout << "Caught B electrode, injecting " << iib << std::endl;
  219. //g(ID[iib]) += jjb;
  220. g(iib) += jjb;
  221. }
  222. //g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
  223. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  224. }
  225. return ;
  226. } // ----- end of method FEM4EllipticPDE::SetupDC -----
  227. void FEM4EllipticPDE::Solve( const std::string& resfile ) {
  228. ConstructAMatrix();
  229. //SetupLineSourcePotential();
  230. if (vtkGrid->GetPointData()->GetScalars("G") ) {
  231. SetupSurfaceSourcePotential();
  232. } else if (vtkGrid->GetCellData()->GetScalars("G") ) {
  233. SetupPotential();
  234. }
  235. //ConstructLoadVector();
  236. std::cout << "\nSolving" << std::endl;
  237. std::cout << std::setw(5) << " " << std::setw(14) << "rows" << std::setw(14) << "cols" << std::endl;
  238. std::cout << std::setw(5) << " " << std::setw(14) << "--------" << std::setw(14) << "--------" << std::endl;
  239. std::cout << std::setw(5) << "A:" << std::setw(14) << A.rows() << std::setw(14) << A.cols() << std::endl;
  240. std::cout << std::setw(5) << "g:" << std::setw(14) << g.rows() << std::setw(14) << g.cols() << std::endl;
  241. ////////////////////////////////////////////////////////////
  242. // Solving:
  243. //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
  244. //VectorXr u = chol.solve(g);
  245. //#define LUSOLVE
  246. #ifdef LUSOLVE
  247. Eigen::SparseLU<Eigen::SparseMatrix<Real, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > solver;
  248. std::cout << "LU analyze pattern" << std::endl;
  249. solver.analyzePattern(A);
  250. std::cout << "LU factorizing" << std::endl;
  251. solver.factorize(A);
  252. std::cout << "LU solving" << std::endl;
  253. solver.factorize(A);
  254. VectorXr u = solver.solve(g);
  255. #endif
  256. #define CGSOLVE
  257. #ifdef CGSOLVE
  258. // TODO try IncompleteLUT preconditioner
  259. Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
  260. //cg.setMaxIterations(3000);
  261. //cg.setTolerance(1e-28);
  262. VectorXr u = cg.solve(g);
  263. std::cout << "#iterations: " << cg.iterations() << std::endl;
  264. std::cout << "estimated error: " << cg.error() << std::endl;
  265. #endif
  266. vtkDoubleArray *gArray = vtkDoubleArray::New();
  267. vtkDoubleArray *uArray = vtkDoubleArray::New();
  268. uArray->SetNumberOfComponents(1);
  269. gArray->SetNumberOfComponents(1);
  270. for (int iu = 0; iu<u.size(); ++iu) {
  271. uArray->InsertTuple1(iu, u[iu]);
  272. gArray->InsertTuple1(iu, g[iu]);
  273. }
  274. uArray->SetName("u");
  275. gArray->SetName("g");
  276. vtkGrid->GetPointData()->AddArray(uArray);
  277. vtkGrid->GetPointData()->AddArray(gArray);
  278. vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
  279. Writer->SetInputData(vtkGrid);
  280. Writer->SetFileName(resfile.c_str());
  281. Writer->Write();
  282. Writer->Delete();
  283. gArray->Delete();
  284. uArray->Delete();
  285. }
  286. //--------------------------------------------------------------------------------------
  287. // Class: FEM4EllipticPDE
  288. // Method: ConstructAMatrix
  289. //--------------------------------------------------------------------------------------
  290. void FEM4EllipticPDE::ConstructAMatrix ( ) {
  291. /////////////////////////////////////////////////////////////////////////
  292. // Build stiffness matrix (A)
  293. std::cout << "Building Stiffness Matrix (A) " << std::endl;
  294. std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
  295. std::cout << "\tMesh has " << vtkGrid->GetNumberOfPoints() << " points " << std::endl;
  296. //Eigen::SparseMatrix<Real>
  297. A.resize(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
  298. std::vector< Eigen::Triplet<Real> > coeffs;
  299. if ( !vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet") ) {
  300. throw std::runtime_error("No HomogeneousDirichlet boundary conditions in input file.");
  301. }
  302. if ( !vtkGrid->GetCellData()->GetScalars("G") && !vtkGrid->GetPointData()->GetScalars("G") ) {
  303. throw std::runtime_error("No Cell or Point Data G");
  304. }
  305. bool GCell = false;
  306. if ( vtkGrid->GetCellData()->GetScalars("G") ) {
  307. GCell = true;
  308. }
  309. // Here we iterate over all of the cells
