|
@@ -0,0 +1,878 @@
|
|
1
|
+// ===========================================================================
|
|
2
|
+//
|
|
3
|
+// Filename: FEM4EllipticPDE.cpp
|
|
4
|
+//
|
|
5
|
+// Created: 08/16/12 18:19:57
|
|
6
|
+// Compiler: Tested with g++, icpc, and MSVC 2010
|
|
7
|
+//
|
|
8
|
+// Author: Trevor Irons (ti)
|
|
9
|
+//
|
|
10
|
+// Organisation: Colorado School of Mines (CSM)
|
|
11
|
+// United States Geological Survey (USGS)
|
|
12
|
+//
|
|
13
|
+// Email: tirons@mines.edu, tirons@usgs.gov
|
|
14
|
+//
|
|
15
|
+// This program is free software: you can redistribute it and/or modify
|
|
16
|
+// it under the terms of the GNU General Public License as published by
|
|
17
|
+// the Free Software Foundation, either version 3 of the License, or
|
|
18
|
+// (at your option) any later version.
|
|
19
|
+//
|
|
20
|
+// This program is distributed in the hope that it will be useful,
|
|
21
|
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
22
|
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
23
|
+// GNU General Public License for more details.
|
|
24
|
+//
|
|
25
|
+// You should have received a copy of the GNU General Public License
|
|
26
|
+// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
27
|
+//
|
|
28
|
+// ===========================================================================
|
|
29
|
+
|
|
30
|
+/**
|
|
31
|
+ @file
|
|
32
|
+ @author Trevor Irons
|
|
33
|
+ @date 08/16/12
|
|
34
|
+ @version 0.0
|
|
35
|
+ **/
|
|
36
|
+
|
|
37
|
+#include "FEM4EllipticPDE.h"
|
|
38
|
+
|
|
39
|
+namespace Lemma {
|
|
40
|
+
|
|
41
|
+ std::ostream &operator<<(std::ostream &stream,
|
|
42
|
+ const FEM4EllipticPDE &ob) {
|
|
43
|
+
|
|
44
|
+ stream << *(LemmaObject*)(&ob);
|
|
45
|
+ return stream;
|
|
46
|
+ }
|
|
47
|
+
|
|
48
|
+ // ==================== LIFECYCLE =======================
|
|
49
|
+
|
|
50
|
+ FEM4EllipticPDE::FEM4EllipticPDE(const std::string&name) :
|
|
51
|
+ LemmaObject(name), BndryH(1), BndrySigma(1),
|
|
52
|
+ vtkSigma(NULL), vtkG(NULL), vtkGrid(NULL), gFcn3(NULL) {
|
|
53
|
+ }
|
|
54
|
+
|
|
55
|
+ FEM4EllipticPDE::~FEM4EllipticPDE() {
|
|
56
|
+ }
|
|
57
|
+
|
|
58
|
+ void FEM4EllipticPDE::Release() {
|
|
59
|
+ delete this;
|
|
60
|
+ }
|
|
61
|
+
|
|
62
|
+ FEM4EllipticPDE* FEM4EllipticPDE::New( ) {
|
|
63
|
+ FEM4EllipticPDE* Obj = new FEM4EllipticPDE("FEM4EllipticPDE");
|
|
64
|
+ Obj->AttachTo(Obj);
|
|
65
|
+ return Obj;
|
|
66
|
+ }
|
|
67
|
+
|
|
68
|
+ void FEM4EllipticPDE::Delete() {
|
|
69
|
+ this->DetachFrom(this);
|
|
70
|
+ }
|
|
71
|
+
|
|
72
|
+ // ==================== OPERATIONS =======================
|
|
73
|
+
|
|
74
|
+ void FEM4EllipticPDE::SetSigmaFunction(vtkImplicitFunction* sigma) {
|
|
75
|
+ vtkSigma = sigma;
|
|
76
|
+ }
|
|
77
|
+
|
|
78
|
+ void FEM4EllipticPDE::SetBoundaryStep(const Real& h) {
|
|
79
|
+ BndryH = h;
|
|
80
|
+ }
|
|
81
|
+
|
|
82
|
+ void FEM4EllipticPDE::SetGFunction(vtkImplicitFunction* g) {
|
|
83
|
+ vtkG = g;
|
|
84
|
+ }
|
|
85
|
+
|
|
86
|
+ void FEM4EllipticPDE::SetGFunction( Real (*gFcn)(const Real&, const Real&, const Real&) ) {
|
|
87
|
+ // vtkG = g;
|
|
88
|
+ gFcn3 = gFcn;
|
|
89
|
+ }
|
|
90
|
+
|
|
91
|
+ void FEM4EllipticPDE::SetGrid(vtkDataSet* grid) {
|
|
92
|
+ vtkGrid = grid;
|
|
93
|
+ }
|
|
94
|
+
|
|
95
|
+ vtkSmartPointer<vtkIdList> FEM4EllipticPDE::GetConnectedPoints(const int& id0) {
|
|
96
|
+ vtkSmartPointer<vtkIdList> pointIds = vtkSmartPointer<vtkIdList>::New();
|
|
97
|
+ vtkSmartPointer<vtkIdList> cellList = vtkSmartPointer<vtkIdList>::New();
|
|
98
|
+ vtkGrid->GetPointCells(id0, cellList);
|
|
99
|
+ for(int i=0;i<cellList->GetNumberOfIds(); ++i){
|
|
100
|
+ vtkCell* cell = vtkGrid->GetCell(cellList->GetId(i));
|
|
101
|
+ if(cell->GetNumberOfEdges() > 0){
|
|
102
|
+ for(int j=0; j<cell->GetNumberOfEdges(); ++j){
|
|
103
|
+ vtkCell* edge = cell->GetEdge(j);
|
|
104
|
+ vtkIdList* edgePoints=edge->GetPointIds();
|
|
105
|
+ if(edgePoints->GetId(0)==id0){
|
|
106
|
+ pointIds->InsertUniqueId(edgePoints->GetId(1));
|
|
107
|
+ } else if(edgePoints->GetId(1)==id0){
|
|
108
|
+ pointIds->InsertUniqueId(edgePoints->GetId(0));
|
|
109
|
+ }
|
|
110
|
+ }
|
|
111
|
+ }
|
|
112
|
+ }
|
|
113
|
+ return pointIds;
|
|
114
|
+ }
|
|
115
|
+
|
|
116
|
+ Real FEM4EllipticPDE::dist(Real r0[3], Real r1[3]) {
|
|
117
|
+ Real rm0 = r1[0] - r0[0];
|
|
118
|
+ Real rm1 = r1[1] - r0[1];
|
|
119
|
+ Real rm2 = r1[2] - r0[2];
|
|
120
|
+ return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
|
|
121
|
+ }
|
|
122
|
+
|
|
123
|
+ Real FEM4EllipticPDE::dist(const Vector3r& r0, const Vector3r& r1) {
|
|
124
|
+ Real rm0 = r1[0] - r0[0];
|
|
125
|
+ Real rm1 = r1[1] - r0[1];
