Surface NMR processing and inversion GUI
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

mrsurvey.py 141KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735
  1. from PyQt5.QtCore import *
  2. import numpy as np
  3. import scipy.signal as signal
  4. import pylab
  5. import sys
  6. import scipy
  7. import copy
  8. import struct
  9. from scipy.io.matlab import mio
  10. from numpy import pi
  11. from math import floor
  12. import matplotlib as mpl
  13. from matplotlib.ticker import FuncFormatter
  14. import matplotlib.font_manager as fm
  15. import matplotlib.pyplot as plt
  16. import matplotlib.ticker
  17. from matplotlib.ticker import MaxNLocator
  18. import multiprocessing
  19. import itertools
  20. import akvo.tressel.adapt as adapt
  21. #import akvo.tressel.cadapt as adapt # cython for more faster
  22. import akvo.tressel.decay as decay
  23. import akvo.tressel.pca as pca
  24. import akvo.tressel.rotate as rotate
  25. import akvo.tressel.cmaps as cmaps
  26. import akvo.tressel.harmonic as harmonic
  27. import cmocean # colormaps for geophysical data
  28. plt.register_cmap(name='viridis', cmap=cmaps.viridis)
  29. plt.register_cmap(name='inferno', cmap=cmaps.inferno)
  30. plt.register_cmap(name='inferno_r', cmap=cmaps.inferno_r)
  31. plt.register_cmap(name='magma', cmap=cmaps.magma)
  32. plt.register_cmap(name='magma_r', cmap=cmaps.magma_r)
  33. def loadGMRBinaryFID( rawfname, istack, info ):
  34. """ Reads a single binary GMR file and fills into DATADICT
  35. """
  36. #################################################################################
  37. # figure out key data indices
  38. # Pulse
  39. nps = (int)((info["prePulseDelay"])*info["samp"])
  40. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  41. # Data
  42. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  43. nd1 = (int)(1.*self.samp) # samples in first pulse
  44. invGain = 1./self.RxGain
  45. invCGain = self.CurrentGain
  46. pulse = "Pulse 1"
  47. chan = self.DATADICT[pulse]["chan"]
  48. rchan = self.DATADICT[pulse]["rchan"]
  49. rawFile = open( rawfname, 'rb')
  50. T = N_samp * self.dt
  51. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  52. for ipm in range(self.nPulseMoments):
  53. buf1 = rawFile.read(4)
  54. buf2 = rawFile.read(4)
  55. N_chan = struct.unpack('>i', buf1 )[0]
  56. N_samp = struct.unpack('>i', buf2 )[0]
  57. DATA = np.zeros([N_samp, N_chan+1])
  58. for ichan in range(N_chan):
  59. DATADUMP = rawFile.read(4*N_samp)
  60. for irec in range(N_samp):
  61. DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0]
  62. return DATA, TIMES
  63. class SNMRDataProcessor(QObject):
  64. """ Revised class for preprocessing sNMR Data.
  65. Derived types can read GMR files
  66. """
  67. def __init__(self):
  68. QObject.__init__(self)
  69. self.numberOfMoments = 0
  70. self.numberOfPulsesPerMoment = 0
  71. self.pulseType = "NONE"
  72. self.transFreq = 0
  73. self.pulseLength = np.zeros(1)
  74. self.nPulseMoments = 0
  75. self.dt = 0
  76. def mfreqz(self, b,a=1):
  77. """ Plots the frequency response of a filter specified with a and b weights
  78. """
  79. import scipy.signal as signal
  80. pylab.figure(124)
  81. w,h = signal.freqz(b,a)
  82. w /= max(w)
  83. w *= .5/self.dt
  84. h_dB = 20 * pylab.log10 (abs(h))
  85. pylab.subplot(211)
  86. #pylab.plot(w/max(w),h_dB)
  87. pylab.plot(w,h_dB)
  88. pylab.ylim(-150, 5)
  89. pylab.ylabel('Magnitude (dB)')
  90. #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
  91. pylab.xlabel(r'Hz')
  92. pylab.title(r'Frequency response')
  93. pylab.subplot(212)
  94. h_Phase = pylab.unwrap(pylab.arctan2(pylab.imag(h), pylab.real(h)))
  95. #pylab.plot(w/max(w),h_Phase)
  96. pylab.plot(w,h_Phase)
  97. pylab.ylabel('Phase (radians)')
  98. pylab.xlabel(r'Hz')
  99. #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
  100. pylab.title(r'Phase response')
  101. pylab.subplots_adjust(hspace=0.5)
  102. def mfreqz2(self, b, a, canvas):
  103. "for analysing filt-filt"
  104. import scipy.signal as signal
  105. canvas.reAx2(False,False)
  106. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  107. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  108. #canvas.ax2.tick_params(axis='both', which='minor', labelsize=6)
  109. #pylab.figure(124)
  110. w,h = signal.freqz(b,a)
  111. w /= max(w)
  112. w *= .5/self.dt
  113. h_dB = 20 * pylab.log10(abs(h*h) + 1e-16)
  114. #ab.subplot(211)
  115. #pylab.plot(w/max(w),h_dB)
  116. canvas.ax1.plot(w,h_dB)
  117. canvas.ax1.set_ylim(-150, 5)
  118. canvas.ax1.set_ylabel('Magnitude [db]', fontsize=8)
  119. #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)')
  120. canvas.ax1.set_xlabel(r'[Hz]', fontsize=8)
  121. canvas.ax1.set_title(r'Frequency response', fontsize=8)
  122. canvas.ax1.grid(True)
  123. tt = np.arange(0, .02, self.dt)
  124. impulse = signal.dimpulse((self.filt_z, self.filt_p, self.filt_k, self.dt), t=tt)
  125. #impulse = signal.dstep((self.filt_z, self.filt_p, self.filt_k, self.dt), t=tt)
  126. #print impulse
  127. #for ii in range(len(impulse[1])):
  128. impulse_dB = 20.*np.log10(np.abs(np.array(impulse[1][0])))
  129. #canvas.ax2.plot(np.array(impulse[0]), impulse_dB)
  130. canvas.ax2.plot(np.array(impulse[0]), impulse[1][0])
  131. #h_Phase = pylab.unwrap(pylab.arctan2(pylab.imag(h), pylab.real(h)))
  132. #canvas.ax2.plot(w,h_Phase)
  133. canvas.ax2.set_ylabel('response [%]', fontsize=8)
  134. canvas.ax2.set_xlabel(r'time [s]', fontsize=8)
  135. canvas.ax2.set_title(r'impulse response', fontsize=8)
  136. #canvas.ax2.grid(True)
  137. canvas.draw()
  138. # search for last
  139. return impulse #[np.where(impulse[1][0] > .01)[-1]]
  140. class GMRDataProcessor(SNMRDataProcessor):
  141. # slots
  142. progressTrigger = pyqtSignal("int")
  143. doneTrigger = pyqtSignal()
  144. enableDSPTrigger = pyqtSignal()
  145. updateProcTrigger = pyqtSignal()
  146. def __init__(self):
  147. SNMRDataProcessor.__init__(self)
  148. self.maxBusV = 0.
  149. self.samp = 50000. # sampling frequency
  150. self.dt = 2e-5 # sampling rate
  151. self.deadTime = .0055 # instrument dead time before measurement
  152. self.prePulseDelay = 0.05 # delay before pulse
  153. self.windead = 0. # FD window filter dead time
  154. self.pulseType = -1
  155. self.transFreq = -1
  156. self.maxBusV = -1
  157. self.pulseLength = -1
  158. self.interpulseDelay = -1 # for T2, Spin Echo
  159. self.repetitionDelay = -1 # delay between first pulse
  160. self.nPulseMoments = -1 # Number of pulse moments per stack
  161. self.TuneCapacitance = -1 # tuning capac in uF
  162. self.nTransVersion = -1 # Transmitter version
  163. self.nDAQVersion = -1 # DAQ software version
  164. self.nInterleaves = -1 # num interleaves
  165. # self.nReceiveChannels = 4 # Num receive channels
  166. self.RotatedAmplitude = False
  167. # self.DATA = np.zeros(1) # Numpy array to hold all data, dimensions resized based on experiment
  168. # self.PULSES = np.zeros(1) # Numpy array to hold all data, dimensions resized based on experiment
  169. def Print(self):
  170. print ("pulse type", self.pulseType)
  171. print ("maxBusV", self.maxBusV)
  172. print ("inner pulse delay", self.interpulseDelay)
  173. print ("tuning capacitance", self.TuneCapacitance)
  174. print ("sampling rate", self.samp)
  175. print ("dt", self.dt)
  176. print ("dead time", self.deadTime)
  177. print ("pre pulse delay", self.prePulseDelay)
  178. print ("number of pulse moments", self.nPulseMoments)
  179. print ("pulse Length", self.pulseLength)
  180. print ("trans freq", self.transFreq)
  181. def readHeaderFile(self, FileName):
  182. HEADER = np.loadtxt(FileName)
  183. pulseTypeDict = {
  184. 1 : lambda: "FID",
  185. 2 : lambda: "T1",
  186. 3 : lambda: "SPINECHO",
  187. 4 : lambda: "4PhaseT1"
  188. }
  189. pulseLengthDict = {
  190. 1 : lambda x: np.ones(1) * x,
  191. 2 : lambda x: np.ones(2) * x,
  192. 3 : lambda x: np.array([x, 2.*x]),
  193. 4 : lambda x: np.ones(2) * x
  194. }
  195. self.pulseType = pulseTypeDict.get((int)(HEADER[0]))()
  196. self.transFreq = HEADER[1]
  197. self.maxBusV = HEADER[2]
  198. self.pulseLength = pulseLengthDict.get((int)(HEADER[0]))(1e-3*HEADER[3])
  199. self.interpulseDelay = 1e-3*HEADER[4] # for T2, Spin Echo
  200. self.repetitionDelay = HEADER[5] # delay between first pulse
  201. self.nPulseMoments = (int)(HEADER[6]) # Number of pulse moments per stack
  202. self.TuneCapacitance = HEADER[7] # tuning capacitance in uF
  203. self.nTransVersion = HEADER[8] # Transmitter version
  204. self.nDAQVersion = HEADER[9] # DAQ software version
  205. self.nInterleaves = HEADER[10] # num interleaves
  206. self.gain()
  207. # default
  208. self.samp = 50000. # sampling frequency
  209. self.dt = 2e-5 # sampling rate
  210. # newer header files contain 64 entries
  211. if self.nDAQVersion >= 2:
  212. #self.deadtime = HEADER[11]
  213. #self.unknown = HEADER[12]
  214. #self.PreAmpGain = HEADER[13]
  215. self.samp = HEADER[14] # sampling frequency
  216. self.dt = 1./self.samp # sampling rate
  217. self.deadTime = .0055 # instrument dead time before measurement
  218. self.prePulseDelay = 0.05 # delay before pulse
  219. #exit()
  220. def gain(self):
  221. #######################################################
  222. # Circuit gain
  223. # From MRSMatlab
  224. w = 2*np.pi*self.transFreq
  225. # 1e6 due to uF of reported capacitance
  226. L_coil = 1e6/(self.TuneCapacitance*(w**2))
  227. R_coil = 1.
  228. Z1_in = .5 + 1j*.5*w
  229. Z2_in = 1./(1j*w*.000001616)
  230. Z_eq_inv = (1./Z1_in) + (1./Z2_in)
  231. Zeq = 1./Z_eq_inv
  232. Zsource = R_coil + 1j*w*L_coil
  233. voltage_in = Zeq / (Zsource + Zeq)
  234. self.circuitGain = np.abs(voltage_in)
  235. self.circuitPhase_deg = (180/np.pi)+np.angle(voltage_in)
  236. circuitImpedance_ohms = np.abs(Zsource + Zeq)
  237. ######################################################
  238. # PreAmp gain
  239. if self.nTransVersion == 4:
  240. self.PreAmpGain = 1000.
  241. elif self.nTransVersion == 1 or self.nTransVersion == 2 or self.nTransVersion == 3 or self.nTransVersion == 6:
  242. self.PreAmpGain = 500.
  243. else:
  244. print ("unsupported transmitter version")
  245. exit(1)
  246. # Total Receiver Gain
  247. self.RxGain = self.circuitGain * self.PreAmpGain
  248. #####################################################
  249. # Current gain
  250. if floor(self.nDAQVersion) == 1:
  251. self.CurrentGain = 150.
  252. elif floor(self.nDAQVersion) == 2:
  253. self.CurrentGain = 180.