  310. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  311. assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
  312. // TODO, in production code we might not want to do this check here
  313. if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
  314. throw std::runtime_error("Non-tetrahedral mesh encountered!");
  315. }
  316. // construct coordinate matrix C
  317. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  318. for (int ii=0; ii<4; ++ii) {
  319. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  320. C(ii, 0) = 1;
  321. C(ii, 1) = pts[0] ;
  322. C(ii, 2) = pts[1] ;
  323. C(ii, 3) = pts[2] ;
  324. }
  325. Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  326. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  327. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  328. int ID[4];
  329. ID[0] = Ids->GetId(0);
  330. ID[1] = Ids->GetId(1);
  331. ID[2] = Ids->GetId(2);
  332. ID[3] = Ids->GetId(3);
  333. Real sigma_bar(0);
  334. // TEST VOID IN SIGMA!! TODO DON"T KEEP THIS
  335. /*
  336. Real xc = C.col(1).array().mean();
  337. Real yc = C.col(2).array().mean();
  338. Real zc = C.col(3).array().mean();
  339. if ( xc >= 2.5 && xc <= 5. && yc>=2.5 && yc <= 5.) {
  340. sigma_bar = 0.;
  341. } else {
  342. sigma_bar = 1.;
  343. }
  344. */
  345. sigma_bar = 1.;
  346. for (int ii=0; ii<4; ++ii) {
  347. int bbi = vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0];
  348. if (bbi) {
  349. /* Dirichlet boundary */
  350. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[ii], 1));
  351. } else {
  352. for (int jj=0; jj<4; ++jj) {
  353. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  354. }
  355. }
  356. }
  357. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  358. }
  359. A.setFromTriplets(coeffs.begin(), coeffs.end());
  360. A.finalize();
  361. A.makeCompressed();
  362. }
  363. void FEM4EllipticPDE::SetupPotential() {
  364. ////////////////////////////////////////////////////////////
  365. // Load vector g
  366. std::cout << "\nBuilding load vector (g)" << std::endl;
  367. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  368. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " points" << std::endl;
  369. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  370. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  371. for (int ii=0; ii<4; ++ii) {
  372. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  373. C(ii, 0) = 1;
  374. C(ii, 1) = pts[0];
  375. C(ii, 2) = pts[1];
  376. C(ii, 3) = pts[2];
  377. }
  378. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  379. //Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  380. /* The indices */
  381. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  382. int ID[4];
  383. ID[0] = Ids->GetId(0);
  384. ID[1] = Ids->GetId(1);
  385. ID[2] = Ids->GetId(2);
  386. ID[3] = Ids->GetId(3);
  387. /* Fill the RHS vector with Dirichlet conditions or fuction value */
  388. for (int ii=0; ii<4; ++ii) {
  389. if (vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0]) {
  390. g(ID[ii]) += vtkGrid->GetPointData()->GetScalars("analytic_phi")->GetTuple(ID[ii])[0];
  391. } else {
  392. g(ID[ii]) += (V/4.)*(vtkGrid->GetCellData()->GetScalars("G")->GetTuple(ic)[0]); // Cell data
  393. /* for point data, determine if it is a point or line source */
  394. //g(ID[ii]) = (vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[ii])[0]); // Point source
  395. //g(ID[ii]) = (vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[ii])[0]); // Point source
  396. }
  397. }
  398. }
  399. }
  400. void FEM4EllipticPDE::SetupLineSourcePotential() {
  401. std::cerr << " FEM4EllipticPDE::SetupLineSourcePotential is not completed\n";
  402. exit(1);
  403. ////////////////////////////////////////////////////////////
  404. // Load vector g
  405. std::cout << "\nBuilding load vector (g)" << std::endl;
  406. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  407. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " points" << std::endl;
  408. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  409. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  410. for (int ii=0; ii<4; ++ii) {
  411. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  412. C(ii, 0) = 1;
  413. C(ii, 1) = pts[0];