|
|
126
|
+ Real rm2 = r1[2] - r0[2];
|
|
127
|
+ return std::sqrt( rm0*rm0 + rm1*rm1 + rm2*rm2 );
|
|
128
|
+ }
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+ //--------------------------------------------------------------------------------------
|
|
132
|
+ // Class: FEM4EllipticPDE
|
|
133
|
+ // Method: SetupDC
|
|
134
|
+ //--------------------------------------------------------------------------------------
|
|
135
|
+ void FEM4EllipticPDE::SetupDC ( DCSurvey* Survey, const int& ij ) {
|
|
136
|
+
|
|
137
|
+ ////////////////////////////////////////////////////////////
|
|
138
|
+ // Load vector g, solution vector u
|
|
139
|
+ std::cout << "\nBuilding load vector (g)" << std::endl;
|
|
140
|
+ g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
|
|
141
|
+ std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
|
|
142
|
+
|
|
143
|
+ int iia(0);
|
|
144
|
+ Real jja(0);
|
|
145
|
+ Survey->GetA( ij, iia, jja );
|
|
146
|
+ //g(ii) = jj;
|
|
147
|
+
|
|
148
|
+ int iib(0);
|
|
149
|
+ Real jjb(0);
|
|
150
|
+ Survey->GetB( ij, iib, jjb );
|
|
151
|
+ //g(ii) = jj;
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+ /* 3D Phi */
|
|
155
|
+
|
|
156
|
+ for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
|
|
157
|
+
|
|
158
|
+// Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
|
|
159
|
+// for (int ip=0; ip<4; ++ip) {
|
|
160
|
+// double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ip); //[ipc] ;
|
|
161
|
+// C(ip, 0) = 1;
|
|
162
|
+// C(ip, 1) = pts[0];
|
|
163
|
+// C(ip, 2) = pts[1];
|
|
164
|
+// C(ip, 3) = pts[2];
|
|
165
|
+// }
|
|
166
|
+
|
|
167
|
+// Real V = (1./6.) * C.determinant(); // volume of tetrahedra
|
|
168
|
+//
|
|
169
|
+ vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
|
|
170
|
+ int ID[4];
|
|
171
|
+ ID[0] = Ids->GetId(0);
|
|
172
|
+ ID[1] = Ids->GetId(1);
|
|
173
|
+ ID[2] = Ids->GetId(2);
|
|
174
|
+ ID[3] = Ids->GetId(3);
|
|
175
|
+
|
|
176
|
+ //Real V = C.determinant(); // volume of tetrahedra
|
|
177
|
+ Real sum(0);
|
|
178
|
+ if (ID[0] == iia || ID[1] == iia || ID[2] == iia || ID[3] == iia ) {
|
|
179
|
+ std::cout << "Caught A electrode, injecting " << iia << std::endl;
|
|
180
|
+ //sum = 10;
|
|
181
|
+ //g(ID[iia]) += jja;
|
|
182
|
+ g(iia) += jja;
|
|
183
|
+ }
|
|
184
|
+ if (ID[0] == iib || ID[1] == iib || ID[2] == iib || ID[3] == iib) {
|
|
185
|
+ //sum = -10;
|
|
186
|
+ std::cout << "Caught B electrode, injecting " << iib << std::endl;
|
|
187
|
+ //g(ID[iib]) += jjb;
|
|
188
|
+ g(iib) += jjb;
|
|
189
|
+ }
|
|
190
|
+
|
|
191
|
+ //g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
|
|
192
|
+ std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
|
|
193
|
+ }
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
|
|
197
|
+ return ;
|
|
198
|
+ } // ----- end of method FEM4EllipticPDE::SetupDC -----
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+ void FEM4EllipticPDE::Solve( const std::string& resfile) {
|
|
203
|
+ ConstructAMatrix();
|
|
204
|
+ //ConstructLoadVector();
|
|
205
|
+
|
|
206
|
+ std::cout << "\nSolving" << std::endl;
|
|
207
|
+ ////////////////////////////////////////////////////////////
|
|
208
|
+ // Solving:
|
|
209
|
+ //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
|
|
210
|
+ //VectorXr u = chol.solve(g);
|
|
211
|
+
|
|
212
|
+ //Eigen::ConjugateGradient<Eigen::SparseMatrix<Real, Eigen::Lower > Eigen::DiagonalPreconditioner > cg;
|
|
213
|
+ Eigen::ConjugateGradient< Eigen::SparseMatrix<Real> > cg(A);
|
|
214
|
+
|
|
215
|
+ //Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
|
|
216
|
+ cg.setMaxIterations(3000);
|
|
217
|
+ //cg.compute(A);
|
|
218
|
+ //std::cout << "Computed " << std::endl;
|
|
219
|
+
|
|
220
|
+ VectorXr u = cg.solve(g);
|
|
221
|
+ std::cout << "#iterations: " << cg.iterations() << std::endl;
|
|
222
|
+ std::cout << "estimated error: " << cg.error() << std::endl;
|
|
223
|
+
|
|
224
|
+ vtkDoubleArray *gArray = vtkDoubleArray::New();
|
|
225
|
+ vtkDoubleArray *uArray = vtkDoubleArray::New();
|
|
226
|
+ uArray->SetNumberOfComponents(1);
|
|
227
|
+ gArray->SetNumberOfComponents(1);
|
|
228
|
+ for (int iu = 0; iu<u.size(); ++iu) {
|
|
229
|
+ uArray->InsertTuple1(iu, u[iu]);
|
|
230
|
+ gArray->InsertTuple1(iu, g[iu]);
|
|
231
|
+ }
|
|
232
|
+ uArray->SetName("u");
|
|
233
|
+ gArray->SetName("g");
|
|
234
|
+ vtkGrid->GetPointData()->AddArray(uArray);
|
|
235
|
+ vtkGrid->GetPointData()->AddArray(gArray);
|
|
236
|
+
|
|
237
|
+ vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
|
|
238
|
+ Writer->SetInputData(vtkGrid);
|
|
239
|
+ Writer->SetFileName(resfile.c_str());
|
|
240
|
+ Writer->Write();