  254. def updateProgress(self):
  255. pass
  256. def TDSmartStack(self, outlierTest, MADcutoff, canvas):
  257. #print("Line 300 in mrsurvey")
  258. Stack = {}
  259. # align for stacking and modulate
  260. for pulse in self.DATADICT["PULSES"]:
  261. stack = np.zeros(( len(self.DATADICT[pulse]["chan"]), self.DATADICT["nPulseMoments"],\
  262. len(self.DATADICT["stacks"]), len(self.DATADICT[pulse]["TIMES"]) ))
  263. for ipm in range(self.DATADICT["nPulseMoments"]):
  264. istack = 0
  265. for sstack in self.DATADICT["stacks"]:
  266. if self.pulseType == "FID" or pulse == "Pulse 2":
  267. if floor(self.nDAQVersion) < 2:
  268. mod = 1
  269. else:
  270. mod = (-1.)**(ipm%2) * (-1.)**(sstack%2)
  271. elif self.pulseType == "T1":
  272. #mod = (-1.)**(sstack%2)
  273. #mod = (-1)**(ipm%2) * (-1)**(sstack%2)
  274. #mod = (-1)**(ipm%2) * (-1.**(((sstack-1)/2)%2))
  275. #print("mod", mod, ipm, sstack, (-1.)**(ipm%2), -1.0**(((sstack-1)/2)%2 ))
  276. #mod = (-1.)**((ipm+1)%2) * (-1.**(((sstack)/2)%2))
  277. #mod = (-1.)**((ipm-1)%2) * (-1.)**((sstack-1)%2)
  278. #mod = 1 # (-1.**(((sstack-1)/2)%2))
  279. # These two give great noise estimate
  280. #qcycler = np.array([1,-1,-1,1])
  281. #scycler = np.array([1,-1,1,-1])
  282. qcycler = np.array([ 1, 1])
  283. scycler = np.array([ 1, 1])
  284. mod = qcycler.take([ipm], mode='wrap')*scycler.take([sstack], mode='wrap')
  285. #mod = (-1.)**(ipm%2) * (-1.)**(sstack%2)
  286. elif self.pulseType == "4PhaseT1":
  287. mod = (-1.)**(ipm%2) * (-1.**(((sstack-1)/2)%2))
  288. ichan = 0
  289. for chan in self.DATADICT[pulse]["chan"]:
  290. stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan][ipm][sstack]
  291. ichan += 1
  292. istack += 1
  293. Stack[pulse] = stack
  294. #########################################
  295. # simple stack and plot of simple stack #
  296. #########################################
  297. canvas.reAxH2(np.shape(stack)[0], False, False)
  298. axes = canvas.fig.axes
  299. SimpleStack = {}
  300. VarStack = {}
  301. for pulse in self.DATADICT["PULSES"]:
  302. SimpleStack[pulse] = {}
  303. VarStack[pulse] = {}
  304. ichan = 0
  305. for chan in self.DATADICT[pulse]["chan"]:
  306. SimpleStack[pulse][chan] = 1e9*np.average( Stack[pulse][ichan], 1 )
  307. VarStack[pulse][chan] = 1e9*np.std( Stack[pulse][ichan], 1 )
  308. ax1 = axes[ 2*ichan ]
  309. #ax1.get_yaxis().get_major_formatter().set_useOffset(False)
  310. y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  311. ax1.yaxis.set_major_formatter(y_formatter)
  312. ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 )) #, color='darkblue' )
  313. ax1.set_title("Ch." + str(chan) + ": avg FID", fontsize=8)
  314. ax1.set_xlabel(r"time (ms)", fontsize=8)
  315. if ichan == 0:
  316. ax1.set_ylabel(r"signal [nV]", fontsize=8)
  317. else:
  318. plt.setp(ax1.get_yticklabels(), visible=False)
  319. plt.setp(ax1.get_yaxis().get_offset_text(), visible=False)
  320. # if ichan == 1:
  321. # canvas.ax2.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' )
  322. # canvas.ax2.set_title("Ch." + str(chan) + ": total average FID", fontsize=8)
  323. # canvas.ax2.set_xlabel(r"time [ms]", fontsize=8)
  324. # if ichan == 2:
  325. # canvas.ax3.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' )
  326. # canvas.ax3.set_title("Ch." + str(chan) + ": total average FID", fontsize=8)
  327. # canvas.ax3.set_xlabel(r"time [ms]", fontsize=8)
  328. # if ichan == 3:
  329. # canvas.ax4.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' )
  330. # canvas.ax4.set_title("Ch." + str(chan) + ": total average FID", fontsize=8)
  331. # canvas.ax4.set_xlabel(r"time [ms]", fontsize=8)
  332. ichan += 1
  333. #########################
  334. # Oulier rejectig stack #
  335. #########################
  336. if outlierTest == "MAD":
  337. MADStack = {}
  338. VarStack = {}
  339. #1.4826 is assumption of gaussian noise
  340. madstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  341. self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"]) ))
  342. varstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  343. self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"]) ))
  344. for pulse in self.DATADICT["PULSES"]:
  345. MADStack[pulse] = {}
  346. VarStack[pulse] = {}
  347. ichan = 0
  348. for chan in self.DATADICT[pulse]["chan"]:
  349. ax1 = axes[ 2*ichan ]
  350. for ipm in range(self.DATADICT["nPulseMoments"]):
  351. # # brutal loop over time, can this be vectorized?
  352. # for it in range(len(self.DATADICT[pulse]["TIMES"])):
  353. # x = 1e9 *Stack[pulse][ichan,ipm,:,it]
  354. # MAD = 1.4826 * np.median( np.abs(x-np.median(x)) )
  355. # good = 0
  356. # for istack in self.DATADICT["stacks"]:
  357. # if (np.abs(x[istack-1]-np.median(x))) / MAD < 2:
  358. # good += 1
  359. # madstack[ ichan, ipm, it ] += x[istack-1]
  360. # else:
  361. # pass
  362. # madstack[ichan, ipm, it] /= good
  363. # percent = int(1e2* (float)(ipm) / (float)(self.DATADICT["nPulseMoments"]) )
  364. # self.progressTrigger.emit(percent)
  365. # Vectorized version of above...much, much faster
  366. x = 1e9*copy.deepcopy(Stack[pulse][ichan][ipm,:,:]) # stack and time indices
  367. tile_med = np.tile( np.median(x, axis=0), (np.shape(x)[0],1))
  368. MAD = MADcutoff * np.median(np.abs(x - tile_med), axis=0)
  369. tile_MAD = np.tile( MAD, (np.shape(x)[0],1))
  370. good = np.abs(x-tile_med)/tile_MAD < 2. # 1.4826 # 2
  371. madstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).mean(axis=0) )
  372. varstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).std(axis=0) )
  373. # reporting
  374. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  375. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  376. self.progressTrigger.emit(percent)
  377. ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( madstack[ichan], 0 ))# , color='darkred')
  378. MADStack[pulse][chan] = madstack[ichan]
  379. VarStack[pulse][chan] = varstack[ichan]
  380. ichan += 1
  381. self.DATADICT["stack"] = MADStack
  382. else:
  383. self.DATADICT["stack"] = SimpleStack
  384. #########################################
  385. # Plot Fourier Transform representation #
  386. #########################################
  387. # canvas.fig.subplots_adjust(right=0.8)
  388. # cbar_ax = canvas.fig.add_axes([0.85, 0.1, 0.015, 0.355])
  389. # cbar_ax.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  390. im2 = []
  391. im1 = []
  392. for pulse in self.DATADICT["PULSES"]:
  393. ichan = 0
  394. axes = canvas.fig.axes
  395. vvmin = 1e10
  396. vvmax = 0
  397. for chan in self.DATADICT[pulse]["chan"]:
  398. ax1 = axes[2*ichan ]
  399. ax2 = axes[2*ichan+1] # TODO fix hard coded number
  400. if outlierTest == "MAD":
  401. X = np.fft.rfft( MADStack[pulse][chan][0,:] )
  402. nu = np.fft.fftfreq(len( MADStack[pulse][chan][0,:]), d=self.dt)
  403. else:
  404. X = np.fft.rfft( SimpleStack[pulse][chan][0,:] )
  405. nu = np.fft.fftfreq(len( SimpleStack[pulse][chan][0,:]), d=self.dt)
  406. nu = nu[0:len(X)]
  407. nu[-1] = np.abs(nu[-1])
  408. df = nu[1] - nu[0]
  409. of = 0
  410. istart = int((self.transFreq-50.)/df)
  411. iend = int((self.transFreq+50.)/df)
  412. of = nu[istart]
  413. def freqlabel(xxx, pos):
  414. return '%1.0f' %(of + xxx*df)
  415. formatter = FuncFormatter(freqlabel)
  416. SFFT = np.zeros( (self.DATADICT["nPulseMoments"], len(X)), dtype=np.complex64 )
  417. SFFT[0,:] = X
  418. for ipm in range(1, self.DATADICT["nPulseMoments"]):
  419. if outlierTest == "MAD":
  420. SFFT[ipm,:] = np.fft.rfft( MADStack[pulse][chan][ipm,:] )
  421. else:
  422. SFFT[ipm,:] = np.fft.rfft( SimpleStack[pulse][chan][ipm,:] )
  423. # convert to dB and add colorbars
  424. #db = 20.*np.log10(np.abs(SFFT[:,istart:iend]))
  425. db = (np.abs(SFFT[:,istart:iend]))
  426. #db = (np.real(SFFT[:,istart:iend]))
  427. #dbr = (np.real(SFFT[:,istart:iend]))
  428. #db = (np.imag(SFFT[:,istart:iend]))
  429. vvmin = min(vvmin, np.min(db) + 1e-16 )
  430. vvmax = max(vvmax, np.max(db) + 1e-16 )
  431. im2.append(ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax))
  432. #im1.append(ax1.matshow( dbr, aspect='auto')) #, vmin=vvmin, vmax=vvmax))
  433. #im2.append(ax2.matshow( db, aspect='auto', vmin=vvmin, vmax=vvmax))
  434. #im2 = ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax)
  435. if ichan == 0:
  436. ax2.set_ylabel(r"$q$ (A $\cdot$ s)", fontsize=8)
  437. else:
  438. #ax2.yaxis.set_ticklabels([])
  439. plt.setp(ax2.get_yticklabels(), visible=False)
  440. ax2.xaxis.set_major_formatter(formatter)
  441. ax2.xaxis.set_ticks_position('bottom')
  442. ax2.xaxis.set_major_locator(MaxNLocator(3))
  443. y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  444. ax2.yaxis.set_major_formatter(y_formatter)
  445. #if chan == self.DATADICT[pulse]["chan"][-1]:
  446. #cb2 = canvas.fig.colorbar(im2, cax=cbar_ax, format='%1.0e')
  447. #cb2 = canvas.fig.colorbar(im2[0], ax=ax2, format='%1.0e', orientation='horizontal')
  448. #cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e', orientation='horizontal')
  449. #cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  450. #cb2.set_label("signal (dB)", fontsize=8)
  451. ichan += 1
  452. canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  453. #cb1 = canvas.fig.colorbar(im, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  454. #cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  455. #cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  456. cb2 = canvas.fig.colorbar(im2[-1], ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  457. cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  458. cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  459. #canvas.fig.tight_layout()
  460. canvas.draw()
  461. self.doneTrigger.emit()
  462. #def harmonicModel(self, nF, nK, f0, f1, plot, canvas):
  463. def harmonicModel(self, nF, \
  464. f0, f0K1, f0KN, f0Ks, \
  465. f1, f1K1, f1KN, f1Ks, \
  466. plot, canvas):
  467. """ nF = number of base frequencies, must be 1 or 2
  468. f0 = first base frequency
  469. f0K1 = first harmonic to model for first base frequency
  470. f0KN = last harmonic to model for the first base frequency
  471. f0Ks = subharmonic spacing, set to 1 for no subharmonics.
  472. f1 = second base frequency
  473. f1K1 = first harmonic to model for second base frequency
  474. f1KN = last harmonic to model for the second base frequency
  475. f1Ks = subharmonic spacing for the second base frequency, set to 1 for no subharmonics.
  476. plot = should Akvo plot the results
  477. canvas = mpl plotting axis
  478. """
  479. #print("harmonic modelling...", f0)
  480. #plot = True
  481. if plot:
  482. canvas.reAx2()
  483. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  484. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  485. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  486. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  487. # Data
  488. iFID = 0
  489. for pulse in self.DATADICT["PULSES"]:
  490. self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"]
  491. for ipm in range(self.DATADICT["nPulseMoments"]):
  492. for istack in self.DATADICT["stacks"]:
  493. canvas.ax1.clear()
  494. canvas.ax2.clear()
  495. #for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  496. for ichan in self.DATADICT[pulse]["rchan"]:
  497. if plot:
  498. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  499. label = "orig " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan))
  500. if nF == 1:
  501. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( f0, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  502. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack], self.samp, self.DATADICT[pulse]["TIMES"], \
  503. f0, f0K1, f0KN, f0Ks )
  504. elif nF == 2:
  505. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic2( f0-1e-2, f1+1e-2, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  506. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic2( self.DATADICT[pulse][ichan][ipm][istack], self.samp, self.DATADICT[pulse]["TIMES"], \
  507. f0-1e-2, f0K1, f0KN, f0Ks, \
  508. f1+1e-2, f1K1, f1KN, f1Ks )
  509. # plot
  510. if plot:
  511. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  512. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan))
  513. for ichan in self.DATADICT[pulse]["chan"]:
  514. if plot:
  515. canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  516. label = "orig " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan))
  517. if nF == 1:
  518. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( f0, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  519. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack], self.samp, self.DATADICT[pulse]["TIMES"], \
  520. f0, f0K1, f0KN, f0Ks )
  521. elif nF == 2:
  522. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic2( f0-1e-2, f1+1e-2, self.DATADICT[pulse][ichan][ipm][istack], self.samp, nK, self.DATADICT[pulse]["TIMES"] )
  523. #self.DATADICT[pulse][ichan][ipm][istack] = harmonic.harmonicEuler( f0, self.DATADICT[pulse][ichan][ipm][istack], self.samp, 20, self.DATADICT[pulse]["TIMES"] )
  524. self.DATADICT[pulse][ichan][ipm][istack] = harmonic.minHarmonic2( self.DATADICT[pulse][ichan][ipm][istack], self.samp, self.DATADICT[pulse]["TIMES"], \
  525. f0-1e-2, f0K1, f0KN, f0Ks, \
  526. f1+1e-2, f1K1, f1KN, f1Ks )
  527. # plot
  528. if plot:
  529. canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  530. label = "data " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan))
  531. if plot:
  532. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  533. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  534. canvas.ax2.set_xlabel(r"time [s]", fontsize=8)
  535. canvas.ax2.set_ylabel(r"signal [nV]", fontsize=8)
  536. canvas.ax1.legend(prop={'size':6})
  537. canvas.ax2.legend(prop={'size':6})
  538. canvas.draw()
  539. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  540. self.progressTrigger.emit(percent)
  541. iFID += 1
  542. self.doneTrigger.emit()
  543. self.updateProcTrigger.emit()
  544. self.doneTrigger.emit()
  545. def FDSmartStack(self, outlierTest, MADcutoff, canvas):
  546. print("FFT stuff")
  547. self.dataCubeFFT()
  548. Stack = {}
  549. # align phase cycling for stacking and modulate
  550. for pulse in self.DATADICT["PULSES"]:
  551. stack = np.zeros(( len(self.DATADICT[pulse]["chan"]), \
  552. self.DATADICT["nPulseMoments"],\
  553. len(self.DATADICT["stacks"]),\
  554. len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1),\
  555. dtype=np.complex )
  556. for ipm in range(self.DATADICT["nPulseMoments"]):
  557. istack = 0
  558. for sstack in self.DATADICT["stacks"]:
  559. if self.pulseType == "FID" or pulse == "Pulse 2":
  560. mod = (-1)**(ipm%2) * (-1)**(sstack%2)
  561. elif self.pulseType == "4PhaseT1":
  562. mod = (-1)**(ipm%2) * (-1)**(((sstack-1)/2)%2)
  563. ichan = 0
  564. for chan in self.DATADICT[pulse]["chan"]:
  565. #stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan][ipm][sstack]
  566. stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan]["FFT"][sstack][ipm,:]
  567. ichan += 1
  568. istack += 1
  569. Stack[pulse] = stack
  570. #########################################
  571. # simple stack and plot of simple stack #
  572. ########################################https://faculty.apps.utah.edu/#
  573. canvas.reAxH2(np.shape(stack)[0], False, False)
  574. axes = canvas.fig.axes
  575. SimpleStack = {}
  576. VarStack = {}
  577. for pulse in self.DATADICT["PULSES"]:
  578. SimpleStack[pulse] = {}
  579. VarStack[pulse] = {}
  580. ichan = 0
  581. for chan in self.DATADICT[pulse]["chan"]:
  582. SimpleStack[pulse][chan] = 1e9*np.average( Stack[pulse][ichan], 1 )
  583. VarStack[pulse][chan] = 1e9*np.std( Stack[pulse][ichan], 1 )
  584. ax1 = axes[ 2*ichan ]
  585. #ax1.get_yaxis().get_major_formatter().set_useOffset(False)
  586. y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  587. ax1.yaxis.set_major_formatter(y_formatter)
  588. #ax1.plot( 1e3*self.DATADICT[pulse][chan]["FFT"]["nu"][0:len(SimpleStack[pulse][chan])], np.average(SimpleStack[pulse][chan], 0 )) #, color='darkblue' )
  589. #ax1.pcolor( np.real(SimpleStack[pulse][chan]) ) #, color='darkblue' )
  590. ax1.matshow( np.real(SimpleStack[pulse][chan]), aspect='auto') #, color='darkblue' )
  591. ax1.set_title("Ch." + str(chan) + ": avg FID", fontsize=8)
  592. ax1.set_xlabel(r"time (ms)", fontsize=8)
  593. if ichan == 0:
  594. ax1.set_ylabel(r"signal [nV]", fontsize=8)
  595. else:
  596. plt.setp(ax1.get_yticklabels(), visible=False)
  597. plt.setp(ax1.get_yaxis().get_offset_text(), visible=False)
  598. ichan += 1
  599. #########################
  600. # Oulier rejectig stack #
  601. #########################
  602. if outlierTest == "MAD":
  603. MADStack = {}
  604. VarStack = {}
  605. #1.4826 is assumption of gaussian noise
  606. madstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  607. self.DATADICT["nPulseMoments"],\
  608. len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1))
  609. varstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\
  610. self.DATADICT["nPulseMoments"],\
  611. len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1))
  612. for pulse in self.DATADICT["PULSES"]:
  613. MADStack[pulse] = {}
  614. VarStack[pulse] = {}
  615. ichan = 0
  616. for chan in self.DATADICT[pulse]["chan"]:
  617. ax1 = axes[ 2*ichan ]
  618. for ipm in range(self.DATADICT["nPulseMoments"]):
  619. # # brutal loop over time, can this be vectorized?