  414. C(ii, 2) = pts[1];
  415. C(ii, 3) = pts[2];
  416. }
  417. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  418. //Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  419. /* The indices */
  420. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  421. int ID[4];
  422. ID[0] = Ids->GetId(0);
  423. ID[1] = Ids->GetId(1);
  424. ID[2] = Ids->GetId(2);
  425. ID[3] = Ids->GetId(3);
  426. /* Line source between nodes */
  427. for (int ii=0; ii<4; ++ii) {
  428. if (vtkGrid->GetPointData()->GetScalars("HomogeneousDirichlet")->GetTuple(ID[ii])[0]) {
  429. g(ID[ii]) += vtkGrid->GetPointData()->GetScalars("analytic_phi")->GetTuple(ID[ii])[0];
  430. } else {
  431. Real nv1 = vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[ii])[0];
  432. for (int jj=ii+1; jj<4; ++jj) {
  433. Real nv2 = vtkGrid->GetPointData()->GetScalars("G")->GetTuple(ID[jj])[0];
  434. if ( std::abs(nv1) > 1e-12 && std::abs(nv2) > 1e-12) {
  435. Real length = ( C.row(ii).tail<3>()-C.row(jj).tail<3>() ).norm();
  436. g(ID[ii]) += ((nv1+nv2)/2.)/(length);
  437. }
  438. }
  439. }
  440. }
  441. }
  442. }
  443. void FEM4EllipticPDE::SetupSurfaceSourcePotential() {
  444. ////////////////////////////////////////////////////////////
  445. // Load vector g
  446. std::cout << "\nBuilding load vector (g)" << std::endl;
  447. g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  448. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  449. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  450. for (int ii=0; ii<4; ++ii) {
  451. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  452. C(ii, 0) = 1;
  453. C(ii, 1) = pts[0];
  454. C(ii, 2) = pts[1];
  455. C(ii, 3) = pts[2];
  456. }
  457. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  458. //Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  459. /* The indices */
  460. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  461. int ID[4];
  462. ID[0] = Ids->GetId(0);
  463. ID[1] = Ids->GetId(1);
  464. ID[2] = Ids->GetId(2);
  465. ID[3] = Ids->GetId(3);
  466. // Apply Dirichlet conditions
  467. for (int ii=0; ii<4; ++ii) {
  468. //if (vtkGrid->GetPointData()->GetScalars("InHomogeneousDirichlet")->GetTuple(ID[ii])[0]) {
  469. // g(ID[ii]) += vtkGrid->GetPointData()->GetScalars("analytic_phi")->GetTuple(ID[ii])[0];
  470. //}
  471. }
  472. /* the 4 faces of the tetrahedra
  473. ID[0] ID[1] ID[2]
  474. ID[0] ID[1] ID[3]
  475. ID[0] ID[2] ID[3]
  476. ID[1] ID[2] ID[3]
  477. */
  478. Real i4pi = .5;
  479. /* surfaces of tetrahedra */
  480. // Face 0, ID 0,1,2
  481. Eigen::Matrix<Real, 3, 3> CC = Eigen::Matrix<Real, 3, 3>::Ones() ;
  482. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])) > 1e-12 &&
  483. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])) > 1e-12 &&
  484. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])) > 1e-12 ) {
  485. CC.col(1) = C.row(0).tail<3>() - C.row(1).tail<3>();
  486. CC.col(2) = C.row(0).tail<3>() - C.row(2).tail<3>();
  487. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  488. g(ID[0]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])*TA/3. * i4pi ;
  489. g(ID[1]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])*TA/3. * i4pi ;
  490. g(ID[2]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])*TA/3. * i4pi ;
  491. }
  492. // Face 1, ID 0,1,3
  493. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])) > 1e-12 &&
  494. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])) > 1e-12 &&
  495. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])) > 1e-12 ) {
  496. CC.col(1) = C.row(0).tail<3>() - C.row(1).tail<3>();
  497. CC.col(2) = C.row(0).tail<3>() - C.row(3).tail<3>();
  498. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  499. g(ID[0]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])*TA/3. * i4pi ;
  500. g(ID[1]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])*TA/3. * i4pi ;
  501. g(ID[3]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])*TA/3. * i4pi ;
  502. }
  503. // Face 2, ID 0,2,3
  504. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])) > 1e-12 &&
  505. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])) > 1e-12 &&
  506. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])) > 1e-12 ) {
  507. CC.col(1) = C.row(0).tail<3>() - C.row(2).tail<3>();