|
|
241
|
+ Writer->Delete();
|
|
242
|
+
|
|
243
|
+ gArray->Delete();
|
|
244
|
+ uArray->Delete();
|
|
245
|
+
|
|
246
|
+ }
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+ //--------------------------------------------------------------------------------------
|
|
250
|
+ // Class: FEM4EllipticPDE
|
|
251
|
+ // Method: ConstructAMatrix
|
|
252
|
+ //--------------------------------------------------------------------------------------
|
|
253
|
+ void FEM4EllipticPDE::ConstructAMatrix ( ) {
|
|
254
|
+
|
|
255
|
+ /////////////////////////////////////////////////////////////////////////
|
|
256
|
+ // Build stiffness matrix (A)
|
|
257
|
+ std::cout << "Building Stiffness Matrix (A) " << std::endl;
|
|
258
|
+ std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+ //Eigen::SparseMatrix<Real>
|
|
262
|
+ A.resize(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
|
|
263
|
+ std::vector< Eigen::Triplet<Real> > coeffs;
|
|
264
|
+
|
|
265
|
+ // Here we iterate over all of the cells
|
|
266
|
+ for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
|
|
267
|
+
|
|
268
|
+ assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
|
|
269
|
+ // TODO, in production code we might not want to do this check here
|
|
270
|
+ if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
|
|
271
|
+ std::cout << "DOOM FEM4EllipticPDE encountered non-tetrahedral mesh\n";
|
|
272
|
+ std::cout << "Number of points in cell " << vtkGrid->GetCell(ic)->GetNumberOfPoints() << std::endl ;
|
|
273
|
+ exit(1);
|
|
274
|
+ }
|
|
275
|
+
|
|
276
|
+ // construct coordinate matrix C
|
|
277
|
+ Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
|
|
278
|
+ for (int ip=0; ip<4; ++ip) {
|
|
279
|
+ double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ip); //[ipc] ;
|
|
280
|
+ C(ip, 0) = 1;
|
|
281
|
+ C(ip, 1) = pts[0] ;
|
|
282
|
+ C(ip, 2) = pts[1] ;
|
|
283
|
+ C(ip, 3) = pts[2] ;
|
|
284
|
+ }
|
|
285
|
+
|
|
286
|
+ Eigen::Matrix<Real, 4, 4> Phi = C.inverse(); // nabla \phi
|
|
287
|
+ Real V = (1./6.) * C.determinant(); // volume of tetrahedra
|
|
288
|
+
|
|
289
|
+ vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
|
|
290
|
+ int ID[4];
|
|
291
|
+ ID[0] = Ids->GetId(0);
|
|
292
|
+ ID[1] = Ids->GetId(1);
|
|
293
|
+ ID[2] = Ids->GetId(2);
|
|
294
|
+ ID[3] = Ids->GetId(3);
|
|
295
|
+ Real sum(0);
|
|
296
|
+ Real sigma_bar = vtkGrid->GetCellData()->GetScalars()->GetTuple1(ic);
|
|
297
|
+
|
|
298
|
+ for (int ip=0; ip<4; ++ip) {
|
|
299
|
+ for (int ip2=0; ip2<4; ++ip2) {
|
|
300
|
+ if (ip2 == ip) {
|
|
301
|
+ // I apply boundary to Stiffness matrix, it's common to take the other approach and apply to the load vector and then
|
|
302
|
+ // solve for the boundaries? Is one better? This seems to work, which is nice.
|
|
303
|
+ //Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bndryCnt( ID[ip] ); // + sum;
|
|
304
|
+ Real bb = vtkGrid->GetPointData()->GetScalars("vtkValidPointMask")->GetTuple(ID[ip])[0];
|
|
305
|
+ //std::cout << "bb " << bb << std::endl;
|
|
306
|
+ Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bb; // + sum;
|
|
307
|
+ coeffs.push_back( Eigen::Triplet<Real> ( ID[ip], ID[ip2], bdry + Phi.col(ip).tail<3>().dot(Phi.col(ip2).tail<3>() ) * V * sigma_bar ) );
|
|
308
|
+ } else {
|
|
309
|
+ coeffs.push_back( Eigen::Triplet<Real> ( ID[ip], ID[ip2], Phi.col(ip).tail<3>().dot(Phi.col(ip2).tail<3>() ) * V * sigma_bar ) );
|
|
310
|
+ }
|
|
311
|
+ // Stiffness matrix no longer contains boundary conditions...
|
|
312
|
+ //coeffs.push_back( Eigen::Triplet<Real> ( ID[ip], ID[ip2], Phi.col(ip).tail<3>().dot(Phi.col(ip2).tail<3>() ) * V * sigma_bar ) );
|
|
313
|
+ }
|
|
314
|
+ }
|
|
315
|
+ std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
|
|
316
|
+ }
|
|
317
|
+ A.setFromTriplets(coeffs.begin(), coeffs.end());
|
|
318
|
+
|
|
319
|
+ }
|
|
320
|
+
|
|
321
|
+ void FEM4EllipticPDE::SolveOLD(const std::string& fname) {
|
|
322
|
+
|
|
323
|
+ Real r0[3];
|
|
324
|
+ Real r1[3];
|
|
325
|
+
|
|
326
|
+ /////////////////////////////////////////////////////////////////////////
|
|
327
|
+ // Surface filter, to determine if points are on boundary, and need
|
|
328
|
+ // boundary conditions applied
|
|
329
|
+ vtkDataSetSurfaceFilter* Surface = vtkDataSetSurfaceFilter::New();
|
|
330
|
+ Surface->SetInputData(vtkGrid);
|
|
331
|
+ Surface->PassThroughPointIdsOn( );
|
|
332
|
+ Surface->Update();
|
|
333
|
+ vtkIdTypeArray* BdryIds = static_cast<vtkIdTypeArray*>
|
|
334
|
+ (Surface->GetOutput()->GetPointData()->GetScalars("vtkOriginalPointIds"));
|
|
335
|
+
|
|
336
|
+ // Expensive search for whether or not point is on boundary. O(n) cost.