  620. # for it in range(len(self.DATADICT[pulse]["TIMES"])):
  621. # x = 1e9 *Stack[pulse][ichan,ipm,:,it]
  622. # MAD = 1.4826 * np.median( np.abs(x-np.median(x)) )
  623. # good = 0
  624. # for istack in self.DATADICT["stacks"]:
  625. # if (np.abs(x[istack-1]-np.median(x))) / MAD < 2:
  626. # good += 1
  627. # madstack[ ichan, ipm, it ] += x[istack-1]
  628. # else:
  629. # pass
  630. # madstack[ichan, ipm, it] /= good
  631. # percent = int(1e2* (float)(ipm) / (float)(self.DATADICT["nPulseMoments"]) )
  632. # self.progressTrigger.emit(percent)
  633. # Vectorized version of above...much, much faster
  634. x = 1e9*copy.deepcopy(Stack[pulse][ichan][ipm,:,:]) # stack and time indices
  635. tile_med = np.tile( np.median(x, axis=0), (np.shape(x)[0],1))
  636. MAD = MADcutoff * np.median(np.abs(x - tile_med), axis=0)
  637. tile_MAD = np.tile( MAD, (np.shape(x)[0],1))
  638. good = np.abs(x-tile_med)/tile_MAD < 2. # 1.4826 # 2
  639. madstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).mean(axis=0) )
  640. varstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).std(axis=0) )
  641. # reporting
  642. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  643. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  644. self.progressTrigger.emit(percent)
  645. ax2 = axes[2*ichan+1] # TODO fix hard coded number
  646. #ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( madstack[ichan], 0 ))# , color='darkred')
  647. MADStack[pulse][chan] = madstack[ichan]
  648. VarStack[pulse][chan] = varstack[ichan]
  649. ax2.matshow( np.real(MADStack[pulse][chan]), aspect='auto') #, color='darkblue' )
  650. ichan += 1
  651. self.DATADICT["stack"] = MADStack
  652. else:
  653. self.DATADICT["stack"] = SimpleStack
  654. # #########################################
  655. # # Plot Fourier Transform representation #
  656. # #########################################
  657. #
  658. # # canvas.fig.subplots_adjust(right=0.8)
  659. # # cbar_ax = canvas.fig.add_axes([0.85, 0.1, 0.015, 0.355])
  660. # # cbar_ax.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  661. # im2 = []
  662. # im1 = []
  663. # for pulse in self.DATADICT["PULSES"]:
  664. # ichan = 0
  665. # axes = canvas.fig.axes
  666. # vvmin = 1e10
  667. # vvmax = 0
  668. # for chan in self.DATADICT[pulse]["chan"]:
  669. # ax1 = axes[2*ichan ]
  670. # ax2 = axes[2*ichan+1] # TODO fix hard coded number
  671. # if outlierTest == "MAD":
  672. # X = np.fft.rfft( MADStack[pulse][chan][0,:] )
  673. # nu = np.fft.fftfreq(len( MADStack[pulse][chan][0,:]), d=self.dt)
  674. # else:
  675. # X = np.fft.rfft( SimpleStack[pulse][chan][0,:] )
  676. # nu = np.fft.fftfreq(len( SimpleStack[pulse][chan][0,:]), d=self.dt)
  677. #
  678. # nu = nu[0:len(X)]
  679. # nu[-1] = np.abs(nu[-1])
  680. # df = nu[1] - nu[0]
  681. # of = 0
  682. #
  683. # istart = int((self.transFreq-50.)/df)
  684. # iend = int((self.transFreq+50.)/df)
  685. # of = nu[istart]
  686. #
  687. # def freqlabel(xxx, pos):
  688. # return '%1.0f' %(of + xxx*df)
  689. # formatter = FuncFormatter(freqlabel)
  690. #
  691. # SFFT = np.zeros( (self.DATADICT["nPulseMoments"], len(X)), dtype=np.complex64 )
  692. # SFFT[0,:] = X
  693. # for ipm in range(1, self.DATADICT["nPulseMoments"]):
  694. # if outlierTest == "MAD":
  695. # SFFT[ipm,:] = np.fft.rfft( MADStack[pulse][chan][ipm,:] )
  696. # else:
  697. # SFFT[ipm,:] = np.fft.rfft( SimpleStack[pulse][chan][ipm,:] )
  698. #
  699. # # convert to dB and add colorbars
  700. # #db = 20.*np.log10(np.abs(SFFT[:,istart:iend]))
  701. # db = (np.abs(SFFT[:,istart:iend]))
  702. # #db = (np.real(SFFT[:,istart:iend]))
  703. # #dbr = (np.real(SFFT[:,istart:iend]))
  704. # #db = (np.imag(SFFT[:,istart:iend]))
  705. #
  706. # vvmin = min(vvmin, np.min (db))
  707. # vvmax = max(vvmax, np.max (db))
  708. # im2.append(ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax))
  709. # #im1.append(ax1.matshow( dbr, aspect='auto')) #, vmin=vvmin, vmax=vvmax))
  710. # #im2.append(ax2.matshow( db, aspect='auto', vmin=vvmin, vmax=vvmax))
  711. # #im2 = ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax)
  712. # if ichan == 0:
  713. # ax2.set_ylabel(r"$q$ (A $\cdot$ s)", fontsize=8)
  714. # else:
  715. # #ax2.yaxis.set_ticklabels([])
  716. # plt.setp(ax2.get_yticklabels(), visible=False)
  717. #
  718. # ax2.xaxis.set_major_formatter(formatter)
  719. # ax2.xaxis.set_ticks_position('bottom')
  720. # ax2.xaxis.set_major_locator(MaxNLocator(3))
  721. #
  722. # y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
  723. # ax2.yaxis.set_major_formatter(y_formatter)
  724. #
  725. #
  726. # #if chan == self.DATADICT[pulse]["chan"][-1]:
  727. # #cb2 = canvas.fig.colorbar(im2, cax=cbar_ax, format='%1.0e')
  728. #
  729. # #cb2 = canvas.fig.colorbar(im2[0], ax=ax2, format='%1.0e', orientation='horizontal')
  730. # #cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e', orientation='horizontal')
  731. # #cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  732. # #cb2.set_label("signal (dB)", fontsize=8)
  733. #
  734. # ichan += 1
  735. #
  736. #
  737. # canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  738. #
  739. # #cb1 = canvas.fig.colorbar(im, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  740. # #cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  741. # #cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  742. #
  743. # cb2 = canvas.fig.colorbar(im2[-1], ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  744. # cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  745. # cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  746. #canvas.fig.tight_layout()
  747. canvas.draw()
  748. self.doneTrigger.emit()
  749. def sumData(self, canvas, fred):
  750. chans = copy.deepcopy(self.DATADICT[self.DATADICT["PULSES"][0]]["chan"]) #= np.array( ( self.DATADICT[pulse]["chan"][0], ) )
  751. nchan = len(chans)
  752. # Sum permutations of two channel combos
  753. for ich in range(nchan-1):
  754. for ch in chans[ich+1:]:
  755. chsum = chans[ich] + "+" + ch
  756. for pulse in self.DATADICT["PULSES"]:
  757. self.DATADICT[pulse][chsum] = {}
  758. for ipm in range(self.DATADICT["nPulseMoments"]):
  759. self.DATADICT[pulse][chsum][ipm] = {}
  760. for istack in self.DATADICT["stacks"]:
  761. self.DATADICT[pulse][chsum][ipm][istack] = self.DATADICT[pulse][chans[ich]][ipm][istack] - self.DATADICT[pulse][ch][ipm][istack]
  762. if chsum == "1+2":
  763. #self.DATADICT[pulse]["rchan"].pop()
  764. #self.DATADICT[pulse]["rchan"].pop()
  765. self.DATADICT[pulse]["chan"].append(chsum)
  766. # Sum all channels
  767. sumall = False
  768. if sumall:
  769. chsum = ""
  770. for ch in chans:
  771. chsum += ch + "+"
  772. chsum = chsum[0:-1] # remove last "+"
  773. for pulse in self.DATADICT["PULSES"]:
  774. self.DATADICT[pulse][chsum] = {}
  775. for ipm in range(self.DATADICT["nPulseMoments"]):
  776. self.DATADICT[pulse][chsum][ipm] = {}
  777. for istack in self.DATADICT["stacks"]:
  778. self.DATADICT[pulse][chsum][ipm][istack] = copy.deepcopy(self.DATADICT[pulse][chans[0]][ipm][istack])
  779. for ch in chans[1:]:
  780. self.DATADICT[pulse][chsum][ipm][istack] += self.DATADICT[pulse][ch][ipm][istack]
  781. self.DATADICT[pulse]["chan"].append(chsum)
  782. # if nchan > 2:
  783. # for ch in chans:
  784. # chsum += ch
  785. # for ch2 in chans[1::]:
  786. # for pulse in self.DATADICT["PULSES"]:
  787. # self.DATADICT[pulse][chsum] = {}
  788. # for istack in self.DATADICT["stacks"]:
  789. # self.DATADICT[pulse][chsum][ipm][istack] = self.DATADICT[pulse][chans[ich]][ipm][istack] + self.DATADICT[pulse][ch][ipm][istack]
  790. self.doneTrigger.emit()
  791. def quadDet(self, clip, phase, canvas):
  792. from scipy import signal
  793. self.RotatedAmplitude = True
  794. wL = self.transFreq * 2*np.pi
  795. vL = self.transFreq
  796. #T = 50
  797. dt = self.dt
  798. #DT = 0.01
  799. CA = {} # corrected amplitude
  800. IP = {} # instantaneous phase
  801. NR = {} # Noise residual
  802. RE = {} # Real channel
  803. IM = {} # Imaginary channel
  804. # global maximums for plotting
  805. CAmax = {}
  806. NRmax = {}
  807. REmax = {}
  808. IMmax = {}
  809. E0,phi,df,T2 = 100.,0,0,.2
  810. first = False
  811. self.sigma = {}
  812. for pulse in self.DATADICT["PULSES"]:
  813. CA[pulse] = {}
  814. IP[pulse] = {}
  815. NR[pulse] = {}
  816. RE[pulse] = {}
  817. IM[pulse] = {}
  818. CAmax[pulse] = 0
  819. NRmax[pulse] = 0
  820. REmax[pulse] = 0
  821. IMmax[pulse] = 0
  822. ichan = 0
  823. self.sigma[pulse] = {}
  824. for chan in self.DATADICT[pulse]["chan"]:
  825. CA[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  826. IP[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  827. NR[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  828. RE[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  829. IM[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) )
  830. for ipm in range(0, self.DATADICT["nPulseMoments"]):
  831. #t = self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1]
  832. xn = self.DATADICT["stack"][pulse][chan][ipm,:]
  833. ht = signal.hilbert(xn)*np.exp(-1j*wL*self.DATADICT[pulse]["TIMES"])
  834. #############################################################
  835. # Quadrature signal
  836. RE[pulse][chan][ipm,:] = np.real(ht[clip::])
  837. IM[pulse][chan][ipm,:] = np.imag(ht[clip::])
  838. REmax[pulse] = max(REmax[pulse], np.max(np.real(ht[clip::])))
  839. IMmax[pulse] = max(IMmax[pulse], np.max(np.imag(ht[clip::])))
  840. #############################################################
  841. # Instantaneous phase
  842. IP[pulse][chan][ipm,:] = np.angle(ht)[clip::]
  843. #############################################################
  844. # Rotated amplitude
  845. #if ipm != 0:
  846. #[success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"], (E0,phi,df,T2))
  847. #[success, E0, df, phi, T2] = decay.quadratureDetect( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"] )
  848. #else:
  849. [success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"])
  850. #[success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"], (E0,phi,df,T2))
  851. #[success, E0, df, phi, T2] = decay.quadratureDetect( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"] )
  852. #print("success", success, "E0", E0, "phi", phi, "df", df, "T2", T2)
  853. D = self.RotateAmplitude( ht.real, ht.imag, phi, df, self.DATADICT[pulse]["TIMES"] )
  854. CA[pulse][chan][ipm,:] = D.imag[clip::] # amplitude data
  855. NR[pulse][chan][ipm,:] = D.real[clip::] # noise data
  856. CAmax[pulse] = max(CAmax[pulse], np.max(D.imag[clip::]) )
  857. NRmax[pulse] = max(NRmax[pulse], np.max(D.real[clip::]) )
  858. self.sigma[pulse][chan] = np.std(NR[pulse][chan])
  859. # reporting
  860. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  861. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  862. self.progressTrigger.emit(percent)
  863. ichan += 1
  864. self.DATADICT["CA"] = CA
  865. self.DATADICT["IP"] = IP
  866. self.DATADICT["NR"] = NR
  867. self.DATADICT["RE"] = RE
  868. self.DATADICT["IM"] = IM
  869. self.DATADICT["CAmax"] = CAmax
  870. self.DATADICT["NRmax"] = NRmax
  871. self.DATADICT["REmax"] = REmax
  872. self.DATADICT["IMmax"] = IMmax
  873. self.doneTrigger.emit()
  874. def plotQuadDet(self, clip, phase, canvas):
  875. canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False)
  876. ###############
  877. # Plot on GUI #
  878. ###############
  879. dcmap = cmocean.cm.curl_r #"seismic_r" #cmocean.cm.balance_r #"RdBu" #YlGn" # "coolwarm_r" # diverging
  880. canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False)
  881. for pulse in self.DATADICT["PULSES"]:
  882. ichan = 0
  883. axes = canvas.fig.axes
  884. mmaxr = 0.
  885. mmaxi = 0.