  508. CC.col(2) = C.row(0).tail<3>() - C.row(3).tail<3>();
  509. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  510. g(ID[0]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[0])*TA/3. * i4pi ;
  511. g(ID[2]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])*TA/3. * i4pi ;
  512. g(ID[3]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])*TA/3. * i4pi ;
  513. }
  514. // Face 3, ID 1,2,3
  515. if ( std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])) > 1e-12 &&
  516. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])) > 1e-12 &&
  517. std::abs(vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])) > 1e-12 ) {
  518. CC.col(1) = C.row(1).tail<3>() - C.row(2).tail<3>();
  519. CC.col(2) = C.row(1).tail<3>() - C.row(3).tail<3>();
  520. Real TA = .5*CC.col(1).cross(CC.col(2)).norm();
  521. g(ID[1]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[1])*TA/3. * i4pi ;
  522. g(ID[2]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[2])*TA/3. * i4pi ;
  523. g(ID[3]) += vtkGrid->GetPointData()->GetScalars("G")->GetTuple1(ID[3])*TA/3. * i4pi ;
  524. }
  525. }
  526. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " points" << std::endl;
  527. }
  528. #if 0
  529. void FEM4EllipticPDE::SolveOLD2(const std::string& fname) {
  530. Real r0[3];
  531. Real r1[3];
  532. /////////////////////////////////////////////////////////////////////////
  533. // Surface filter, to determine if points are on boundary, and need
  534. // boundary conditions applied
  535. vtkDataSetSurfaceFilter* Surface = vtkDataSetSurfaceFilter::New();
  536. Surface->SetInputData(vtkGrid);
  537. Surface->PassThroughPointIdsOn( );
  538. Surface->Update();
  539. vtkIdTypeArray* BdryIds = static_cast<vtkIdTypeArray*>
  540. (Surface->GetOutput()->GetPointData()->GetScalars("vtkOriginalPointIds"));
  541. // Expensive search for whether or not point is on boundary. O(n) cost.
  542. VectorXi bndryCnt = VectorXi::Zero(vtkGrid->GetNumberOfPoints());
  543. for (int isp=0; isp < Surface->GetOutput()->GetNumberOfPoints(); ++isp) {
  544. //double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  545. // x \in -14.5 to 14.5
  546. // y \in 0 to 30
  547. bndryCnt(BdryIds->GetTuple1(isp)) += 1;
  548. }
  549. /////////////////////////////////////////////////////////////////////////
  550. // Build stiffness matrix (A)
  551. std::cout << "Building Stiffness Matrix (A) " << std::endl;
  552. std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
  553. std::cout << "\tMesh has " << vtkGrid->GetNumberOfPoints() << " points " << std::endl;
  554. Eigen::SparseMatrix<Real> A(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
  555. std::vector< Eigen::Triplet<Real> > coeffs;
  556. // Here we iterate over all of the cells
  557. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  558. assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
  559. // TODO, in production code we might not want to do this check here
  560. if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
  561. std::cout << "DOOM FEM4EllipticPDE encountered non-tetrahedral mesh\n";
  562. std::cout << "Number of points in cell " << vtkGrid->GetCell(ic)->GetNumberOfPoints() << std::endl ;
  563. exit(1);
  564. }
  565. // construct coordinate matrix C
  566. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  567. for (int ii=0; ii<4; ++ii) {
  568. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  569. C(ii, 0) = 1;
  570. C(ii, 1) = pts[0] ;
  571. C(ii, 2) = pts[1] ;
  572. C(ii, 3) = pts[2] ;
  573. }
  574. Eigen::Matrix<Real, 4, 4> GradPhi = C.inverse(); // nabla \phi
  575. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  576. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  577. int ID[4];
  578. ID[0] = Ids->GetId(0);
  579. ID[1] = Ids->GetId(1);
  580. ID[2] = Ids->GetId(2);
  581. ID[3] = Ids->GetId(3);
  582. Real sum(0);
  583. Real sigma_bar = vtkGrid->GetCellData()->GetScalars()->GetTuple1(ic);
  584. for (int ii=0; ii<4; ++ii) {
  585. for (int jj=0; jj<4; ++jj) {
  586. if (jj == ii) {
  587. // I apply boundary to Stiffness matrix, it's common to take the other approach and apply to the load vector and then
  588. // solve for the boundaries? Is one better? This seems to work, which is nice.