|
|
337
|
+ VectorXi bndryCnt = VectorXi::Zero(vtkGrid->GetNumberOfPoints());
|
|
338
|
+ for (int isp=0; isp < Surface->GetOutput()->GetNumberOfPoints(); ++isp) {
|
|
339
|
+ //double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ip); //[ipc] ;
|
|
340
|
+ // x \in -14.5 to 14.5
|
|
341
|
+ // y \in 0 to 30
|
|
342
|
+ bndryCnt(BdryIds->GetTuple1(isp)) += 1;
|
|
343
|
+ }
|
|
344
|
+
|
|
345
|
+ /////////////////////////////////////////////////////////////////////////
|
|
346
|
+ // Build stiffness matrix (A)
|
|
347
|
+ std::cout << "Building Stiffness Matrix (A) " << std::endl;
|
|
348
|
+ std::cout << "\tMesh has " << vtkGrid->GetNumberOfCells() << " cells " << std::endl;
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+ Eigen::SparseMatrix<Real> A(vtkGrid->GetNumberOfPoints(), vtkGrid->GetNumberOfPoints());
|
|
352
|
+ std::vector< Eigen::Triplet<Real> > coeffs;
|
|
353
|
+
|
|
354
|
+ // Here we iterate over all of the cells
|
|
355
|
+ for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
|
|
356
|
+
|
|
357
|
+ assert ( vtkGrid->GetCell(ic)->GetNumberOfPoints() == 4 );
|
|
358
|
+ // TODO, in production code we might not want to do this check here
|
|
359
|
+ if ( vtkGrid->GetCell(ic)->GetNumberOfPoints() != 4 ) {
|
|
360
|
+ std::cout << "DOOM FEM4EllipticPDE encountered non-tetrahedral mesh\n";
|
|
361
|
+ std::cout << "Number of points in cell " << vtkGrid->GetCell(ic)->GetNumberOfPoints() << std::endl ;
|
|
362
|
+ exit(1);
|
|
363
|
+ }
|
|
364
|
+
|
|
365
|
+ // construct coordinate matrix C
|
|
366
|
+ Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
|
|
367
|
+ for (int ip=0; ip<4; ++ip) {
|
|
368
|
+ double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ip); //[ipc] ;
|
|
369
|
+ C(ip, 0) = 1;
|
|
370
|
+ C(ip, 1) = pts[0] ;
|
|
371
|
+ C(ip, 2) = pts[1] ;
|
|
372
|
+ C(ip, 3) = pts[2] ;
|
|
373
|
+ }
|
|
374
|
+
|
|
375
|
+ Eigen::Matrix<Real, 4, 4> Phi = C.inverse(); // nabla \phi
|
|
376
|
+ Real V = (1./6.) * C.determinant(); // volume of tetrahedra
|
|
377
|
+
|
|
378
|
+ vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
|
|
379
|
+ int ID[4];
|
|
380
|
+ ID[0] = Ids->GetId(0);
|
|
381
|
+ ID[1] = Ids->GetId(1);
|
|
382
|
+ ID[2] = Ids->GetId(2);
|
|
383
|
+ ID[3] = Ids->GetId(3);
|
|
384
|
+ Real sum(0);
|
|
385
|
+ Real sigma_bar = vtkGrid->GetCellData()->GetScalars()->GetTuple1(ic);
|
|
386
|
+
|
|
387
|
+ for (int ip=0; ip<4; ++ip) {
|
|
388
|
+ for (int ip2=0; ip2<4; ++ip2) {
|
|
389
|
+ if (ip2 == ip) {
|
|
390
|
+ // I apply boundary to Stiffness matrix, it's common to take the other approach and apply to the load vector and then
|
|
391
|
+ // solve for the boundaries? Is one better? This seems to work, which is nice.
|
|
392
|
+ //Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bndryCnt( ID[ip] ); // + sum;
|
|
393
|
+ Real bb = vtkGrid->GetPointData()->GetScalars("vtkValidPointMask")->GetTuple(ID[ip])[0];
|
|
394
|
+ //std::cout << "bb " << bb << std::endl;
|
|
395
|
+ Real bdry = V*(1./(BndryH*BndryH))*BndrySigma*bb; // + sum;
|
|
396
|
+ coeffs.push_back( Eigen::Triplet<Real> ( ID[ip], ID[ip2], bdry + Phi.col(ip).tail<3>().dot(Phi.col(ip2).tail<3>() ) * V * sigma_bar ) );
|
|
397
|
+ } else {
|
|
398
|
+ coeffs.push_back( Eigen::Triplet<Real> ( ID[ip], ID[ip2], Phi.col(ip).tail<3>().dot(Phi.col(ip2).tail<3>() ) * V * sigma_bar ) );
|
|
399
|
+ }
|
|
400
|
+ // Stiffness matrix no longer contains boundary conditions...
|
|
401
|
+ //coeffs.push_back( Eigen::Triplet<Real> ( ID[ip], ID[ip2], Phi.col(ip).tail<3>().dot(Phi.col(ip2).tail<3>() ) * V * sigma_bar ) );
|
|
402
|
+ }
|
|
403
|
+ }
|
|
404
|
+ std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
|
|
405
|
+ }
|
|
406
|
+ A.setFromTriplets(coeffs.begin(), coeffs.end());
|
|
407
|
+ //A.makeCompressed();
|
|
408
|
+
|
|
409
|
+ ////////////////////////////////////////////////////////////
|
|
410
|
+ // Load vector g, solution vector u
|
|
411
|
+ std::cout << "\nBuilding load vector (g)" << std::endl;
|
|
412
|
+ VectorXr g = VectorXr::Zero(vtkGrid->GetNumberOfPoints());
|
|
413
|
+ std::cout << "made g with " << vtkGrid->GetNumberOfPoints() << " pnts" << std::endl;
|
|
414
|
+ // If the G function has been evaluated at each *node*
|
|
415
|
+ // --> but still needs to be integrated at the surfaces
|
|
416
|
+ // Aha, requires that there is in fact a pointdata memeber // BUG TODO BUG!!!
