|
@@ -0,0 +1,105 @@
|
|
1
|
+/* This file is part of Lemma, a geophysical modelling and inversion API.
|
|
2
|
+ * More information is available at http://lemmasoftware.org
|
|
3
|
+ */
|
|
4
|
+
|
|
5
|
+/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
6
|
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
7
|
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
8
|
+ */
|
|
9
|
+
|
|
10
|
+/**
|
|
11
|
+ * @file
|
|
12
|
+ * @date 02/04/2016 02:58:54 PM
|
|
13
|
+ * @version $Id$
|
|
14
|
+ * @author Trevor Irons (ti)
|
|
15
|
+ * @email tirons@egi.utah.edu
|
|
16
|
+ * @copyright Copyright (c) 2016, University of Utah
|
|
17
|
+ * @copyright Copyright (c) 2016, Lemma Software, LLC
|
|
18
|
+ */
|
|
19
|
+
|
|
20
|
+radius = 3.25; // Radius of the damn thing
|
|
21
|
+blc = radius/2; // 0.25; // Target element size
|
|
22
|
+Box = 3*radius; // The down side of potential
|
|
23
|
+lc = radius/2; // toroid characteristic length
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+tpp = newp;
|
|
27
|
+ts = 1; // height of toroid
|
|
28
|
+tx = radius; // radial width of toroid, measured in centre of ring
|
|
29
|
+tl = 0; // centre of rotation
|
|
30
|
+
|
|
31
|
+Point(tpp ) = { tx, 0, 0, lc};
|
|
32
|
+Point(tpp+1) = { ts+tx, 0, 0, lc};
|
|
33
|
+Point(tpp+2) = { tx, ts, 0, lc};
|
|
34
|
+Point(tpp+3) = { tx, -ts, 0, lc};
|
|
35
|
+Point(tpp+4) = {-ts+tx, 0, 0, lc};
|
|
36
|
+
|
|
37
|
+cc = newc;
|
|
38
|
+Circle(cc ) = {tpp+1, tpp, tpp+2};
|
|
39
|
+Circle(cc+1) = {tpp+2, tpp, tpp+4};
|
|
40
|
+Circle(cc+2) = {tpp+4, tpp, tpp+3};
|
|
41
|
+Circle(cc+3) = {tpp+3, tpp, tpp+1};
|
|
42
|
+
|
|
43
|
+ll = newll;
|
|
44
|
+Line Loop(ll) = {cc, cc+1, cc+2, cc+3};
|
|
45
|
+
|
|
46
|
+ps = news;
|
|
47
|
+pio2=Pi/2;
|
|
48
|
+Plane Surface(ps) = {ll};
|
|
49
|
+tv1[] = Extrude {{0, 1, 0},{-tl,0,0}, 2*Pi/3} { Surface{ps}; };
|
|
50
|
+tv2[] = Extrude {{0, 1, 0},{-tl,0,0}, 2*Pi/3} { Surface{28}; };
|
|
51
|
+tv3[] = Extrude {{0, 1, 0},{-tl,0,0}, 2*Pi/3} { Surface{50}; };
|
|
52
|
+//t1[] = Rotate {{0,0,1},{0,0,0},pio2 } {Duplicata{Surface{ps};}};
|
|
53
|
+//Extrude Surface {ps, {0,1,0}, {-tl,0,0}, 2*Pi/3} { Recombine ;};
|
|
54
|
+//Extrude Surface {28, {0,1,0}, {-tl,0,0}, 2*Pi/3}; //{Layers{10,73,1};};
|
|
55
|
+//Extrude Surface {50, {0,1,0}, {-tl,0,0}, 2*Pi/3}; //{Layers{10,73,1};};
|
|
56
|
+
|
|
57
|
+/* Make a list of a ring (annulus) of surfaces around the hole */
|
|
58
|
+allParts[] = {tv1[0], tv2[0], tv3[0]};
|
|
59
|
+
|
|
60
|
+/* Make surfaces to be meshed by transfinite algorithm */
|
|
61
|
+//Transfinite Surface {allParts[]};
|
|
62
|
+
|
|
63
|
+/* The "Recombine Surface" command is issued in order to
|
|
64
|
+ * crate quadrilateral elements.
|
|
65
|
+ */
|
|
66
|
+//Recombine Surface {allParts[]};
|
|
67
|
+
|
|
68
|
+// Extrude Surface {12, {0,0,1}, {0,0,0}, 2*Pi/3} {
|
|
69
|
+// Recombine ; Layers { 6, 54, 1 } ;
|
|
70
|
+// } ;
|
|
71
|
+
|
|
72
|
+// Total Solution Space
|
|
73
|
+X0 = -Box;
|
|
74
|
+X1 = Box;
|
|
75
|
+Y0 = -Box;
|
|
76
|
+Y1 = Box;
|
|
77
|
+Z0 = -Box;
|
|
78
|
+Z1 = Box;
|
|
79
|
+/////////////////////////////////////
|
|
80
|
+// Large Bounding box
|
|
81
|
+pp = newp;
|
|
82
|
+Point(pp) = {X0, Y0, Z0, blc};
|
|
83
|
+Point(pp+1) = {X1, Y0, Z0, blc};
|
|
84
|
+Point(pp+2) = {X1, Y1, Z0, blc};
|
|
85
|
+Point(pp+3) = {X0, Y1, Z0, blc};
|
|
86
|
+//
|
|
87
|
+lv = newl;
|
|
88
|
+Line(lv) = {pp,pp+1};
|
|
89
|
+Line(lv+1) = {pp+1,pp+2};
|
|
90
|
+Line(lv+2) = {pp+2,pp+3};
|
|
91
|
+Line(lv+3) = {pp+3,pp};
|
|
92
|
+Line Loop(lv+4) = {lv, lv+1, lv+2, lv+3};
|
|
93
|
+//
|
|
94
|
+// Hard coded doom
|
|
95
|
+bs = news;
|
|
96
|
+Plane Surface(bs) = {lv+4};
|
|
97
|
+//
|
|
98
|
+//v = newv;
|
|
99
|
+v[] = Extrude {0, 0, Z1-Z0} { Surface{bs}; };
|
|
100
|
+
|
|
101
|
+/* This is GOOD */
|
|
102
|
+Surface{ allParts } In Volume{v[1]};
|
|
103
|
+//Surface{t1[0]} In Volume{v[1]};
|
|
104
|
+//Surface{t2[0]} In Volume{v[1]};
|
|
105
|
+//Surface{t3[0]} In Volume{v[1]};
|