  886. if clip > 0:
  887. time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"][clip-1::] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  888. else:
  889. time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  890. QQ = np.average(self.DATADICT[pulse]["Q"], axis=1 )
  891. for chan in self.DATADICT[pulse]["chan"]:
  892. ax1 = axes[2*ichan ]
  893. ax2 = axes[2*ichan+1] # TODO fix hard coded number
  894. if phase == 0: # Re Im
  895. im1 = ax1.pcolormesh( time_sp, QQ, self.DATADICT["RE"][pulse][chan], cmap=dcmap, rasterized=True,\
  896. vmin=-self.DATADICT["REmax"][pulse] , vmax=self.DATADICT["REmax"][pulse] )
  897. im2 = ax2.pcolormesh( time_sp, QQ, self.DATADICT["IM"][pulse][chan], cmap=dcmap, rasterized=True,\
  898. vmin=-self.DATADICT["IMmax"][pulse], vmax=self.DATADICT["IMmax"][pulse] )
  899. if phase == 1: # Amp phase
  900. im1 = ax1.pcolormesh( time_sp, QQ, self.DATADICT["CA"][pulse][chan], cmap=dcmap, rasterized=True,
  901. vmin=-self.DATADICT["CAmax"][pulse] , vmax=self.DATADICT["CAmax"][pulse] )
  902. im2 = ax2.pcolormesh( time_sp, QQ, self.DATADICT["IP"][pulse][chan], cmap=cmocean.cm.phase, rasterized=True,\
  903. vmin=-np.pi, vmax=np.pi)
  904. if phase == 2: # CA NR
  905. im1 = ax1.pcolormesh( time_sp, QQ, self.DATADICT["CA"][pulse][chan], cmap=dcmap, rasterized=True,\
  906. vmin=-self.DATADICT["CAmax"][pulse] , vmax=self.DATADICT["CAmax"][pulse] )
  907. im2 = ax2.pcolormesh( time_sp, QQ, self.DATADICT["NR"][pulse][chan], cmap=dcmap, rasterized=True,\
  908. vmin=-self.DATADICT["NRmax"][pulse] , vmax=self.DATADICT["NRmax"][pulse] )
  909. # cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e')
  910. # cb2.set_label("Noise residual (nV)", fontsize=8)
  911. # cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  912. # cb1 = canvas.fig.colorbar(im1, ax=ax1, format='%1.0e')
  913. # cb1.set_label("Phased amplitude (nV)", fontsize=8)
  914. # cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  915. # cb2 = canvas.fig.colorbar(im2, ax=ax2, format="%1.0e")
  916. # cb2.set_label("Phase (rad)", fontsize=8)
  917. # cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  918. # cb1 = canvas.fig.colorbar(im1, ax=ax1, format="%1.0e")
  919. # cb1.set_label("FID (nV)", fontsize=8)
  920. # cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  921. # if you save these as pdf or eps, there are artefacts
  922. # for cbar in [cb1,cb2]:
  923. # #cbar.solids.set_rasterized(True)
  924. # cbar.solids.set_edgecolor("face")
  925. # reporting
  926. percent = int(1e2* (float)(ichan)/len(self.DATADICT[pulse]["chan"]))
  927. self.progressTrigger.emit(percent)
  928. if ichan == 0:
  929. ax1.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  930. ax2.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  931. else:
  932. #ax2.yaxis.set_ticklabels([])
  933. #ax1.yaxis.set_ticklabels([])
  934. plt.setp(ax1.get_yticklabels(), visible=False)
  935. plt.setp(ax2.get_yticklabels(), visible=False)
  936. ichan += 1
  937. ax1.set_yscale('log')
  938. ax2.set_yscale('log')
  939. plt.setp(ax1.get_xticklabels(), visible=False)
  940. ax1.set_ylim( np.min(QQ), np.max(QQ) )
  941. ax2.set_ylim( np.min(QQ), np.max(QQ) )
  942. ax1.set_xlim( np.min(time_sp), np.max(time_sp) )
  943. ax2.set_xlim( np.min(time_sp), np.max(time_sp) )
  944. #ax2.set_xlabel(r"Time since end of pulse (ms)", fontsize=8)
  945. ax2.set_xlabel(r"Time (ms)", fontsize=8)
  946. canvas.fig.subplots_adjust(hspace=.15, wspace=.05, left=.075, right=.95, bottom=.1, top=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  947. tick_locator = MaxNLocator(nbins=3)
  948. cb1 = canvas.fig.colorbar(im1, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  949. cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  950. cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  951. cb1.locator = tick_locator
  952. cb1.update_ticks()
  953. tick_locator2 = MaxNLocator(nbins=3)
  954. cb2 = canvas.fig.colorbar(im2, ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30, pad=.2)
  955. cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  956. cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  957. cb2.locator = tick_locator2
  958. cb2.update_ticks()
  959. canvas.draw()
  960. self.doneTrigger.emit()
  961. def RotateAmplitude(self, X, Y, zeta, df, t):
  962. V = X + 1j*Y
  963. return np.abs(V) * np.exp( 1j * ( np.angle(V) - zeta - 2.*np.pi*df*t ) )
  964. def gateIntegrate( self, gpd, clip, canvas ):
  965. """ Gate integrate the real, imaginary, phased, and noise residual channels
  966. """
  967. self.gated = True
  968. self.GATED = {}
  969. for pulse in self.DATADICT["PULSES"]:
  970. QQ = np.average(self.DATADICT[pulse]["Q"], axis=1 )
  971. ichan = 0
  972. for chan in self.DATADICT[pulse]["chan"]:
  973. self.GATED[chan] = {}
  974. for ipm in range(0, self.DATADICT["nPulseMoments"]):
  975. # Time since pulse rather than since record starts...
  976. #if clip > 0:
  977. # time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"][clip:] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  978. #else:
  979. time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] )
  980. #GT, GD, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["CA"][pulse][chan][ipm,:], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  981. #GT2, GP, GTT, sig_stack_err, isum = rotate.gateIntegrate( self.DATADICT["NR"][pulse][chan][ipm,:], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  982. GT, GCA, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["CA"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  983. GT, GNR, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["NR"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  984. GT, GRE, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["RE"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  985. GT, GIM, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["IM"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  986. GT, GIP, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["IP"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 1.5 )
  987. if ipm == 0:
  988. # self.GATED[chan]["DATA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) )
  989. # self.GATED[chan]["ERR"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) )
  990. # self.GATED[chan]["SIGMA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) )
  991. self.GATED[chan]["CA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  992. self.GATED[chan]["NR"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  993. self.GATED[chan]["RE"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  994. self.GATED[chan]["IM"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  995. self.GATED[chan]["IP"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) )
  996. self.GATED[chan]["isum"] = isum
  997. #self.GATED[chan]["DATA"][ipm] = GD.real
  998. self.GATEDABSCISSA = GT[clip:]
  999. self.GATEDWINDOW = GTT[clip:]
  1000. #self.GATED[chan]["SIGMA"][ipm] = sig_stack #_err # GP.real
  1001. #self.GATED[chan]["ERR"][ipm] = GP.real
  1002. self.GATED[chan]["CA"][ipm] = GCA.real[clip:]
  1003. self.GATED[chan]["NR"][ipm] = GNR.real[clip:]
  1004. self.GATED[chan]["RE"][ipm] = GRE.real[clip:]
  1005. self.GATED[chan]["IM"][ipm] = GIM.real[clip:]
  1006. self.GATED[chan]["IP"][ipm] = GIP.real[clip:]
  1007. percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) /
  1008. (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"])))
  1009. self.progressTrigger.emit(percent)
  1010. self.GATED[chan]["GTT"] = GTT[clip:]
  1011. self.GATED[chan]["GT"] = GT[clip:]
  1012. self.GATED[chan]["QQ"] = QQ
  1013. ichan += 1
  1014. self.doneTrigger.emit()
  1015. def bootstrap_resample(self, X, n=None):
  1016. # from http://nbviewer.jupyter.org/gist/aflaxman/6871948
  1017. """ Bootstrap resample an array_like
  1018. Parameters
  1019. ----------
  1020. X : array_like
  1021. data to resample
  1022. n : int, optional
  1023. length of resampled array, equal to len(X) if n==None
  1024. Results
  1025. -------
  1026. returns X_resamples
  1027. """
  1028. if n == None:
  1029. n = len(X)
  1030. resample_i = np.floor(np.random.rand(n)*len(X)).astype(int)
  1031. return X[resample_i]
  1032. def bootstrap_sigma(self, pulse, chan):
  1033. # bootstrap resample
  1034. nt = len(self.GATED[chan]["GT"])
  1035. nb = 5000
  1036. XS = np.zeros( (nb, nt) )
  1037. for ii in range(nb):
  1038. for it in range(nt):
  1039. if self.GATED[chan]["isum"][it] < 8:
  1040. XS[ii, it] = self.sigma[pulse][chan]
  1041. else:
  1042. if it == 0:
  1043. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], \
  1044. self.GATED[chan]["NR"][:,it+2], self.GATED[chan]["NR"][:,it+3] ) ), n=nt )
  1045. elif it == 1:
  1046. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it], \
  1047. self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] ) ), n=nt )
  1048. elif it == nt-2:
  1049. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it], \
  1050. self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it-2] ) ), n=nt )
  1051. elif it == nt-1:
  1052. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it-1], \
  1053. self.GATED[chan]["NR"][:,it-2], self.GATED[chan]["NR"][:,it-3] ) ), n=nt )
  1054. else:
  1055. X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-2] , self.GATED[chan]["NR"][:,it-1], \
  1056. self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] )), n=nt )
  1057. XS[ii,it] = np.std(X)
  1058. return XS
  1059. def plotGateIntegrate( self, gpd, clip, phase, canvas ):
  1060. """ Plot the gate integration
  1061. """
  1062. canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False)
  1063. axes = canvas.fig.axes
  1064. cmap = cmocean.cm.balance_r
  1065. # Calculate maximum for plotting...TODO move into loop above
  1066. vmax1 = 0
  1067. vmax2 = 0
  1068. for pulse in self.DATADICT["PULSES"]:
  1069. for chan in self.DATADICT[pulse]["chan"]:
  1070. if phase == 0:
  1071. vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["RE"])))
  1072. vmax2 = max(vmax2, np.max(np.abs(self.GATED[chan]["IM"])))
  1073. elif phase == 1:
  1074. vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["CA"])))
  1075. vmax2 = np.pi
  1076. elif phase == 2:
  1077. vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["CA"])))
  1078. vmax2 = max(vmax2, np.max(np.abs(self.GATED[chan]["NR"])))
  1079. for pulse in self.DATADICT["PULSES"]:
  1080. ichan = 0
  1081. for chan in self.DATADICT[pulse]["chan"]:
  1082. ax1 = axes[2*ichan ]
  1083. ax2 = axes[2*ichan+1]
  1084. if phase == 0:
  1085. im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["RE"], cmap=cmap, vmin=-vmax1, vmax=vmax1)
  1086. im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["IM"], cmap=cmap, vmin=-vmax2, vmax=vmax2)
  1087. elif phase == 1:
  1088. im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["CA"], cmap=cmap, vmin=-vmax1, vmax=vmax1)
  1089. im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["IP"], cmap=cmocean.cm.phase, vmin=-vmax2, vmax=vmax2)
  1090. elif phase == 2:
  1091. im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["CA"], cmap=cmap, vmin=-vmax1, vmax=vmax1)
  1092. XS = self.bootstrap_sigma(pulse, chan)
  1093. #im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["NR"], cmap=cmap, vmin=-vmax2, vmax=vmax2)
  1094. # bootstrap resample
  1095. # nt = len(self.GATED[chan]["GT"])
  1096. # nb = 5000
  1097. # XS = np.zeros( (nb, nt) )
  1098. # for ii in range(nb):
  1099. # #XS = []
  1100. # for it in range(nt):
  1101. # if self.GATED[chan]["isum"][it] < 8:
  1102. # XS[ii, it] = self.sigma[pulse][chan]
  1103. # else:
  1104. # if it == 0:
  1105. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], \
  1106. # self.GATED[chan]["NR"][:,it+2], self.GATED[chan]["NR"][:,it+3] ) ), n=nt )
  1107. # if it == 1:
  1108. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it], \
  1109. # self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] ) ), n=nt )
  1110. # elif it == nt-2:
  1111. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it], \
  1112. # self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it-2] ) ), n=nt )
  1113. # elif it == nt-1:
  1114. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it-1], \
  1115. # self.GATED[chan]["NR"][:,it-2], self.GATED[chan]["NR"][:,it-3] ) ), n=nt )
  1116. # else:
  1117. # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-2] , self.GATED[chan]["NR"][:,it-1], \
  1118. # self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] )), n=nt )
  1119. # XS[ii,it] = np.std(X)
  1120. #if ii == 0:
  1121. # ax2.plot( self.GATED[chan]["GT"], XS[ii], '-', linewidth=1, markersize=4, alpha=.5, color='lightgrey', label = "bootstrap sim" )
  1122. #else:
  1123. # ax2.plot( self.GATED[chan]["GT"], XS[ii], '-', linewidth=1, markersize=4, alpha=.5, color='lightgrey' )
  1124. ax2.plot( self.GATED[chan]["GT"], np.std(self.GATED[chan]["NR"], axis=0), color='darkgrey', linewidth=2, label="gate std" )
  1125. ax2.plot( np.tile(self.GATED[chan]["GT"], (5000,1) ), XS, '.', color='lightgrey', linewidth=1, alpha=.5 )
  1126. ax2.plot( self.GATED[chan]["GT"], np.average(XS, axis=0), color='black', linewidth=2, label="bootstrap avg." )
  1127. ax2.plot( self.GATED[chan]["GT"], np.median(XS, axis=0), color='black', linewidth=2, label="bootstrap med." )
  1128. ax2.legend()
  1129. im1.set_edgecolor('face')