|
|
417
|
+ std::cout << "Point Data ptr " << vtkGrid->GetPointData() << std::endl;
|
|
418
|
+ //if ( vtkGrid->GetPointData() != NULL && std::string( vtkGrid->GetPointData()->GetScalars()->GetName() ).compare( std::string("G") ) == 0 ) {
|
|
419
|
+ bool pe(false);
|
|
420
|
+ bool ne(false);
|
|
421
|
+ if ( true ) {
|
|
422
|
+
|
|
423
|
+ std::cout << "\nUsing G from file" << std::endl;
|
|
424
|
+
|
|
425
|
+ /* 3D Phi */
|
|
426
|
+ for (int ic=0; ic < vtkGrid->GetNumberOfCells(); ++ic) {
|
|
427
|
+
|
|
428
|
+ Eigen::Matrix<Real, 4, 4> C = Eigen::Matrix<Real, 4, 4>::Zero() ;
|
|
429
|
+ for (int ip=0; ip<4; ++ip) {
|
|
430
|
+ double* pts = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(ip); //[ipc] ;
|
|
431
|
+ C(ip, 0) = 1;
|
|
432
|
+ C(ip, 1) = pts[0];
|
|
433
|
+ C(ip, 2) = pts[1];
|
|
434
|
+ C(ip, 3) = pts[2];
|
|
435
|
+ }
|
|
436
|
+
|
|
437
|
+ Real V = (1./6.) * C.determinant(); // volume of tetrahedra
|
|
438
|
+ //Real V = C.determinant(); // volume of tetrahedra
|
|
439
|
+
|
|
440
|
+ vtkIdList* Ids = vtkGrid->GetCell(ic)->GetPointIds();
|
|
441
|
+ int ID[4];
|
|
442
|
+ ID[0] = Ids->GetId(0);
|
|
443
|
+ ID[1] = Ids->GetId(1);
|
|
444
|
+ ID[2] = Ids->GetId(2);
|
|
445
|
+ ID[3] = Ids->GetId(3);
|
|
446
|
+
|
|
447
|
+ /* bad news bears for magnet */
|
|
448
|
+ double* pt = vtkGrid->GetCell(ic)->GetPoints()->GetPoint(0);
|
|
449
|
+ Real sum(0);
|
|
450
|
+ /*
|
|
451
|
+ if (!pe) {
|
|
452
|
+ if (std::abs(pt[0]) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
|
|
453
|
+ sum = 1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ip])[0];
|
|
454
|
+ pe = true;
|
|
455
|
+ }
|
|
456
|
+ }*/
|
|
457
|
+ if (ID[0] == 26) {
|
|
458
|
+ sum = 10;
|
|
459
|
+ }
|
|
460
|
+ if (ID[0] == 30) {
|
|
461
|
+ sum = -10;
|
|
462
|
+ }
|
|
463
|
+
|
|
464
|
+/*
|
|
465
|
+ if (!ne) {
|
|
466
|
+ if (std::abs(pt[0]+1.) < .2 && std::abs(pt[1]-15) < .2 && pt[2] < 3.25 ) {
|
|
467
|
+ sum = -1; //vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ip])[0];
|
|
468
|
+ std::cout << "Negative Electroce\n";
|
|
469
|
+ ne = true;
|
|
470
|
+ }
|
|
471
|
+ }
|
|
472
|
+*/
|
|
473
|
+ //for (int ip=0; ip<4; ++ip) {
|
|
474
|
+ //g(ID[ip]) += (V/4.) * ( vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ip])[0] ) ;
|
|
475
|
+ //if ( std::abs(vtkGrid->GetPointData()->GetScalars()->GetTuple(ID[ip])[0]) > 1e-3 )
|
|
476
|
+ //}
|
|
477
|
+ // TODO check Load Vector...
|
|
478
|
+ g(ID[0]) = sum; //(V/4.) * sum; // Why 3, Why!!!?
|
|
479
|
+ std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfCells()))) << std::flush ;
|
|
480
|
+ }
|
|
481
|
+
|
|
482
|
+ /*
|
|
483
|
+ for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
|
|
484
|
+ vtkGrid->GetPoint(ic, r0);
|
|
485
|
+ vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
|
|
486
|
+ double g0 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ;
|
|
487
|
+ //std::cout << "num conn " << connectedVertices->GetNumberOfIds() << std::endl;
|
|
488
|
+ if ( std::abs(g0) > 1e-3 ) {
|
|
489
|
+
|
|
490
|
+ for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
|
|
491
|
+
|
|
492
|
+ int ip = connectedVertices->GetId(i);
|
|
493
|
+ vtkGrid->GetPoint(ip, r1);
|
|
494
|
+ double g1 = vtkGrid->GetPointData()->GetScalars()->GetTuple(ip)[0] ;
|
|
495
|
+ //g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
|
|
496
|
+ if ( std::abs(g1) > 1e-3 ) {
|
|
497
|
+ g(ic) += CompositeSimpsons2(g1, g0, r1, r0, 1000);
|
|
498
|
+ }
|
|
499
|
+ //g(ic) += CompositeSimpsons2(g0, r1, r0, 8);
|
|
500
|
+ //if ( std::abs(g1) > 1e-3 ) {
|
|
501
|
+ //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 8);
|
|
502
|
+ //g(ic) += CompositeSimpsons2(g0, g1, r0, r1, 100); // / (2*dist(r0,r1)) ;
|
|
503
|
+ // g(ic) += g0*dist(r0,r1); //CompositeSimpsons2(g0, r0, r1, 8);
|
|
504
|
+ //g(ic) += CompositeSimpsons2(g0, r0, r1, 8);
|
|
505
|
+ // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
|
|
506
|
+ //} //else {
|
|
507
|
+ // g(ic) += g0; //CompositeSimpsons2(g0, r0, r1, 8);
|
|
508
|
+ //}
|
|
509
|
+ }
|
|
510
|
+ }
|
|
511
|
+ //g(ic) = 2.* vtkGrid->GetPointData()->GetScalars()->GetTuple(ic)[0] ; // Why 2?
|
|
512
|
+ //std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
|
|
513
|
+ }
|
|
514
|
+ */
|
|
515
|
+
|
|
516
|
+ } else if (vtkG) { // VTK implicit function, proceed with care
|
|
517
|
+ std::cout << "\nUsing implicit file from file" << std::endl;
|
|
518
|
+ // OpenMP right here
|
|
519
|
+ for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
|
|
520
|
+ vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
|
|
521
|
+ //vtkGrid->GetPoint(ic, r0);
|
|
522
|
+ //g(ic) += vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
|
|
523
|
+ // std::cout << vtkG->FunctionValue(r0[0], r0[1], r0[2]) << std::endl;
|
|
524
|
+ //g(ic) += vtkGrid->GetPointData()->GetScalars()->GetTuple1(ic);// FunctionValue(r0[0], r0[1], r0[2]) ;
|
|
525
|
+ /*
|
|
526
|
+ for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
|
|
527
|
+ int ip = connectedVertices->GetId(i);
|
|
528
|
+ vtkGrid->GetPoint(ip, r1);
|
|
529
|
+ g(ic) += CompositeSimpsons2(vtkG, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
|
|
530
|
+ }
|
|
531
|
+ */
|
|
532
|
+ std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
|
|
533
|
+ }
|
|
534
|
+ } else if (gFcn3) {
|
|
535
|
+ std::cout << "\nUsing gFcn3" << std::endl;
|
|
536
|
+ for (int ic=0; ic < vtkGrid->GetNumberOfPoints(); ++ic) {
|
|
537
|
+ vtkSmartPointer<vtkIdList> connectedVertices = GetConnectedPoints(ic);
|
|
538
|
+ vtkGrid->GetPoint(ic, r0);
|
|
539
|
+ // TODO, test OMP sum reduction here. Is vtkGrid->GetPoint thread safe?