  589. //Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bndryCnt( ID[ii] ); // + sum;
  590. Real bb = vtkGrid->GetPointData()->GetScalars("vtkValidPointMask")->GetTuple(ID[ii])[0];
  591. //std::cout << "bb " << bb << std::endl;
  592. Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bb; // + sum;
  593. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], bdry + GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  594. } else {
  595. coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  596. }
  597. // Stiffness matrix no longer contains boundary conditions...
  598. //coeffs.push_back( Eigen::Triplet<Real> ( ID[ii], ID[jj], GradPhi.col(ii).tail<3>().dot(GradPhi.col(jj).tail<3>() ) * V * sigma_bar ) );
  599. }
  600. }
  601. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  602. }
  603. A.setFromTriplets(coeffs.begin(), coeffs.end());
  604. //A.makeCompressed();
  605. ////////////////////////////////////////////////////////////
  606. // Load vector g, solution vector u
  607. std::cout << "\nBuilding load vector (g)" << std::endl;
  608. VectorXr g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
  609. std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
  610. // If the G function has been evaluated at each *node*
  611. // --> but still needs to be integrated at the surfaces
  612. // Aha, requires that there is in fact a pointdata memeber // BUG TODO BUG!!!
  613. std::cout << "Point Data ptr " << vtkGrid->GetPointData() << std::endl;
  614. //if ( vtkGrid->GetPointData() != NULL && std::string( vtkGrid->GetPointData()->GetScalars()->GetName() ).compare( std::string("G") ) == 0 ) {
  615. bool pe(false);
  616. bool ne(false);
  617. if ( true ) {
  618. std::cout << "\nUsing G from file" << std::endl;
  619. /* 3D Phi */
  620. for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
  621. Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
  622. for (int ii=0; ii<4; ++ii) {
  623. double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ii); //[ipc] ;
  624. C(ii, 0) = 1;
  625. C(ii, 1) = pts[0];
  626. C(ii, 2) = pts[1];
  627. C(ii, 3) = pts[2];
  628. }
  629. Real V = (1./6.) * C.determinant(); // volume of tetrahedra
  630. //Real V = C.determinant(); // volume of tetrahedra
  631. vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
  632. int ID[4];
  633. ID[0] = Ids->GetId(0);
  634. ID[1] = Ids->GetId(1);
  635. ID[2] = Ids->GetId(2);
  636. ID[3] = Ids->GetId(3);
  637. /* bad news bears for magnet */
  638. double* pt = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(0);
  639. Real sum(0);
  640. /*
  641. if (!pe) {
  642. if (std::abs(pt[0]) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
  643. sum = 1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0];
  644. pe = true;
  645. }
  646. }*/
  647. if (ID[0] == 26) {
  648. sum = 10;
  649. }
  650. if (ID[0] == 30) {
  651. sum = -10;
  652. }
  653. /*
  654. if (!ne) {
  655. if (std::abs(pt[0]+1.) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
  656. sum = -1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0];
  657. std::cout << "Negative Electroce\n";
  658. ne = true;
  659. }
  660. }
  661. */
  662. //for (int ii=0; ii<4; ++ii) {
  663. //g(ID[ii]) += (V/4.) * ( vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0] ) ;
  664. //if ( std::abs(vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ii])[0]) > 1e-3 )
  665. //}
  666. // TODO check Load Vector...
  667. g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
  668. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
  669. }
  670. /*
  671. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  672. vtkGrid->GetPoint(ic, r0);
  673. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  674. double g0 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ;
  675. //std::cout << "num conn " << connectedVertices->GetNumberOfIds() << std::endl;
  676. if ( std::abs(g0) > 1e-3 ) {
  677. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  678. int ii = connectedVertices->GetId(i);
  679. vtkGrid->GetPoint(ii, r1);
  680. double g1 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ii)[0] ;
  681. //g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
  682. if ( std::abs(g1) > 1e-3 ) {
  683. g(ic) += CompositeSimpsons2(g1, g0, r1, r0, 1000);
  684. }
  685. //g(ic) += CompositeSimpsons2(g0, r1, r0, 8);
  686. //if ( std::abs(g1) > 1e-3 ) {
  687. //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 8);
  688. //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 100); // / (2*dist(r0,r1)) ;
  689. // g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
  690. //g(ic) += CompositeSimpsons2(g0, r0, r1, 8);
  691. // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
  692. //} //else {
  693. // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
  694. //}
  695. }
  696. }
  697. //g(ic) = 2.* vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ; // Why 2?