  1130. if phase != 2:
  1131. im2.set_edgecolor('face')
  1132. plt.setp(ax1.get_xticklabels(), visible=False)
  1133. ax1.set_ylim( np.min(self.GATED[chan]["QQ"]), np.max(self.GATED[chan]["QQ"]) )
  1134. if phase != 2:
  1135. ax2.set_ylim( np.min(self.GATED[chan]["QQ"]), np.max(self.GATED[chan]["QQ"]) )
  1136. ax1.set_xlim( np.min(self.GATED[chan]["GTT"]), np.max(self.GATED[chan]["GTT"]) )
  1137. ax2.set_xlim( np.min(self.GATED[chan]["GTT"]), np.max(self.GATED[chan]["GTT"]) )
  1138. ax1.set_yscale('log')
  1139. ax2.set_yscale('log')
  1140. qlabs = np.append(np.concatenate( ( self.GATED[chan]["QQ"][0:1], self.GATED[chan]["QQ"][9::10] )), self.GATED[chan]["QQ"][-1] )
  1141. ax1.yaxis.set_ticks( qlabs ) # np.append(np.concatenate( (QQ[0:1],QQ[9::10] )), QQ[-1] ) )
  1142. if phase != 2:
  1143. ax2.yaxis.set_ticks( qlabs ) #np.append(np.concatenate( (QQ[0:1],QQ[9::10] )), QQ[-1] ) )
  1144. #formatter = matplotlib.ticker.LogFormatter(10, labelOnlyBase=False)
  1145. formatter = matplotlib.ticker.FuncFormatter(lambda x, pos: str((round(x,1))))
  1146. ax1.yaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1147. ax2.yaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1148. ax1.xaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1149. ax2.xaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1'))
  1150. ax1.set_xscale('log')
  1151. ax2.set_xscale('log')
  1152. if ichan == 0:
  1153. ax1.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  1154. if phase == 2:
  1155. ax2.set_ylabel(r"noise est. (nV)", fontsize=8)
  1156. else:
  1157. ax2.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=8)
  1158. else:
  1159. plt.setp(ax1.get_yticklabels(), visible=False)
  1160. plt.setp(ax2.get_yticklabels(), visible=False)
  1161. ax2.set_xlabel(r"$t-\tau_p$ (ms)", fontsize=8)
  1162. ichan += 1
  1163. #canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.925 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  1164. #canvas.fig.tight_layout()
  1165. #canvas.draw()
  1166. canvas.fig.subplots_adjust(hspace=.15, wspace=.05, left=.075, right=.95, bottom=.1, top=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
  1167. tick_locator = MaxNLocator(nbins=5)
  1168. cb1 = canvas.fig.colorbar(im1, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30)
  1169. cb1.ax.tick_params(axis='both', which='major', labelsize=8)
  1170. cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  1171. cb1.locator = tick_locator
  1172. cb1.update_ticks()
  1173. if phase != 2:
  1174. cb2 = canvas.fig.colorbar(im2, ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30, pad=.2)
  1175. cb2.ax.tick_params(axis='both', which='major', labelsize=8)
  1176. cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8)
  1177. cb2.locator = tick_locator
  1178. cb2.update_ticks()
  1179. canvas.draw()
  1180. self.doneTrigger.emit()
  1181. def FDSmartStack(self, cv, canvas):
  1182. from matplotlib.colors import LogNorm
  1183. from matplotlib.ticker import MaxNLocator
  1184. """
  1185. Currently this stacks 4-phase second pulse data only, we need to generalise
  1186. """
  1187. try:
  1188. canvas.fig.clear()
  1189. except:
  1190. pass
  1191. self.dataCubeFFT( )
  1192. # canvas.ax1 = canvas.fig.add_axes([.1, .1, .8, .8])
  1193. canvas.ax1 = canvas.fig.add_axes([.1, .1, .2, .8])
  1194. canvas.ax2 = canvas.fig.add_axes([.325, .1, .2, .8])
  1195. canvas.ax3 = canvas.fig.add_axes([.55, .1, .2, .8])
  1196. canvas.ax4 = canvas.fig.add_axes([.815, .1, .05, .8]) #cb
  1197. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1198. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1199. canvas.ax3.tick_params(axis='both', which='major', labelsize=8)
  1200. canvas.ax4.tick_params(axis='both', which='major', labelsize=8)
  1201. canvas.ax1.set_ylabel("pulse index", fontsize=8)
  1202. canvas.ax1.set_xlabel(r"$\omega$ bin", fontsize=8)
  1203. canvas.ax2.set_xlabel(r"$\omega$ bin", fontsize=8)
  1204. canvas.ax3.set_xlabel(r"$\omega$ bin", fontsize=8)
  1205. canvas.ax2.yaxis.set_ticklabels([])
  1206. canvas.ax3.yaxis.set_ticklabels([])
  1207. #canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1208. # # Look at pulses
  1209. # for pulse in self.DATADICT["PULSES"]:
  1210. # for istack in self.DATADICT["stacks"]:
  1211. # for ipm in range(0,3):
  1212. # canvas.ax1.plot( self.DATADICT[pulse]["CURRENT"][ipm][istack] , label="istack "+str(istack) + " ipm=" + str(ipm) + pulse )
  1213. # canvas.draw()
  1214. # Create Container for stacks
  1215. # sandbox determine pulse sequence again
  1216. for pulse in self.DATADICT["PULSES"]:
  1217. for ichan in self.DATADICT[pulse]["chan"]:
  1218. #for ipm in range(10,11):
  1219. CONTAINER = {}
  1220. CONTAINER["Cycle 1"] = [] # These are actually subtracted cycles... v+ - v
  1221. CONTAINER["Cycle 2"] = []
  1222. for istack in self.DATADICT["stacks"]:
  1223. #canvas.ax1.clear()
  1224. ipm = 8
  1225. #for ipm in range(self.DATADICT["nPulseMoments"]):
  1226. #canvas.ax1.matshow( np.real(self.DATADICT[pulse][ichan]["FFT"][istack]), aspect='auto' )
  1227. #canvas.draw()
  1228. if not istack%4%4:
  1229. # phase cycle 4, aligned with 1 after sub
  1230. CONTAINER["Cycle 1"].append(-self.DATADICT[pulse][ichan]["FFT"][istack])
  1231. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], -self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1232. elif not istack%4%3:
  1233. # phase cycle 3, aligned with 2 after sub
  1234. CONTAINER["Cycle 2"].append(-self.DATADICT[pulse][ichan]["FFT"][istack])
  1235. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], -self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1236. elif not istack%4%2:
  1237. # phase cycle 2
  1238. CONTAINER["Cycle 2"].append( self.DATADICT[pulse][ichan]["FFT"][istack])
  1239. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1240. else:
  1241. # phase cycle 1
  1242. CONTAINER["Cycle 1"].append( self.DATADICT[pulse][ichan]["FFT"][istack])
  1243. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1244. #canvas.ax1.matshow(np.array(np.average(self.DATADICT[pulse][ichan]["FFT"]), axis=2), aspect='auto' )
  1245. #canvas.ax1.plot( self.DATADICT[pulse]["PULSE_TIMES"], self.DATADICT[pulse]["CURRENT"][ipm][istack] , color='black', label="istack "+str(istack) )
  1246. #canvas.ax1.plot( self.DATADICT[pulse]["CURRENT"][ipm][istack] , label="istack "+str(istack) + " iFID" + str(iFID) )
  1247. #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse )
  1248. #canvas.ax1.legend(prop={'size':6})
  1249. #canvas.draw()
  1250. # Boostrap
  1251. # stack.
  1252. #scipy.random.shuffle(x)
  1253. # Stack and calculate the pooled variance (http://en.wikipedia.org/wiki/Pooled_variance)
  1254. """ All this phase cycling wreaks havoc on a normal calculation of std. and variance. Instead, we resort to calculating
  1255. a pooled variance. In this assumption is that the precision of the measurment is constant. This is a poor choice for
  1256. any type of moving sensor.
  1257. """
  1258. # if a window filter has been applied
  1259. #self.WINDOW
  1260. #self.IWindowStart
  1261. #self.iWindowEnd
  1262. #self.FFTtimes
  1263. CONTAINER = .5*(np.array(CONTAINER["Cycle 2"]) - np.array(CONTAINER["Cycle 1"]))
  1264. print ("container shape", np.shape( CONTAINER), self.iWindowStart+1, self.iWindowEnd-1)
  1265. dmin = np.min(np.abs(np.average(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1], axis=0)))
  1266. dmax = np.max(np.abs(np.average(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1], axis=0)))
  1267. mn = canvas.ax1.matshow( 20.*np.log10(np.abs(np.average(np.array(CONTAINER)[:,:, self.iWindowStart+1:self.iWindowEnd-1], axis=0))), aspect='auto', vmin=-120, vmax=-40)
  1268. #mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm())
  1269. canvas.ax2.matshow( 20*np.log10(np.std(np.real(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1]), axis=0)), aspect='auto', vmin=-120, vmax=-40)
  1270. canvas.ax3.matshow( 20*np.log10(np.std(np.imag(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1]), axis=0)), aspect='auto', vmin=-120, vmax=-40)
  1271. #canvas.ax1.legend(prop={'size':6})
  1272. cb1 = mpl.colorbar.Colorbar(canvas.ax4, mn)
  1273. cb1.ax.tick_params(labelsize=8)
  1274. cb1.set_label("power [dB]", fontsize=8)
  1275. canvas.ax1.xaxis.set_major_locator(MaxNLocator(4))
  1276. canvas.ax2.xaxis.set_major_locator(MaxNLocator(4))
  1277. canvas.ax3.xaxis.set_major_locator(MaxNLocator(4))
  1278. canvas.draw()
  1279. self.doneTrigger.emit()
  1280. def effectivePulseMoment(self, cv, canvas):
  1281. canvas.reAxH(2)
  1282. nstack = len(self.DATADICT["stacks"])
  1283. canvas.ax1.set_yscale('log')
  1284. for pulse in self.DATADICT["PULSES"]:
  1285. self.DATADICT[pulse]["qeff"] = {}
  1286. self.DATADICT[pulse]["q_nu"] = {}
  1287. for ipm in range(self.DATADICT["nPulseMoments"]):
  1288. self.DATADICT[pulse]["qeff"][ipm] = {}
  1289. self.DATADICT[pulse]["q_nu"][ipm] = {}
  1290. #canvas.ax1.clear()
  1291. #scolours = np.array( ( np.linspace(0.8,0.4,len(self.DATADICT["stacks"])), \
  1292. # np.linspace(0.0,0.6,len(self.DATADICT["stacks"])), \
  1293. # np.linspace(0.6,0.0,len(self.DATADICT["stacks"])) )
  1294. # ).T
  1295. #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"])))
  1296. #scolours = plt.cm.Blues(np.linspace(0,1,1.5*len(self.DATADICT["stacks"])))
  1297. scolours = cmocean.cm.ice(np.linspace(0,1,1.5*len(self.DATADICT["stacks"])))
  1298. iistack = 0
  1299. for istack in self.DATADICT["stacks"]:
  1300. #self.DATADICT[pulse]["PULSE_TIMES"]
  1301. x = self.DATADICT[pulse]["CURRENT"][ipm][istack]
  1302. X = np.fft.rfft(x)
  1303. v = np.fft.fftfreq(len(x), self.dt)
  1304. v = v[0:len(X)]
  1305. v[-1] = np.abs(v[-1])
  1306. # calculate effective current/moment
  1307. I0 = np.abs(X)/len(X)
  1308. qeff = I0 * (self.DATADICT[pulse]["PULSE_TIMES"][-1]-self.DATADICT[pulse]["PULSE_TIMES"][0])
  1309. canvas.ax1.set_title(r"pulse moment index " +str(ipm), fontsize=10)
  1310. canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=8)
  1311. canvas.ax1.set_ylabel(r"$q_{eff}$ [A$\cdot$sec]", fontsize=8)
  1312. canvas.ax1.plot(v, qeff, color=scolours[iistack] ) # eff current
  1313. self.DATADICT[pulse]["qeff"][ipm][istack] = qeff
  1314. self.DATADICT[pulse]["q_nu"][ipm][istack] = v
  1315. iistack += 1
  1316. canvas.draw()
  1317. percent = int(1e2* (float)((istack)+ipm*self.DATADICT["nPulseMoments"]) /
  1318. (float)(len(self.DATADICT["PULSES"])*self.DATADICT["nPulseMoments"]*nstack))
  1319. self.progressTrigger.emit(percent)
  1320. canvas.draw()
  1321. self.plotQeffNu(cv, canvas.ax2)
  1322. canvas.draw()
  1323. self.doneTrigger.emit()
  1324. def plotQeffNu(self, cv, ax):
  1325. ####################################
  1326. # TODO label fid1 and fid2, and make a legend, and colour by pulse
  1327. nstack = len(self.DATADICT["stacks"])
  1328. iFID = 0
  1329. for pulse in self.DATADICT["PULSES"]:
  1330. self.DATADICT[pulse]["Q"] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT["stacks"])) )
  1331. ilabel = True
  1332. for ipm in range(self.DATADICT["nPulseMoments"]):
  1333. #scolours = np.array([0.,0.,1.])
  1334. scolours = cmocean.cm.ice(np.linspace(0,1,1.5*len(self.DATADICT["stacks"])))
  1335. #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"])))
  1336. #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"])))
  1337. istack = 0
  1338. for stack in self.DATADICT["stacks"]:
  1339. # find index
  1340. icv = int (round(cv / self.DATADICT[pulse]["q_nu"][ipm][stack][1]))
  1341. self.DATADICT[pulse]["Q"][ipm,istack] = self.DATADICT[pulse]["qeff"][ipm][stack][icv]
  1342. if ilabel:
  1343. ax.scatter(ipm, self.DATADICT[pulse]["qeff"][ipm][stack][icv], facecolors='none', edgecolors=scolours[istack], label=(str(pulse)))
  1344. ilabel = False
  1345. else:
  1346. ax.scatter(ipm, self.DATADICT[pulse]["qeff"][ipm][stack][icv], facecolors='none', edgecolors=scolours[istack])
  1347. #scolours += np.array((0,1./(nstack+1),-1/(nstack+1.)))
  1348. percent = int(1e2* (float)((istack)+ipm*self.DATADICT["nPulseMoments"]) /
  1349. (float)(len(self.DATADICT["PULSES"])*self.DATADICT["nPulseMoments"]*nstack))
  1350. self.progressTrigger.emit(percent)
  1351. istack += 1
  1352. iFID += 1
  1353. ax.set_xlabel(r"pulse moment index", fontsize=8)
  1354. ax.set_ylabel(r"$q_{eff}$ [A$\cdot$sec]", fontsize=8)
  1355. ax.set_yscale('log')
  1356. ax.set_xlim(0, ax.get_xlim()[1])
  1357. ax.legend(loc='upper right', scatterpoints = 1, prop={'size':6})
  1358. def enableDSP(self):
  1359. self.enableDSPTrigger.emit()
  1360. def adaptiveFilter(self, M, flambda, truncate, mu, PCA, canvas):
  1361. canvas.reAx2(shx=False, shy=False)
  1362. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1363. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1364. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1365. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1366. if truncate:
  1367. itrunc =(int) ( round( 1e-3*truncate*self.samp ) )
  1368. print( "adaptive filter size", 1e3*self.dt*M, " [ms]" )
  1369. Filt = adapt.AdaptiveFilter(flambda)
  1370. H = {}
  1371. for pulse in self.DATADICT["PULSES"]:
  1372. H[pulse] = {}
  1373. for ichan in self.DATADICT[pulse]["chan"]:
  1374. print("setting H", pulse, ichan)
  1375. H[pulse][ichan] = np.zeros(M)
  1376. iFID = 0
  1377. # original ordering...