|
|
540
|
+ //Real sum(0.);
|
|
541
|
+ //#ifdef LEMMAUSEOMP
|
|
542
|
+ //#pragma omp parallel for reduction(+:sum)
|
|
543
|
+ //#endif
|
|
544
|
+ for(vtkIdType i = 0; i < connectedVertices->GetNumberOfIds(); ++i) {
|
|
545
|
+ int ip = connectedVertices->GetId(i);
|
|
546
|
+ vtkGrid->GetPoint(ip, r1);
|
|
547
|
+ g(ic) += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
|
|
548
|
+ //sum += CompositeSimpsons2(gFcn3, r0, r1, 8); // vtkG->FunctionValue(r0[0], r0[1], r0[2]) ;
|
|
549
|
+ }
|
|
550
|
+ std::cout << "\r" << (int)(1e2*((float)(ic) / (float)(vtkGrid->GetNumberOfPoints()))) << std::flush ;
|
|
551
|
+ //g(ic) = sum;
|
|
552
|
+ }
|
|
553
|
+ } else {
|
|
554
|
+ std::cout << "No source specified\n";
|
|
555
|
+ exit(EXIT_FAILURE);
|
|
556
|
+ }
|
|
557
|
+ // std::cout << g << std::endl;
|
|
558
|
+
|
|
559
|
+ //g(85) = 1;
|
|
560
|
+
|
|
561
|
+ std::cout << "\nSolving" << std::endl;
|
|
562
|
+ ////////////////////////////////////////////////////////////
|
|
563
|
+ // Solving:
|
|
564
|
+ //Eigen::SimplicialCholesky<Eigen::SparseMatrix<Real>, Eigen::Lower > chol(A); // performs a Cholesky factorization of A
|
|
565
|
+ //VectorXr u = chol.solve(g);
|
|
566
|
+
|
|
567
|
+ //Eigen::ConjugateGradient<Eigen::SparseMatrix<Real, Eigen::Lower > Eigen::DiagonalPreconditioner > cg;
|
|
568
|
+ Eigen::ConjugateGradient< Eigen::SparseMatrix<Real> > cg(A);
|
|
569
|
+
|
|
570
|
+ //Eigen::BiCGSTAB<Eigen::SparseMatrix<Real> > cg(A);
|
|
571
|
+ cg.setMaxIterations(3000);
|
|
572
|
+ //cg.compute(A);
|
|
573
|
+ //std::cout << "Computed " << std::endl;
|
|
574
|
+
|
|
575
|
+ VectorXr u = cg.solve(g);
|
|
576
|
+ std::cout << "#iterations: " << cg.iterations() << std::endl;
|
|
577
|
+ std::cout << "estimated error: " << cg.error() << std::endl;
|
|
578
|
+
|
|
579
|
+ vtkDoubleArray *gArray = vtkDoubleArray::New();
|
|
580
|
+ vtkDoubleArray *uArray = vtkDoubleArray::New();
|
|
581
|
+ uArray->SetNumberOfComponents(1);
|
|
582
|
+ gArray->SetNumberOfComponents(1);
|
|
583
|
+ for (int iu = 0; iu<u.size(); ++iu) {
|
|
584
|
+ uArray->InsertTuple1(iu, u[iu]);
|
|
585
|
+ gArray->InsertTuple1(iu, g[iu]);
|
|
586
|
+ }
|
|
587
|
+ uArray->SetName("u");
|
|
588
|
+ gArray->SetName("g");
|
|
589
|
+ vtkGrid->GetPointData()->AddArray(uArray);
|
|
590
|
+ vtkGrid->GetPointData()->AddArray(gArray);
|
|
591
|
+
|
|
592
|
+ vtkXMLDataSetWriter *Writer = vtkXMLDataSetWriter::New();
|
|
593
|
+ Writer->SetInputData(vtkGrid);
|
|
594
|
+ Writer->SetFileName(fname.c_str());
|
|
595
|
+ Writer->Write();
|
|
596
|
+ Writer->Delete();
|
|
597
|
+
|
|
598
|
+ Surface->Delete();
|
|
599
|
+ gArray->Delete();
|
|
600
|
+ uArray->Delete();
|
|
601
|
+
|
|
602
|
+ }
|
|
603
|
+
|
|
604
|
+ // Uses simpon's rule to perform a definite integral of a
|
|
605
|
+ // function (passed as a pointer). The integration occurs from
|
|
606
|
+ // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
|
|
607
|
+ Real FEM4EllipticPDE::CompositeSimpsons(vtkImplicitFunction* f, Real r0[3], Real r1[3], int n) {
|
|
608
|
+
|
|
609
|
+ Vector3r R0(r0[0], r0[1], r0[2]);
|
|
610
|
+ Vector3r R1(r1[0], r1[1], r1[2]);
|
|
611
|
+
|
|
612
|
+ // force n to be even
|
|
613
|
+ assert(n > 0);
|
|
614
|
+ //n += (n % 2);
|
|
615
|
+
|
|
616
|
+ Real h = dist(r0, r1) / (Real)(n) ;
|
|
617
|
+ Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
|
|
618
|
+
|
|
619
|
+ Vector3r dr = (R1 - R0).array() / Real(n);
|
|
620
|
+
|
|
621
|
+ Vector3r rx;
|
|
622
|
+ rx.array() = R0.array() + dr.array();
|
|
623
|
+ for (int i=1; i<n; i+=2) {
|
|
624
|
+ S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]);
|
|
625
|
+ rx += 2.*dr;
|
|
626
|
+ }
|
|
627
|
+
|
|
628
|
+ rx.array() = R0.array() + 2*dr.array();
|
|
629
|
+ for (int i=2; i<n-1; i+=2) {
|
|
630
|
+ S += 2.*f->FunctionValue(rx[0], rx[1], rx[2]);
|
|
631
|
+ rx += 2.*dr;
|
|
632
|
+ }
|
|
633
|
+
|
|
634
|
+ return h * S / 3.;
|
|
635
|
+
|
|
636
|
+ }
|
|
637
|
+
|
|
638
|
+ // Uses simpon's rule to perform a definite integral of a
|
|
639
|
+ // function (passed as a pointer). The integration occurs from
|
|
640
|
+ // (Shamelessly adapted from http://en.wikipedia.org/wiki/Simpson's_rule
|
|
641
|
+ // This is just here as a convenience
|
|
642
|
+ Real FEM4EllipticPDE::CompositeSimpsons(const Real& f, Real r0[3], Real r1[3], int n) {
|
|
643
|
+
|
|
644
|
+ return dist(r0,r1)*f;
|
|
645
|
+ /*
|
|
646
|
+ Vector3r R0(r0[0], r0[1], r0[2]);
|
|
647
|
+ Vector3r R1(r1[0], r1[1], r1[2]);
|
|
648
|
+
|
|
649
|
+ // force n to be even
|
|
650
|
+ assert(n > 0);
|
|
651
|
+ //n += (n % 2);
|
|
652
|
+
|
|
653
|
+ Real h = dist(r0, r1) / (Real)(n) ;
|
|
654
|
+ Real S = f + f;
|
|
655
|
+
|
|
656
|
+ Vector3r dr = (R1 - R0).array() / Real(n);
|
|
657
|
+
|
|
658
|
+ //Vector3r rx;
|
|
659
|
+ //rx.array() = R0.array() + dr.array();
|
|
660
|
+ for (int i=1; i<n; i+=2) {
|
|
661
|
+ S += 4. * f;
|
|
662
|
+ //rx += 2.*dr;
|
|
663
|
+ }
|
|
664
|
+
|
|
665
|
+ //rx.array() = R0.array() + 2*dr.array();
|
|
666
|
+ for (int i=2; i<n-1; i+=2) {
|
|
667
|
+ S += 2. * f;
|
|
668
|
+ //rx += 2.*dr;
|
|
669
|
+ }
|
|
670
|
+
|
|
671
|
+ return h * S / 3.;
|
|
672
|
+ */
|
|
673
|
+ }
|
|
674
|
+
|
|
675
|
+
|
|
676
|
+ /*
|
|
677
|
+ * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
|
|
678
|
+ * test function owned by the FEM implimentaion.