  698. //std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  699. }
  700. */
  701. } else if (vtkG) { // VTK implicit function, proceed with care
  702. std::cout << "\nUsing implicit file from file" << std::endl;
  703. // OpenMP right here
  704. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  705. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  706. //vtkGrid->GetPoint(ic, r0);
  707. //g(ic) += vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  708. // std::cout << vtkG->FunctionValue(r0[0], r0[1], r0[2]) << std::endl;
  709. //g(ic) += vtkGrid->GetPointData()->GetScalars()->GetTuple1(ic);// FunctionValue(r0[0], r0[1], r0[2]) ;
  710. /*
  711. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  712. int ii = connectedVertices->GetId(i);
  713. vtkGrid->GetPoint(ii, r1);
  714. g(ic) += CompositeSimpsons2(vtkG, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  715. }
  716. */
  717. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  718. }
  719. } else if (gFcn3) {
  720. std::cout << "\nUsing gFcn3" << std::endl;
  721. for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
  722. vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
  723. vtkGrid->GetPoint(ic, r0);
  724. // TODO, test OMP sum reduction here. Is vtkGrid->GetPoint thread safe?
  725. //Real sum(0.);
  726. //#ifdef LEMMAUSEOMP
  727. //#pragma omp parallel for reduction(+:sum)
  728. //#endif
  729. for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
  730. int ii = connectedVertices->GetId(i);
  731. vtkGrid->GetPoint(ii, r1);
  732. g(ic) += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  733. //sum += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
  734. }
  735. std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
  736. //g(ic) = sum;
  737. }
  738. } else {
  739. std::cout << "No source specified\n";
  740. exit(EXIT_FAILURE);
  741. }
  742. // std::cout << g << std::endl;
  743. //g(85) = 1;
  744. std::cout << "\nSolving" << std::endl;
  745. ////////////////////////////////////////////////////////////
  746. // Solving:
  747. //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
  748. //VectorXr u = chol.solve(g);
  749. //Eigen::SparseLU<Eigen::SparseMatrix<Real, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > solver;
  750. //solver.analyzePattern(A);
  751. //solver.factorize(A);
  752. //VectorXr u = solver.solve(g);
  753. //Eigen::ConjugateGradient<Eigen::SparseMatrix<Real, Eigen::Lower > Eigen::DiagonalPreconditioner > cg;
  754. Eigen::ConjugateGradient< Eigen::SparseMatrix<Real> > cg(A);
  755. //Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
  756. cg.setMaxIterations(3000);
  757. //cg.compute(A);
  758. //std::cout << "Computed " << std::endl;
  759. VectorXr u = cg.solve(g);
  760. std::cout << "#iterations: " << cg.iterations() << std::endl;
  761. std::cout << "estimated error: " << cg.error() << std::endl;
  762. vtkDoubleArray *gArray = vtkDoubleArray::New();
  763. vtkDoubleArray *uArray = vtkDoubleArray::New();
  764. uArray->SetNumberOfComponents(1);
  765. gArray->SetNumberOfComponents(1);
  766. for (int iu = 0; iu<u.size(); ++iu) {
  767. uArray->InsertTuple1(iu, u[iu]);
  768. gArray->InsertTuple1(iu, g[iu]);
  769. }
  770. uArray->SetName("u");
  771. gArray->SetName("g");
  772. vtkGrid->GetPointData()->AddArray(uArray);
  773. vtkGrid->GetPointData()->AddArray(gArray);
  774. vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
  775. Writer->SetInputData(vtkGrid);
  776. Writer->SetFileName(fname.c_str());
  777. Writer->Write();
  778. Writer->Delete();
  779. Surface->Delete();
  780. gArray->Delete();
  781. uArray->Delete();
  782. }
  783. #endif
  784. // Uses simpon's rule to perform a definite integral of a
  785. // function (passed as a pointer). The integration occurs from
  786. // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  787. Real FEM4EllipticPDE::CompositeSimpsons(vtkImplicitFunction* f, Real r0[3], Real r1[3], int n) {
  788. Vector3r R0(r0[0], r0[1], r0[2]);