  1378. #for pulse in self.DATADICT["PULSES"]:
  1379. # for ipm in range(self.DATADICT["nPulseMoments"]):
  1380. # for istack in self.DATADICT["stacks"]:
  1381. # This order makes more sense, same as data collection, verify
  1382. for istack in self.DATADICT["stacks"]:
  1383. for ipm in range(self.DATADICT["nPulseMoments"]):
  1384. for pulse in self.DATADICT["PULSES"]:
  1385. canvas.ax1.clear()
  1386. canvas.ax2.clear()
  1387. for ichan in self.DATADICT[pulse]["chan"]:
  1388. #H = np.zeros(M)
  1389. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9* self.DATADICT[pulse][ichan][ipm][istack],\
  1390. label = "noisy")
  1391. RX = []
  1392. for irchan in self.DATADICT[pulse]["rchan"]:
  1393. RX.append(self.DATADICT[pulse][irchan][ipm][istack][::-1])
  1394. if all(H[pulse][ichan]) == 0:
  1395. # call twice to reconcile filter wind-up
  1396. [e,H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\
  1397. RX,\
  1398. M, mu, PCA, flambda, H[pulse][ichan])
  1399. [e,H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\
  1400. RX,\
  1401. M, mu, PCA, flambda, H[pulse][ichan])
  1402. else:
  1403. [e,H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\
  1404. RX,\
  1405. M, mu, PCA, flambda, H[pulse][ichan])
  1406. # replace
  1407. if truncate:
  1408. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][0:itrunc], 1e9* e[::-1][0:itrunc],\
  1409. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1410. self.DATADICT[pulse][ichan][ipm][istack] = e[::-1][0:itrunc]
  1411. else:
  1412. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9* e[::-1],\
  1413. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1414. self.DATADICT[pulse][ichan][ipm][istack] = e[::-1]
  1415. canvas.ax2.plot( H[pulse][ichan] , label="taps")
  1416. canvas.ax1.legend(prop={'size':6})
  1417. canvas.ax2.legend(prop={'size':6})
  1418. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  1419. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  1420. canvas.ax2.set_xlabel(r"filter index", fontsize=8)
  1421. canvas.ax2.set_ylabel(r"scale factor", fontsize=8)
  1422. canvas.draw()
  1423. # truncate the reference channels too, in case you still need them for something.
  1424. # Otherwise they are no longer aligned with the data
  1425. for rchan in self.DATADICT[pulse]["rchan"]:
  1426. if truncate:
  1427. self.DATADICT[pulse][rchan][ipm][istack] = self.DATADICT[pulse][rchan][ipm][istack][0:itrunc]
  1428. #percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1429. percent = (int)(1e2*((float)(istack*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments*(len(self.DATADICT["stacks"])+1) )))
  1430. self.progressTrigger.emit(percent)
  1431. # # why is this loop here, istack is not part of rest?
  1432. # for istack in self.DATADICT["stacks"]:
  1433. # if truncate:
  1434. # self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][0:itrunc]
  1435. # percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1436. # self.progressTrigger.emit(percent)
  1437. # iFID += 1
  1438. if truncate:
  1439. self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][0:itrunc]
  1440. self.doneTrigger.emit()
  1441. self.updateProcTrigger.emit()
  1442. #self.plotFT(canvas)
  1443. def plotFT(self, canvas, istart=0, iend=0):
  1444. try:
  1445. canvas.fig.clear()
  1446. except:
  1447. pass
  1448. canvas.ax1 = canvas.fig.add_axes([.1, .1, .65, .8])
  1449. canvas.ax1c = canvas.fig.add_axes([.8, .1, .05, .8])
  1450. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1451. for pulse in self.DATADICT["PULSES"]:
  1452. for istack in self.DATADICT["stacks"]:
  1453. for ichan in self.DATADICT[pulse]["chan"]:
  1454. # FFT of stack
  1455. XA = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])/2+1))
  1456. nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt)
  1457. nu[-1] *= -1
  1458. df = nu[1]
  1459. of = 0
  1460. if istart:
  1461. of = nu[istart]
  1462. def freqlabel(x, pos):
  1463. return '%1.0f' %(of + x*df)
  1464. formatter = FuncFormatter(freqlabel)
  1465. canvas.ax1.clear()
  1466. for ipm in range(self.DATADICT["nPulseMoments"]):
  1467. X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1468. XA[ipm,:] = np.abs(X)
  1469. if istart:
  1470. mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm())
  1471. else:
  1472. mn = canvas.ax1.matshow(20.*np.log10(XA), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm())
  1473. smin = np.min(20.*np.log10(XA))
  1474. smax = np.max(20.*np.log10(XA))
  1475. canvas.ax1.xaxis.set_major_formatter(formatter)
  1476. cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn)
  1477. cb1.ax.tick_params(labelsize=8)
  1478. cb1.set_label("signal [dB]", fontsize=8)
  1479. canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=10)
  1480. canvas.ax1.set_ylabel(r"$q_{index}$", fontsize=10)
  1481. canvas.draw()
  1482. def plotFT(self, canvas, istart=0, iend=0):
  1483. try:
  1484. canvas.fig.clear()
  1485. except:
  1486. pass
  1487. canvas.ax1 = canvas.fig.add_axes([.1, .1, .65, .8])
  1488. canvas.ax1c = canvas.fig.add_axes([.8, .1, .05, .8])
  1489. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1490. for pulse in self.DATADICT["PULSES"]:
  1491. for istack in self.DATADICT["stacks"]:
  1492. for ichan in self.DATADICT[pulse]["chan"]:
  1493. # FFT of stack
  1494. XA = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1))
  1495. nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt)
  1496. nu[-1] *= -1
  1497. df = nu[1]
  1498. of = 0
  1499. if istart:
  1500. of = nu[istart]
  1501. def freqlabel(x, pos):
  1502. return '%1.0f' %(of + x*df)
  1503. formatter = FuncFormatter(freqlabel)
  1504. canvas.ax1.clear()
  1505. for ipm in range(self.DATADICT["nPulseMoments"]):
  1506. X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1507. XA[ipm,:] = np.abs(X)
  1508. if istart:
  1509. mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120, cmap='viridis') #, norm=LogNorm())
  1510. else:
  1511. mn = canvas.ax1.matshow(20.*np.log10(XA), aspect='auto', vmax=-40, vmin=-120, cmap='viridis') #, norm=LogNorm())
  1512. canvas.ax1.xaxis.set_major_formatter(formatter)
  1513. cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn)
  1514. cb1.ax.tick_params(labelsize=8)
  1515. cb1.set_label("signal [dB]", fontsize=8)
  1516. canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=10)
  1517. canvas.ax1.set_ylabel(r"$q_{index}$", fontsize=10)
  1518. canvas.draw()
  1519. def dataCubeFFT(self):
  1520. """
  1521. Performs FFT on entire cube of DATA, and REFERENCE channels, but not pulse currents,
  1522. Results are saved to a new field in the data structure
  1523. The GMR varies phase as a function of pulse moment index, so that the first pusle moment is zero phase,
  1524. the second is pi/2 the third is zero. This method corrects for this, so that all pulse moments are in phase.
  1525. Technically we may not want to do this, if there is some system response that this cycles away, and we lose track of
  1526. how many of each cycle we have, could this be problomatic? I think it will come out in the wash as we keep track of the
  1527. rest of the phase cycles. Holy phase cycling batman.
  1528. """
  1529. for pulse in self.DATADICT["PULSES"]:
  1530. for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1531. # FFT of stack
  1532. self.DATADICT[pulse][ichan]["FFT"] = {}
  1533. self.DATADICT[pulse][ichan]["FFT"]["nu"] = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][self.DATADICT["stacks"][0]].size, d=self.dt)
  1534. self.DATADICT[pulse][ichan]["FFT"]["nu"][-1] *= -1
  1535. for istack in self.DATADICT["stacks"]:
  1536. self.DATADICT[pulse][ichan]["FFT"][istack] = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex)
  1537. for ipm in range(self.DATADICT["nPulseMoments"]):
  1538. # Mod works for FID pulse sequences, TODO generalize this for 4 phase T1, etc..
  1539. mod = (-1)**(ipm%2) * (-1)**(istack%2)
  1540. self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft( self.DATADICT[pulse][ichan][ipm][istack] )
  1541. #if ipm%2:
  1542. # odd, phase cycled from previous
  1543. # self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft(-self.DATADICT[pulse][ichan][ipm][istack])
  1544. #else:
  1545. # even, we define as zero phase, first pulse moment has this
  1546. # self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1547. def adaptiveFilterFD(self, ftype, band, centre, canvas):
  1548. try:
  1549. canvas.fig.clear()
  1550. except:
  1551. pass
  1552. canvas.ax1 = canvas.fig.add_axes([.1, .5, .7, .4])
  1553. canvas.ax1c = canvas.fig.add_axes([.85, .5, .05, .4])
  1554. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1555. #canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1556. canvas.ax2 = canvas.fig.add_axes([.1, .05, .7, .4])
  1557. canvas.ax2c = canvas.fig.add_axes([.85, .05, .05, .4])
  1558. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1559. #canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1560. self.dataCubeFFT()
  1561. Filt = adapt.AdaptiveFilter(0.)
  1562. for pulse in self.DATADICT["PULSES"]:
  1563. # Compute window function and dimensions
  1564. [WINDOW, nd, wstart, wend, dead] = self.computeWindow(pulse, band, centre, ftype)
  1565. for istack in self.DATADICT["stacks"]:
  1566. for ichan in self.DATADICT[pulse]["chan"]:
  1567. # FFT of stack
  1568. nd = len(self.DATADICT[pulse][ichan][0][istack])
  1569. XX = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex)
  1570. nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt)
  1571. nu[-1] *= -1
  1572. #nu = self.DATADICT[pulse][ichan]["FFT"]["nu"]
  1573. def freqlabel(x, pos):
  1574. return '%1.0f' %((wstart)*nu[1] + x*nu[1])
  1575. formatter = FuncFormatter(freqlabel)
  1576. canvas.ax1.clear()
  1577. for ipm in range(self.DATADICT["nPulseMoments"]):
  1578. X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1579. XX[ipm,:] = X
  1580. XX = XX*WINDOW
  1581. XX = XX[:,wstart:wend]
  1582. smin = np.min(20.*np.log10(np.abs(XX)))
  1583. smax = np.max(20.*np.log10(np.abs(XX)))
  1584. #if smin != smin:
  1585. smax = -40
  1586. smin = -120
  1587. mn = canvas.ax1.matshow(20.*np.log10(np.abs(XX)), aspect='auto', vmin=smin, vmax=smax) #, norm=LogNorm())
  1588. canvas.ax1.xaxis.set_major_formatter(formatter)
  1589. cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn)
  1590. RX = []
  1591. for ichan in self.DATADICT[pulse]["rchan"]:
  1592. R = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex)
  1593. for ipm in range(self.DATADICT["nPulseMoments"]):
  1594. R[ipm,:] = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack])
  1595. RX.append(R[:,wstart:wend])
  1596. XC = Filt.transferFunctionFFT(XX, RX)
  1597. # TODO inverse FFT, but we need to map back to origional matrix size
  1598. #for ichan in self.DATADICT[pulse]["chan"]:
  1599. # for ipm in range(self.DATADICT["nPulseMoments"]):
  1600. # self.DATADICT[pulse][ichan][ipm][istack] = np.fft.irfft(XC[] , nd)
  1601. mc = canvas.ax2.matshow(20.*np.log10(np.abs(XC)), aspect='auto', vmin=smin, vmax=smax) #, norm=LogNorm())
  1602. cb2 = mpl.colorbar.Colorbar(canvas.ax2c, mc)
  1603. cmin = np.min(20.*np.log10(np.abs(XC)))
  1604. cmax = np.max(20.*np.log10(np.abs(XC)))
  1605. canvas.ax2.xaxis.set_major_formatter(formatter)
  1606. #canvas.ax2.colorbar(mn)
  1607. canvas.draw()
  1608. ##############################3
  1609. # TODO inverse FFT to get the damn data back!!!
  1610. # self.progressTrigger.emit(percent)
  1611. # #label = "iFID="+str(iFID) + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1612. self.doneTrigger.emit()
  1613. def findSpikes(self, x, width, threshold, rollOn):
  1614. import scipy.ndimage as im
  1615. spikes = np.zeros( len(x) )
  1616. med = im.median_filter(x, width,mode='nearest')
  1617. std = np.std(x)
  1618. spikes = (np.abs(x-med) > threshold * std)
  1619. return np.array(np.where(spikes[rollOn::])) + rollOn
  1620. # def despike(self, width, threshold, itype, rollOn, win, canvas):
  1621. # from scipy import interpolate
  1622. # """ This was a stab at a despike filter. Better results were achieved using the SmartStack approach
  1623. # """
  1624. # try:
  1625. # canvas.fig.clear()
  1626. # except:
  1627. # pass
  1628. #
  1629. # canvas.ax1 = canvas.fig.add_axes([.125,.1,.725,.8])
  1630. # canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1631. # canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1632. # iFID = 0
  1633. # for pulse in self.DATADICT["PULSES"]:
  1634. # for ipm in range(self.DATADICT["nPulseMoments"]):
  1635. # for istack in self.DATADICT["stacks"]:
  1636. # canvas.ax1.clear()
  1637. # for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1638. # x = self.findSpikes(self.DATADICT[pulse][ichan][ipm][istack], width, threshold, rollOn)
  1639. # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack],
  1640. # label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1641. # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][x], self.DATADICT[pulse][ichan][ipm][istack][x], '.', color='red' , markersize=6 )
  1642. #
  1643. # FIXED = np.zeros(len(x[0]))
  1644. # ii = 0
  1645. # for spike in np.array(x[0]).tolist():
  1646. # f = interpolate.interp1d(np.delete(self.DATADICT[pulse]["TIMES"][spike-win/2:spike+win/2], x[0]-(spike-win/2)), \
  1647. # np.delete(self.DATADICT[pulse][ichan][ipm][istack][spike-win/2:spike+win/2], x[0]-(spike-win/2)), itype)
  1648. # FIXED[ii] = f(self.DATADICT[pulse]["TIMES"][spike])
  1649. # ii += 1
  1650. # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][x[0]] , FIXED, '.', color='black' , markersize=4 )
  1651. # self.DATADICT[pulse][ichan][ipm][istack][x[0]] = FIXED
  1652. #
  1653. # canvas.ax1.legend(prop={'size':6})
  1654. # canvas.draw()
  1655. # percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1656. # self.progressTrigger.emit(percent)
  1657. # iFID += 1
  1658. # self.doneTrigger.emit()
  1659. def designFilter(self, cf, PB, SB, gpass, gstop, ftype, canvas):
  1660. ''' cf is central frequency
  1661. pb is pass band
  1662. sb is stop band
  1663. '''
  1664. TS = (cf) / (.5/self.dt)
  1665. PB = PB / (.5/self.dt) # 1/2 width pass band Muddy Creek
  1666. SB = SB / (.5/self.dt) # 1/2 width stop band Muddy Creek
  1667. # if butterworth
  1668. #[bord, wn] = signal.buttord([TS-PB,TS+PB], [TS-SB,TS+SB], 1e-1, 5.)