|
|
679
|
+ */
|
|
680
|
+ Real FEM4EllipticPDE::CompositeSimpsons2(vtkImplicitFunction* f,
|
|
681
|
+ Real r0[3], Real r1[3], int n) {
|
|
682
|
+
|
|
683
|
+ Vector3r R0(r0[0], r0[1], r0[2]);
|
|
684
|
+ Vector3r R1(r1[0], r1[1], r1[2]);
|
|
685
|
+
|
|
686
|
+ // force n to be even
|
|
687
|
+ assert(n > 0);
|
|
688
|
+ //n += (n % 2);
|
|
689
|
+
|
|
690
|
+ Real h = dist(r0, r1) / (Real)(n) ;
|
|
691
|
+ // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
|
|
692
|
+ Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
|
|
693
|
+ //Real S = f->FunctionValue(r0) + f->FunctionValue(r1);
|
|
694
|
+
|
|
695
|
+ Vector3r dr = (R1 - R0).array() / Real(n);
|
|
696
|
+
|
|
697
|
+ Vector3r rx;
|
|
698
|
+ rx.array() = R0.array() + dr.array();
|
|
699
|
+ for (int i=1; i<n; i+=2) {
|
|
700
|
+ S += 4. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
|
|
701
|
+ rx += 2.*dr;
|
|
702
|
+ }
|
|
703
|
+
|
|
704
|
+ rx.array() = R0.array() + 2*dr.array();
|
|
705
|
+ for (int i=2; i<n-1; i+=2) {
|
|
706
|
+ S += 2. * f->FunctionValue(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
|
|
707
|
+ rx += 2.*dr;
|
|
708
|
+ }
|
|
709
|
+
|
|
710
|
+ return h * S / 3.;
|
|
711
|
+
|
|
712
|
+ }
|
|
713
|
+
|
|
714
|
+ /*
|
|
715
|
+ * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
|
|
716
|
+ * test function owned by the FEM implimentaion.
|
|
717
|
+ */
|
|
718
|
+ Real FEM4EllipticPDE::CompositeSimpsons2( Real (*f)(const Real&, const Real&, const Real&),
|
|
719
|
+ Real r0[3], Real r1[3], int n) {
|
|
720
|
+
|
|
721
|
+ Vector3r R0(r0[0], r0[1], r0[2]);
|
|
722
|
+ Vector3r R1(r1[0], r1[1], r1[2]);
|
|
723
|
+
|
|
724
|
+ // force n to be even
|
|
725
|
+ assert(n > 0);
|
|
726
|
+ //n += (n % 2);
|
|
727
|
+
|
|
728
|
+ Real h = dist(r0, r1) / (Real)(n) ;
|
|
729
|
+ // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
|
|
730
|
+ //Real S = f(r0[0], r0[1], r0[2])*Hat(R0, R0, R1) + f(r1[0], r1[1], r1[2])*Hat(R1, R0, R1);
|
|
731
|
+ Real S = f(r0[0], r0[1], r0[2]) + f(r1[0], r1[1], r1[2]);
|
|
732
|
+
|
|
733
|
+ Vector3r dr = (R1 - R0).array() / Real(n);
|
|
734
|
+
|
|
735
|
+ Vector3r rx;
|
|
736
|
+ rx.array() = R0.array() + dr.array();
|
|
737
|
+ for (int i=1; i<n; i+=2) {
|
|
738
|
+ S += 4. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
|
|
739
|
+ rx += 2.*dr;
|
|
740
|
+
|
|
741
|
+ }
|
|
742
|
+
|
|
743
|
+ rx.array() = R0.array() + 2*dr.array();
|
|
744
|
+ for (int i=2; i<n-1; i+=2) {
|
|
745
|
+ S += 2. * f(rx[0], rx[1], rx[2]) * Hat(rx, R0, R1) * Hat(rx, R1, R0);
|
|
746
|
+ rx += 2.*dr;
|
|
747
|
+ }
|
|
748
|
+
|
|
749
|
+ return h * S / 3.;
|
|
750
|
+
|
|
751
|
+ }
|
|
752
|
+
|
|
753
|
+ /*
|
|
754
|
+ * Performs numerical integration of two functions, one is constant valued f, the other is the FEM
|
|
755
|
+ * test function owned by the FEM implimentaion.