  789. Vector3r R1(r1[0], r1[1], r1[2]);
  790. // force n to be even
  791. assert(n > 0);
  792. //n += (n % 2);
  793. Real h = dist(r0, r1) / (Real)(n) ;
  794. Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  795. Vector3r dr = (R1 - R0).array() / Real(n);
  796. Vector3r rx;
  797. rx.array() = R0.array() + dr.array();
  798. for (int i=1; i<n; i+=2) {
  799. S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]);
  800. rx += 2.*dr;
  801. }
  802. rx.array() = R0.array() + 2*dr.array();
  803. for (int i=2; i<n-1; i+=2) {
  804. S += 2.*f->FunctionValue(rx[0], rx[1], rx[2]);
  805. rx += 2.*dr;
  806. }
  807. return h * S / 3.;
  808. }
  809. // Uses simpon's rule to perform a definite integral of a
  810. // function (passed as a pointer). The integration occurs from
  811. // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
  812. // This is just here as a convenience
  813. Real FEM4EllipticPDE::CompositeSimpsons(const Real& f, Real r0[3], Real r1[3], int n) {
  814. return dist(r0,r1)*f;
  815. /*
  816. Vector3r R0(r0[0], r0[1], r0[2]);
  817. Vector3r R1(r1[0], r1[1], r1[2]);
  818. // force n to be even
  819. assert(n > 0);
  820. //n += (n % 2);
  821. Real h = dist(r0, r1) / (Real)(n) ;
  822. Real S = f + f;
  823. Vector3r dr = (R1 - R0).array() / Real(n);
  824. //Vector3r rx;
  825. //rx.array() = R0.array() + dr.array();
  826. for (int i=1; i<n; i+=2) {
  827. S += 4. * f;
  828. //rx += 2.*dr;
  829. }
  830. //rx.array() = R0.array() + 2*dr.array();
  831. for (int i=2; i<n-1; i+=2) {
  832. S += 2. * f;
  833. //rx += 2.*dr;
  834. }
  835. return h * S / 3.;
  836. */
  837. }
  838. /*
  839. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  840. * test function owned by the FEM implimentaion.
  841. */
  842. Real FEM4EllipticPDE::CompositeSimpsons2(vtkImplicitFunction* f,
  843. Real r0[3], Real r1[3], int n) {
  844. Vector3r R0(r0[0], r0[1], r0[2]);
  845. Vector3r R1(r1[0], r1[1], r1[2]);
  846. // force n to be even
  847. assert(n > 0);
  848. //n += (n % 2);
  849. Real h = dist(r0, r1) / (Real)(n) ;
  850. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  851. Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  852. //Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
  853. Vector3r dr = (R1 - R0).array() / Real(n);
  854. Vector3r rx;
  855. rx.array() = R0.array() + dr.array();
  856. for (int i=1; i<n; i+=2) {
  857. S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  858. rx += 2.*dr;
  859. }
  860. rx.array() = R0.array() + 2*dr.array();
  861. for (int i=2; i<n-1; i+=2) {
  862. S += 2. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  863. rx += 2.*dr;
  864. }
  865. return h * S / 3.;
  866. }
  867. /*
  868. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  869. * test function owned by the FEM implimentaion.
  870. */
  871. Real FEM4EllipticPDE::CompositeSimpsons2( Real (*f)(const Real&, const Real&, const Real&),
  872. Real r0[3], Real r1[3], int n) {
  873. Vector3r R0(r0[0], r0[1], r0[2]);
  874. Vector3r R1(r1[0], r1[1], r1[2]);
  875. // force n to be even
  876. assert(n > 0);
  877. //n += (n % 2);
  878. Real h = dist(r0, r1) / (Real)(n) ;
  879. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  880. //Real S = f(r0[0], r0[1], r0[2])*Hat(R0, R0, R1) + f(r1[0], r1[1], r1[2])*Hat(R1, R0, R1);
  881. Real S = f(r0[0], r0[1], r0[2]) + f(r1[0], r1[1], r1[2]);
  882. Vector3r dr = (R1 - R0).array() / Real(n);
  883. Vector3r rx;
  884. rx.array() = R0.array() + dr.array();
  885. for (int i=1; i<n; i+=2) {
  886. S += 4. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  887. rx += 2.*dr;
  888. }
  889. rx.array() = R0.array() + 2*dr.array();
  890. for (int i=2; i<n-1; i+=2) {
  891. S += 2. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  892. rx += 2.*dr;
  893. }
  894. return h * S / 3.;
  895. }
  896. /*
  897. * Performs numerical integration of two functions, one is constant valued f, the other is the FEM
  898. * test function owned by the FEM implimentaion.