  1669. if ftype=="Butterworth":
  1670. [bord, wn] = signal.buttord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop)
  1671. [self.filt_b, self.filt_a] = signal.butter(bord, wn, btype='bandpass', output='ba')
  1672. [self.filt_z, self.filt_p, self.filt_k] = signal.butter(bord, wn, btype='band', output='zpk')
  1673. elif ftype == "Chebychev Type II":
  1674. [bord, wn] = signal.cheb2ord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop)
  1675. [self.filt_b, self.filt_a] = signal.cheby2(bord, gstop, wn, btype='bandpass', output='ba')
  1676. [self.filt_z, self.filt_p, self.filt_k] = signal.cheby2(bord, gstop, wn, btype='band', output='zpk')
  1677. elif ftype == "Elliptic":
  1678. [bord, wn] = signal.ellipord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop)
  1679. [self.filt_b, self.filt_a] = signal.ellip(bord, gpass, gstop, wn, btype='bandpass', output='ba')
  1680. [self.filt_z, self.filt_p, self.filt_k] = signal.ellip(bord, gpass, gstop, wn, btype='band', output='zpk')
  1681. # if cheby2
  1682. impulse = self.mfreqz2(self.filt_b, self.filt_a, canvas)
  1683. self.fe = -5
  1684. for it in range(len(impulse[0])):
  1685. if abs(impulse[1][0][it][0]) >= .1 * gpass:# gpass:
  1686. self.fe = impulse[0][it]
  1687. canvas.draw()
  1688. return [bord, self.fe]
  1689. def downsample(self, truncate, dec, plot, canvas):
  1690. """ Downsamples and truncates the raw signal.
  1691. """
  1692. canvas.reAx2()
  1693. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1694. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1695. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1696. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1697. self.samp /= dec
  1698. self.dt = 1./self.samp
  1699. if truncate:
  1700. itrunc = (int)( 1e-3*truncate*self.samp )
  1701. iFID = 0
  1702. for pulse in self.DATADICT["PULSES"]:
  1703. for ipm in range(self.DATADICT["nPulseMoments"]):
  1704. for istack in self.DATADICT["stacks"]:
  1705. canvas.ax1.clear()
  1706. canvas.ax2.clear()
  1707. for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1708. # trim off indices that don't divide evenly
  1709. ndi = np.shape(self.DATADICT[pulse][ichan][ipm][istack])[0]%dec
  1710. if ndi:
  1711. [self.DATADICT[pulse][ichan][ipm][istack], RSTIMES] = signal.resample(self.DATADICT[pulse][ichan][ipm][istack][0:-ndi],\
  1712. len(self.DATADICT[pulse][ichan][ipm][istack][0:-ndi])//dec,\
  1713. self.DATADICT[pulse]["TIMES"][0:-ndi], window='hamm')
  1714. else:
  1715. [self.DATADICT[pulse][ichan][ipm][istack], RSTIMES] = signal.resample(self.DATADICT[pulse][ichan][ipm][istack],\
  1716. len(self.DATADICT[pulse][ichan][ipm][istack])//dec,\
  1717. self.DATADICT[pulse]["TIMES"], window='hamm')
  1718. if truncate:
  1719. self.DATADICT[pulse][ichan][ipm][istack] = self.DATADICT[pulse][ichan][ipm][istack][0:itrunc]
  1720. RSTIMES = RSTIMES[0:itrunc]
  1721. if plot:
  1722. for ichan in self.DATADICT[pulse]["chan"]:
  1723. canvas.ax2.plot( RSTIMES, 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1724. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1725. for ichan in self.DATADICT[pulse]["rchan"]:
  1726. canvas.ax1.plot( RSTIMES, 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1727. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan))
  1728. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  1729. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  1730. canvas.ax2.set_xlabel(r"time [s]", fontsize=8)
  1731. canvas.ax2.set_ylabel(r"signal [nV]", fontsize=8)
  1732. canvas.ax1.legend(prop={'size':6})
  1733. canvas.ax2.legend(prop={'size':6})
  1734. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1735. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1736. canvas.draw()
  1737. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1738. self.progressTrigger.emit(percent)
  1739. iFID += 1
  1740. self.DATADICT[pulse]["TIMES"] = RSTIMES
  1741. #####################################
  1742. # resample pulse data
  1743. for pulse in self.DATADICT["PULSES"]:
  1744. for ipm in range(self.DATADICT["nPulseMoments"]):
  1745. for istack in self.DATADICT["stacks"]:
  1746. ndi = np.shape(self.DATADICT[pulse]["CURRENT"][ipm][istack])[0]%dec
  1747. if ndi:
  1748. [self.DATADICT[pulse]["CURRENT"][ipm][istack], RSPTIMES] = signal.resample(self.DATADICT[pulse]["CURRENT"][ipm][istack][0:-ndi],\
  1749. len(self.DATADICT[pulse]["CURRENT"][ipm][istack][0:-ndi])//dec,\
  1750. self.DATADICT[pulse]["PULSE_TIMES"][0:-ndi], window='hamm')
  1751. else:
  1752. [self.DATADICT[pulse]["CURRENT"][ipm][istack], RSPTIMES] = signal.resample(self.DATADICT[pulse]["CURRENT"][ipm][istack],\
  1753. len(self.DATADICT[pulse]["CURRENT"][ipm][istack])//dec,\
  1754. self.DATADICT[pulse]["PULSE_TIMES"], window='hamm')
  1755. self.DATADICT[pulse]["PULSE_TIMES"] = RSPTIMES
  1756. self.doneTrigger.emit()
  1757. self.updateProcTrigger.emit()
  1758. def computeWindow(self, pulse, band, centre, ftype, canvas=None):
  1759. # Compute window
  1760. nd = len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0]][0][self.DATADICT["stacks"][0]])
  1761. fft1 = np.fft.rfft(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0]][0][self.DATADICT["stacks"][0]])
  1762. freqs = np.fft.fftfreq(nd, self.dt)
  1763. df = freqs[1] - freqs[0]
  1764. N = int((round)(band/df))
  1765. if ftype == "Hamming":
  1766. window = np.hamming(N)
  1767. elif ftype == "Hanning":
  1768. window = np.hanning(N)
  1769. elif ftype == "Rectangular":
  1770. window = np.ones(N)
  1771. elif ftype == "Flat top":
  1772. window = signal.flattop(N)
  1773. else:
  1774. print ("in windowFilter, window type undefined")
  1775. WINDOW = np.zeros(len(fft1))
  1776. ifreq = int(round(centre/df))
  1777. istart = ifreq-len(window)//2
  1778. iend = 0
  1779. if N%2:
  1780. WINDOW[ifreq-N//2:ifreq+N//2+1] = window
  1781. iend = ifreq+N//2+1
  1782. else:
  1783. WINDOW[ifreq-N//2:ifreq+N//2] = window
  1784. iend = ifreq+N//2
  1785. self.WINDOW = WINDOW
  1786. self.iWindowStart = istart
  1787. self.iWindowEnd = iend
  1788. self.FFTtimes = nd
  1789. fft1 = np.fft.irfft(WINDOW)
  1790. # calculate dead time
  1791. self.windead = 0.
  1792. for ift in np.arange(100,0,-1):
  1793. #print( ift, fft1[ift] )
  1794. if fft1[ift] > .001:
  1795. #print ("DEAD TIME", 1e3*self.DATADICT[pulse]["TIMES"][ift] - 1e3*self.DATADICT[pulse]["TIMES"][0] )
  1796. dead = 1e3*self.DATADICT[pulse]["TIMES"][ift] - 1e3*self.DATADICT[pulse]["TIMES"][0]
  1797. self.windead = self.DATADICT[pulse]["TIMES"][ift] - self.DATADICT[pulse]["TIMES"][0]
  1798. break
  1799. if canvas != None:
  1800. canvas.fig.clear()
  1801. canvas.ax1 = canvas.fig.add_axes([.1, .6, .75, .35])
  1802. canvas.ax2 = canvas.fig.add_axes([.1, .1, .75, .35])
  1803. canvas.ax1.plot(WINDOW)
  1804. canvas.ax2.plot( 1e3* self.DATADICT[pulse]["TIMES"][0:100] - 1e3*self.DATADICT[pulse]["TIMES"][0], fft1[0:100] )
  1805. canvas.ax2.set_xlabel("time (ms)")
  1806. canvas.ax2.set_title("IFFT")
  1807. canvas.draw()
  1808. return [WINDOW, nd, istart, iend, dead]
  1809. def windowFilter(self, ftype, band, centre, canvas):
  1810. ###############################
  1811. # Window Filter (Ormsby filter http://www.xsgeo.com/course/filt.htm)
  1812. # apply window
  1813. iFID = 0
  1814. for pulse in self.DATADICT["PULSES"]:
  1815. [WINDOW, nd, istart, iend,dead] = self.computeWindow(pulse, band, centre, ftype)
  1816. for istack in self.DATADICT["stacks"]:
  1817. for ipm in range(self.DATADICT["nPulseMoments"]):
  1818. for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1819. fft = np.fft.rfft( self.DATADICT[pulse][ichan][ipm][istack] )
  1820. fft *= WINDOW
  1821. self.DATADICT[pulse][ichan][ipm][istack] = np.fft.irfft(fft , nd)
  1822. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1823. self.progressTrigger.emit(percent)
  1824. iFID += 1
  1825. self.plotFT(canvas, istart, iend)
  1826. self.doneTrigger.emit()
  1827. def bandpassFilter(self, canvas, blank, plot=True):
  1828. if plot:
  1829. canvas.reAx2()
  1830. canvas.ax1.tick_params(axis='both', which='major', labelsize=8)
  1831. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1832. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  1833. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  1834. ife = (int)( max(self.fe, self.windead) * self.samp )
  1835. # Data
  1836. iFID = 0
  1837. for pulse in self.DATADICT["PULSES"]:
  1838. self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][ife:-ife]
  1839. for ipm in range(self.DATADICT["nPulseMoments"]):
  1840. for istack in self.DATADICT["stacks"]:
  1841. canvas.ax1.clear()
  1842. canvas.ax2.clear()
  1843. #for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]):
  1844. for ichan in self.DATADICT[pulse]["rchan"]:
  1845. # reflect signal back on itself to reduce gibbs effects on early times
  1846. #nr = len( self.DATADICT[pulse][ichan][ipm][istack] ) - 1 + ife
  1847. #refl = np.append( -1*self.DATADICT[pulse][ichan][ipm][istack][::-1][0:-1], self.DATADICT[pulse][ichan][ipm][istack] )
  1848. #reflfilt = signal.filtfilt( self.filt_b, self.filt_a, refl )
  1849. #self.DATADICT[pulse][ichan][ipm][istack] = reflfilt[nr:-ife]
  1850. # don't reflect
  1851. self.DATADICT[pulse][ichan][ipm][istack] = \
  1852. signal.filtfilt(self.filt_b, self.filt_a, self.DATADICT[pulse][ichan][ipm][istack])[ife:-ife]
  1853. # plot
  1854. if plot:
  1855. canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1856. label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan))
  1857. for ichan in self.DATADICT[pulse]["chan"]:
  1858. # reflect signal back on itself to reduce gibbs effects on early times
  1859. #nr = len( self.DATADICT[pulse][ichan][ipm][istack] ) - 1 + ife
  1860. #refl = np.append( -1*self.DATADICT[pulse][ichan][ipm][istack][::-1][0:-1], self.DATADICT[pulse][ichan][ipm][istack] )
  1861. #reflfilt = signal.filtfilt( self.filt_b, self.filt_a, refl )
  1862. #self.DATADICT[pulse][ichan][ipm][istack] = reflfilt[nr:-ife]
  1863. # don't reflect
  1864. self.DATADICT[pulse][ichan][ipm][istack] = \
  1865. scipy.signal.filtfilt(self.filt_b, self.filt_a, self.DATADICT[pulse][ichan][ipm][istack])[ife:-ife]
  1866. # plot
  1867. if plot:
  1868. canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \
  1869. label = "data " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan))
  1870. if plot:
  1871. canvas.ax1.set_xlabel(r"time [s]", fontsize=8)
  1872. canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8)
  1873. canvas.ax2.set_xlabel(r"time [s]", fontsize=8)
  1874. canvas.ax2.set_ylabel(r"signal [nV]", fontsize=8)
  1875. canvas.ax1.legend(prop={'size':6})
  1876. canvas.ax2.legend(prop={'size':6})
  1877. canvas.draw()
  1878. percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments)))
  1879. self.progressTrigger.emit(percent)
  1880. iFID += 1
  1881. self.doneTrigger.emit()
  1882. self.updateProcTrigger.emit()
  1883. def loadGMRBinaryFID( self, rawfname, istack ):
  1884. """ Reads a single binary GMR file and fills into DATADICT
  1885. """
  1886. #################################################################################
  1887. # figure out key data indices
  1888. # Pulse
  1889. nps = (int)((self.prePulseDelay)*self.samp)
  1890. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  1891. # Data
  1892. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  1893. nd1 = (int)(1.*self.samp) # samples in first pulse
  1894. invGain = 1./self.RxGain
  1895. invCGain = self.CurrentGain
  1896. pulse = "Pulse 1"
  1897. chan = self.DATADICT[pulse]["chan"]
  1898. rchan = self.DATADICT[pulse]["rchan"]
  1899. rawFile = open( rawfname, 'rb')
  1900. for ipm in range(self.nPulseMoments):
  1901. buf1 = rawFile.read(4)
  1902. buf2 = rawFile.read(4)
  1903. N_chan = struct.unpack('>i', buf1 )[0]
  1904. N_samp = struct.unpack('>i', buf2 )[0]
  1905. T = N_samp * self.dt
  1906. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  1907. DATA = np.zeros([N_samp, N_chan+1])
  1908. for ichan in range(N_chan):
  1909. DATADUMP = rawFile.read(4*N_samp)
  1910. for irec in range(N_samp):
  1911. DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0]
  1912. # Save into Data Cube
  1913. for ichan in chan:
  1914. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,eval(ichan)+3][nds:nds+nd1] * invGain
  1915. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  1916. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain
  1917. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  1918. # reference channels?