|
|
756
|
+ */
|
|
757
|
+ Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f, Real r0[3], Real r1[3], int n) {
|
|
758
|
+
|
|
759
|
+ Vector3r R0(r0[0], r0[1], r0[2]);
|
|
760
|
+ Vector3r R1(r1[0], r1[1], r1[2]);
|
|
761
|
+
|
|
762
|
+ // force n to be even
|
|
763
|
+ assert(n > 0);
|
|
764
|
+ //n += (n % 2);
|
|
765
|
+
|
|
766
|
+ Real h = dist(r0, r1) / (Real)(n) ;
|
|
767
|
+ // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
|
|
768
|
+ Real S = 2*f; //*Hat(R0, R0, R1) + f*Hat(R1, R0, R1);
|
|
769
|
+
|
|
770
|
+ Vector3r dr = (R1 - R0).array() / Real(n);
|
|
771
|
+
|
|
772
|
+ Vector3r rx;
|
|
773
|
+ rx.array() = R0.array() + dr.array();
|
|
774
|
+ for (int i=1; i<n; i+=2) {
|
|
775
|
+ S += 4. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
|
|
776
|
+ rx += 2.*dr;
|
|
777
|
+ }
|
|
778
|
+
|
|
779
|
+ rx.array() = R0.array() + 2*dr.array();
|
|
780
|
+ for (int i=2; i<n-1; i+=2) {
|
|
781
|
+ S += 2. * f * Hat(rx, R0, R1) * Hat(rx, R1, R0);
|
|
782
|
+ rx += 2.*dr;
|
|
783
|
+ }
|
|
784
|
+
|
|
785
|
+ return h * S / 3.;
|
|
786
|
+
|
|
787
|
+ }
|
|
788
|
+
|
|
789
|
+ /*
|
|
790
|
+ * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
|
|
791
|
+ * test function owned by the FEM implimentaion.
|
|
792
|
+ */
|
|
793
|
+ Real FEM4EllipticPDE::CompositeSimpsons2( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
|
|
794
|
+
|
|
795
|
+ Vector3r R0(r0[0], r0[1], r0[2]);
|
|
796
|
+ Vector3r R1(r1[0], r1[1], r1[2]);
|
|
797
|
+
|
|
798
|
+ // force n to be even
|
|
799
|
+ assert(n > 0);
|
|
800
|
+ //n += (n % 2);
|
|
801
|
+
|
|
802
|
+ Real h = dist(r0, r1) / (Real)(n) ;
|
|
803
|
+
|
|
804
|
+ // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
|
|
805
|
+ // NO! We are looking at 1/2 hat often!!! So S = f1!
|
|
806
|
+ Real S = f1; //f0*Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
|
|
807
|
+
|
|
808
|
+ Vector3r dr = (R1 - R0).array() / Real(n);
|
|
809
|
+
|
|
810
|
+ // linear interpolate function
|
|
811
|
+ //Vector3r rx;
|
|
812
|
+ //rx.array() = R0.array() + dr.array();
|
|
813
|
+ for (int i=1; i<n; i+=2) {
|
|
814
|
+ double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
|
|
815
|
+ S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0) ;
|
|
816
|
+ }
|
|
817
|
+
|
|
818
|
+ //rx.array() = R0.array() + 2*dr.array();
|
|
819
|
+ for (int i=2; i<n-1; i+=2) {
|
|
820
|
+ double fx = f0 + (f1 - f0) * ((i*h)/(h*n));
|
|
821
|
+ S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1);// * Hat(R1.array() + i*dr.array(), R1, R0);
|
|
822
|
+ }
|
|
823
|
+
|
|
824
|
+ return h * S / 3.;
|
|
825
|
+
|
|
826
|
+ }
|
|
827
|
+
|
|
828
|
+ /*
|
|
829
|
+ * Performs numerical integration of two functions, one is passed as a vtkImplicitFunction, the other is the FEM
|
|
830
|
+ * test function owned by the FEM implimentaion.
|
|
831
|
+ */
|
|
832
|
+ Real FEM4EllipticPDE::CompositeSimpsons3( const Real& f0, const Real& f1, Real r0[3], Real r1[3], int n) {
|
|
833
|
+
|
|
834
|
+ Vector3r R0(r0[0], r0[1], r0[2]);
|
|
835
|
+ Vector3r R1(r1[0], r1[1], r1[2]);
|
|
836
|
+
|
|
837
|
+ // force n to be even
|
|
838
|
+ assert(n > 0);
|
|
839
|
+ //n += (n % 2);
|
|
840
|
+
|
|
841
|
+ Real h = dist(r0, r1) / (Real)(n) ;
|
|
842
|
+
|
|
843
|
+ // For Gelerkin (most) FEM, we can omit this one as test functions are zero valued at element boundaries
|
|
844
|
+ // NO! We are looking at 1/2 hat often!!! So S = f1!
|
|
845
|
+ Real S = f0+f1; //Hat(R0, R0, R1) + f1*Hat(R1, R0, R1);
|
|
846
|
+
|
|
847
|
+ Vector3r dr = (R1 - R0).array() / Real(n);
|
|
848
|
+
|
|
849
|
+ // linear interpolate function
|
|
850
|
+ //Vector3r rx;
|
|
851
|
+ //rx.array() = R0.array() + dr.array();
|
|
852
|
+ for (int i=1; i<n; i+=2) {
|
|
853
|
+ double fx = 1;// f0 + (f1 - f0) * ((i*h)/(h*n));
|
|
854
|
+ S += 4. * fx * Hat(R0.array() + i*dr.array(), R0, R1) * Hat(R1.array() + i*dr.array(), R1, R0) ;
|
|
855
|
+ }
|
|
856
|
+
|
|
857
|
+ //rx.array() = R0.array() + 2*dr.array();
|
|
858
|
+ for (int i=2; i<n-1; i+=2) {
|
|
859
|
+ double fx = 1; // f0 + (f1 - f0) * ((i*h)/(h*n));
|
|
860
|
+ S += 2. * fx * Hat(R0.array() + i*dr.array(), R0, R1)* Hat(R1.array() + i*dr.array(), R1, R0);
|
|
861
|
+ }
|
|
862
|
+
|
|
863
|
+ return h * S / 3.;
|
|
864
|
+
|
|
865
|
+ }
|
|
866
|
+
|
|
867
|
+
|
|
868
|
+ //--------------------------------------------------------------------------------------
|
|
869
|
+ // Class: FEM4EllipticPDE
|
|
870
|
+ // Method: Hat
|
|
871
|
+ //--------------------------------------------------------------------------------------
|
|
872
|
+ Real FEM4EllipticPDE::Hat ( const Vector3r& r, const Vector3r& r0, const Vector3r& r1 ) {
|
|
873
|
+ //return (r-r0).norm() / (r1-r0).norm() ;
|
|
874
|
+ return dist(r, r0) / dist(r1, r0) ;
|
|
875
|
+ } // ----- end of method FEM4EllipticPDE::Hat -----
|
|
876
|
+
|
|
877
|
+
|
|
878
|
+} // ----- end of Lemma name -----
|