  899. */
  900. Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f, Real r0[3], Real r1[3], int n) {
  901. Vector3r R0(r0[0], r0[1], r0[2]);
  902. Vector3r R1(r1[0], r1[1], r1[2]);
  903. // force n to be even
  904. assert(n > 0);
  905. //n += (n % 2);
  906. Real h = dist(r0, r1) / (Real)(n) ;
  907. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  908. Real S = 2*f; //*Hat(R0, R0, R1) + f*Hat(R1, R0, R1);
  909. Vector3r dr = (R1 - R0).array() / Real(n);
  910. Vector3r rx;
  911. rx.array() = R0.array() + dr.array();
  912. for (int i=1; i<n; i+=2) {
  913. S += 4. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  914. rx += 2.*dr;
  915. }
  916. rx.array() = R0.array() + 2*dr.array();
  917. for (int i=2; i<n-1; i+=2) {
  918. S += 2. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
  919. rx += 2.*dr;
  920. }
  921. return h * S / 3.;
  922. }
  923. /*
  924. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  925. * test function owned by the FEM implimentaion.
  926. */
  927. Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
  928. Vector3r R0(r0[0], r0[1], r0[2]);
  929. Vector3r R1(r1[0], r1[1], r1[2]);
  930. // force n to be even
  931. assert(n > 0);
  932. //n += (n % 2);
  933. Real h = dist(r0, r1) / (Real)(n) ;
  934. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  935. // NO! We are looking at 1/2 hat often!!! So S = f1!
  936. Real S = f1; //f0*Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
  937. Vector3r dr = (R1 - R0).array() / Real(n);
  938. // linear interpolate function
  939. //Vector3r rx;
  940. //rx.array() = R0.array() + dr.array();
  941. for (int i=1; i<n; i+=2) {
  942. double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
  943. S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0) ;
  944. }
  945. //rx.array() = R0.array() + 2*dr.array();
  946. for (int i=2; i<n-1; i+=2) {
  947. double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
  948. S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0);
  949. }
  950. return h * S / 3.;
  951. }
  952. /*
  953. * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
  954. * test function owned by the FEM implimentaion.
  955. */
  956. Real FEM4EllipticPDE::CompositeSimpsons3( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
  957. Vector3r R0(r0[0], r0[1], r0[2]);
  958. Vector3r R1(r1[0], r1[1], r1[2]);
  959. // force n to be even
  960. assert(n > 0);
  961. //n += (n % 2);
  962. Real h = dist(r0, r1) / (Real)(n) ;
  963. // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
  964. // NO! We are looking at 1/2 hat often!!! So S = f1!
  965. Real S = f0+f1; //Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
  966. Vector3r dr = (R1 - R0).array() / Real(n);
  967. // linear interpolate function
  968. //Vector3r rx;
  969. //rx.array() = R0.array() + dr.array();
  970. for (int i=1; i<n; i+=2) {
  971. double fx = 1;// f0 + (f1 - f0) * ((i*h)/(h*n));
  972. S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1) * Hat(R1.array() + i*dr.array(), R1, R0) ;
  973. }
  974. //rx.array() = R0.array() + 2*dr.array();
  975. for (int i=2; i<n-1; i+=2) {
  976. double fx = 1; // f0 + (f1 - f0) * ((i*h)/(h*n));
  977. S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1)* Hat(R1.array() + i*dr.array(), R1, R0);
  978. }
  979. return h * S / 3.;
  980. }
  981. //--------------------------------------------------------------------------------------
  982. // Class: FEM4EllipticPDE
  983. // Method: Hat
  984. //--------------------------------------------------------------------------------------
  985. Real FEM4EllipticPDE::Hat ( const Vector3r& r, const Vector3r& r0, const Vector3r& r1 ) {
  986. //return (r-r0).norm() / (r1-r0).norm() ;
  987. return dist(r, r0) / dist(r1, r0) ;
  988. } // ----- end of method FEM4EllipticPDE::Hat -----
  989. } // ----- end of Lemma name -----