  1919. for ichan in rchan:
  1920. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,eval(ichan)+3][nds:nds+nd1] * invGain
  1921. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  1922. def loadGMRASCIIFID( self, rawfname, istack ):
  1923. """Based on the geoMRI instrument manufactured by VistaClara. Imports
  1924. a suite of raw .lvm files with the following format (on one line)
  1925. time(s) DC_Bus/100(V) Current+/75(A) Curr-/75(A) Voltage+/200(V) \
  1926. Ch1(V) Ch2(V) Ch3(V) Ch4(V)
  1927. Sampling rate is assumed at 50 kHz
  1928. """
  1929. import pandas as pd
  1930. #################################################################################
  1931. # figure out key data indices
  1932. # Pulse
  1933. nps = (int)((self.prePulseDelay)*self.samp)
  1934. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  1935. # Data
  1936. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  1937. nd1 = (int)(1.*self.samp) - nds # samples in first pulse
  1938. ndr = (int)(1.*self.samp) # samples in record
  1939. invGain = 1./self.RxGain
  1940. invCGain = self.CurrentGain
  1941. pulse = "Pulse 1"
  1942. chan = self.DATADICT[pulse]["chan"]
  1943. rchan = self.DATADICT[pulse]["rchan"]
  1944. T = 1.5 #N_samp * self.dt
  1945. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  1946. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  1947. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  1948. # pandas is much faster than numpy for io
  1949. #DATA = np.loadtxt(rawfname)
  1950. DATA = pd.read_csv(rawfname, header=None, sep="\t").values
  1951. for ipm in range(self.nPulseMoments):
  1952. for ichan in np.append(chan,rchan):
  1953. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][nds:(nds+nd1)] * invGain
  1954. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,2][nps:nps+npul] * invCGain
  1955. nds += ndr
  1956. nps += ndr
  1957. def loadGMRASCIIT1( self, rawfname, istack ):
  1958. """Based on the geoMRI instrument manufactured by VistaClara. Imports
  1959. a suite of raw .lvm files with the following format (on one line)
  1960. time(s) DC_Bus/100(V) Current+/75(A) Curr-/75(A) Voltage+/200(V) \
  1961. Ch1(V) Ch2(V) Ch3(V) Ch4(V)
  1962. Sampling rate is assumed at 50 kHz
  1963. """
  1964. import pandas as pd
  1965. #################################################################################
  1966. # figure out key data indices
  1967. # Pulse
  1968. nps = (int)((self.prePulseDelay)*self.samp)
  1969. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  1970. # phase cycling
  1971. # Older T1 GMR data had a curious phase cycling
  1972. npc = 2 #(int)( self.samp / self.transFreq / 6 )
  1973. #print("npc", npc)
  1974. # Data
  1975. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  1976. nd1 = (int)( (self.interpulseDelay) * self.samp) - nds # samples in first pulse
  1977. ndr = (int)( (self.interpulseDelay) * self.samp) # samples in record
  1978. invGain = 1./self.RxGain
  1979. invCGain = self.CurrentGain
  1980. pulse = "Pulse 1"
  1981. chan = self.DATADICT[pulse]["chan"]
  1982. rchan = self.DATADICT[pulse]["rchan"]
  1983. T = 1.5 #N_samp * self.dt
  1984. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  1985. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  1986. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  1987. # pandas is much faster than numpy for io
  1988. #DATA = np.loadtxt(rawfname)
  1989. DATA = pd.read_csv(rawfname, header=None, sep="\t").values
  1990. for ipm in range(self.nPulseMoments):
  1991. for ichan in np.append(chan,rchan):
  1992. if ipm%2:
  1993. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][(nds+npc):(nds+nd1+npc)] * invGain
  1994. #self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][nds:(nds+nd1)] * invGain
  1995. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,2][nps+npc:nps+npul+npc] * invCGain
  1996. else:
  1997. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][nds:(nds+nd1)] * invGain
  1998. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,2][nps:nps+npul] * invCGain
  1999. nds += ndr
  2000. nps += ndr
  2001. def loadFIDData(self, base, procStacks, chanin, rchanin, FIDProc, canvas, deadTime, plot):
  2002. '''
  2003. Loads a GMR FID dataset, reads binary and ASCII format files
  2004. '''
  2005. canvas.reAx3(True,False)
  2006. chan = []
  2007. for ch in chanin:
  2008. chan.append(str(ch))
  2009. rchan = []
  2010. for ch in rchanin:
  2011. rchan.append(str(ch))
  2012. # not in any headers but this has changed, NOT the place to do this. MOVE
  2013. #self.prePulseDelay = 0.01 # delay before pulse
  2014. self.deadTime = deadTime # instrument dead time before measurement
  2015. self.samp = 50000. # in case this is a reproc, these might have
  2016. self.dt = 1./self.samp # changed
  2017. #################################################################################
  2018. # Data structures
  2019. PULSES = [FIDProc]
  2020. PULSES = ["Pulse 1"]
  2021. self.DATADICT = {}
  2022. self.DATADICT["nPulseMoments"] = self.nPulseMoments
  2023. self.DATADICT["stacks"] = procStacks
  2024. self.DATADICT["PULSES"] = PULSES
  2025. for pulse in PULSES:
  2026. self.DATADICT[pulse] = {}
  2027. self.DATADICT[pulse]["chan"] = chan # TODO these should not be a subet of pulse! for GMR all
  2028. self.DATADICT[pulse]["rchan"] = rchan # data are consistent
  2029. self.DATADICT[pulse]["CURRENT"] = {}
  2030. for ichan in np.append(chan,rchan):
  2031. self.DATADICT[pulse][ichan] = {}
  2032. for ipm in range(self.nPulseMoments):
  2033. self.DATADICT[pulse][ichan][ipm] = {}
  2034. self.DATADICT[pulse]["CURRENT"][ipm] = {}
  2035. for istack in procStacks:
  2036. self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3)
  2037. self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3)
  2038. ##############################################
  2039. # Read in binary (.lvm) data
  2040. iistack = 0
  2041. fnames = []
  2042. for istack in procStacks:
  2043. if self.nDAQVersion <= 1.0:
  2044. self.loadGMRASCIIFID( base + "_" + str(istack) + ".lvm", istack )
  2045. elif self.nDAQVersion < 2.3:
  2046. #rawfname = base + "_" + str(istack)
  2047. self.loadGMRASCIIFID( base + "_" + str(istack), istack )
  2048. else:
  2049. self.loadGMRBinaryFID( base + "_" + str(istack) + ".lvm", istack )
  2050. #fnames.append( base + "_" + str(istack) + ".lvm" )
  2051. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  2052. self.progressTrigger.emit(percent)
  2053. iistack += 1
  2054. # multiprocessing load data
  2055. #info = {}
  2056. #info["prePulseDelay"] = self.prePulseDelay
  2057. #with multiprocessing.Pool() as pool:
  2058. # results = pool.starmap( loadGMRBinaryFID, zip(itertools.repeat(self), fnames, info ) ) # zip(np.tile(vc, (ns, 1)), np.tile(vgc, (ns,1)), itertools.repeat(sys.argv[1]), itertools.repeat(sys.argv[2]), EPS_CMR))
  2059. # Plotting
  2060. if plot:
  2061. iistack = 0
  2062. for istack in procStacks:
  2063. for ipm in range(self.nPulseMoments):
  2064. canvas.ax1.clear()
  2065. canvas.ax2.clear()
  2066. canvas.ax3.clear()
  2067. #canvas.fig.patch.set_facecolor('blue')
  2068. for ichan in chan:
  2069. canvas.ax1.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black')
  2070. canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue')
  2071. for ichan in rchan:
  2072. canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue')
  2073. canvas.ax3.legend(prop={'size':6})
  2074. canvas.ax2.legend(prop={'size':6})
  2075. canvas.ax1.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=8)
  2076. canvas.ax1.set_xlabel("time [s]", fontsize=8)
  2077. canvas.ax1.set_ylabel("Current [A]", fontsize=8)
  2078. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2079. canvas.ax2.set_ylabel("RAW signal [V]", fontsize=8)
  2080. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  2081. canvas.ax2.tick_params(axis='both', which='minor', labelsize=6)
  2082. canvas.ax2.set_xlabel("time [s]", fontsize=8)
  2083. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2084. canvas.ax3.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2085. canvas.draw()
  2086. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  2087. self.progressTrigger.emit(percent)
  2088. iistack += 1
  2089. self.enableDSP()
  2090. self.doneTrigger.emit()
  2091. def loadT1Data(self, base, procStacks, chanin, rchanin, FIDProc, canvas, deadTime, plot):
  2092. '''
  2093. Loads a GMR T1 dataset, reads binary and ASCII format files
  2094. '''
  2095. canvas.reAx3(True,False)
  2096. chan = []
  2097. for ch in chanin:
  2098. chan.append(str(ch))
  2099. rchan = []
  2100. for ch in rchanin:
  2101. rchan.append(str(ch))
  2102. # not in any headers but this has changed, NOT the place to do this. MOVE
  2103. #self.prePulseDelay = 0.01 # delay before pulse
  2104. self.deadTime = deadTime # instrument dead time before measurement
  2105. self.samp = 50000. # in case this is a reproc, these might have
  2106. self.dt = 1./self.samp # changed
  2107. #################################################################################
  2108. # Data structures
  2109. PULSES = [FIDProc]
  2110. self.DATADICT = {}
  2111. self.DATADICT["nPulseMoments"] = self.nPulseMoments
  2112. self.DATADICT["stacks"] = procStacks
  2113. self.DATADICT["PULSES"] = PULSES
  2114. for pulse in PULSES:
  2115. self.DATADICT[pulse] = {}
  2116. self.DATADICT[pulse]["chan"] = chan # TODO these should not be a subet of pulse! for GMR all
  2117. self.DATADICT[pulse]["rchan"] = rchan # data are consistent
  2118. self.DATADICT[pulse]["CURRENT"] = {}
  2119. for ichan in np.append(chan,rchan):
  2120. self.DATADICT[pulse][ichan] = {}
  2121. for ipm in range(self.nPulseMoments):
  2122. self.DATADICT[pulse][ichan][ipm] = {}
  2123. self.DATADICT[pulse]["CURRENT"][ipm] = {}
  2124. for istack in procStacks:
  2125. self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3)
  2126. self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3)
  2127. ##############################################
  2128. # Read in binary (.lvm) data
  2129. iistack = 0
  2130. fnames = []
  2131. for istack in procStacks:
  2132. if self.nDAQVersion < 2.3:
  2133. #rawfname = base + "_" + str(istack)
  2134. #self.loadGMRASCIIFID( base + "_" + str(istack), istack )
  2135. self.loadGMRASCIIT1( base + "_" + str(istack), istack )
  2136. else:
  2137. self.loadGMRBinaryFID( base + "_" + str(istack) + ".lvm", istack )
  2138. #fnames.append( base + "_" + str(istack) + ".lvm" )
  2139. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  2140. self.progressTrigger.emit(percent)
  2141. iistack += 1
  2142. # multiprocessing load data
  2143. #info = {}
  2144. #info["prePulseDelay"] = self.prePulseDelay
  2145. #with multiprocessing.Pool() as pool:
  2146. # results = pool.starmap( loadGMRBinaryFID, zip(itertools.repeat(self), fnames, info ) ) # zip(np.tile(vc, (ns, 1)), np.tile(vgc, (ns,1)), itertools.repeat(sys.argv[1]), itertools.repeat(sys.argv[2]), EPS_CMR))
  2147. # Plotting
  2148. if plot:
  2149. iistack = 0
  2150. for istack in procStacks:
  2151. #for ipm in range(0,7,1):
  2152. for ipm in range(self.nPulseMoments):
  2153. canvas.ax1.clear()
  2154. canvas.ax2.clear()
  2155. canvas.ax3.clear()
  2156. #canvas.fig.patch.set_facecolor('blue')
  2157. for ichan in chan:
  2158. canvas.ax1.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black')
  2159. canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue')
  2160. for ichan in rchan:
  2161. canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue')
  2162. canvas.ax3.legend(prop={'size':6})
  2163. canvas.ax2.legend(prop={'size':6})
  2164. canvas.ax1.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=8)
  2165. canvas.ax1.set_xlabel("time [s]", fontsize=8)
  2166. canvas.ax1.set_ylabel("Current [A]", fontsize=8)
  2167. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2168. canvas.ax2.set_ylabel("RAW signal [V]", fontsize=8)
  2169. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  2170. canvas.ax2.tick_params(axis='both', which='minor', labelsize=6)
  2171. canvas.ax2.set_xlabel("time [s]", fontsize=8)
  2172. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2173. canvas.ax3.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2174. canvas.draw()
  2175. #canvas.draw()
  2176. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  2177. self.progressTrigger.emit(percent)
  2178. iistack += 1
  2179. self.enableDSP()
  2180. self.doneTrigger.emit()
  2181. def load4PhaseT1Data(self, base, procStacks, chan, rchan, FIDProc, canvas, deadTime, plot):
  2182. """
  2183. Designed to load GMR 4-phase data which use the following convention for phase cycles
  2184. P1 P2
  2185. Stack 1 -> 0 0 <-- <--
  2186. Stack 2 -> 0 pi/2 | <-- <--
  2187. Stack 3 -> pi/2 0 <-- | <--
  2188. Stack 4 -> pi/2 pi/2 <-- <--
  2189. The cycle is determined by stack indice. Walbrecker proposes for pulse2 data (Stack2 - Stack1) / 2
  2190. equivalently (Stack 4 - Stack3) will yield the same voltage response wrt. the second pulse.
  2191. Alternatively Stack 4 can be converted to be aligned with Stack 1 by negating, and Stack 3 Can be aligned with Stack 2 by negating
  2192. Then there are just the two phase cycles that can be stacked like normal.
  2193. Unfortunately, we need to stack each cycle first, then perform corrections for phase cycling. The reason for this is that otherwise,
  2194. the entire point is lost, as the signal that is desired to be cancelled out may not be balanced evenly across the stacks. That is to say,
  2195. if there is an uneven number of a certain phase cycle.
  2196. We could, I suppose impose this condition, but I think I would rather not?
  2197. + more samples for std. deviation calculation
  2198. + single spikes will have less residual effect
  2199. - can no longer do normality tests etc. and remove data that are suspect.
  2200. - requires a dumb stack, and may also require removal of entire stacks of data
  2201. Additonally, the GMR varies phase as a function of pulse moment index, so that the first pusle moment is zero phase, the second is pi/2 the third is zero ...
  2202. This however, is altered by the above convention. It gets a little complicated...
  2203. """
  2204. import struct
  2205. canvas.reAx2()
  2206. # not in any headers but this has changed, NOT the place to do this. MOVE
  2207. self.prePulseDelay = 0.01 # delay before pulse
  2208. self.deadTime = deadTime # instrument dead time before measurement
  2209. self.samp = 50000. # in case this is a reproc, these might have
  2210. self.dt = 1./self.samp # changed
  2211. invGain = 1./self.RxGain
  2212. invCGain = self.CurrentGain
  2213. #################################################################################
  2214. # figure out key data indices
  2215. # Pulse
  2216. nps = (int)((self.prePulseDelay)*self.samp)
  2217. nps2 = (int)((self.prePulseDelay+self.interpulseDelay)*self.samp)
  2218. npul = (int)(self.pulseLength[0]*self.samp) #+ 100
  2219. np2 = (int)(self.pulseLength[1]*self.samp) #+ 100
  2220. # Data
  2221. nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts
  2222. nd1 = (int)((self.interpulseDelay)*self.samp) # samples in first pulse
  2223. nd2s = nps+npul+nd1+(int)((self.deadTime)*self.samp); # indice pulse 2 data starts
  2224. nd2 = (int)((1.)*self.samp) # samples in first pulse
  2225. nd1 -= (int)((.028)*self.samp) + nps # some time to get ready for next pulse
  2226. #################################################################################
  2227. # Data structures
  2228. PULSES = [FIDProc]
  2229. if FIDProc == "Both":
  2230. PULSES = ["Pulse 1","Pulse 2"]
  2231. self.DATADICT = {}
  2232. self.DATADICT["nPulseMoments"] = self.nPulseMoments
  2233. self.DATADICT["stacks"] = procStacks
  2234. self.DATADICT["PULSES"] = PULSES
  2235. for pulse in PULSES:
  2236. self.DATADICT[pulse] = {}
  2237. self.DATADICT[pulse]["chan"] = chan
  2238. self.DATADICT[pulse]["rchan"] = rchan
  2239. self.DATADICT[pulse]["CURRENT"] = {}
  2240. for ichan in np.append(chan,rchan):
  2241. self.DATADICT[pulse][ichan] = {}
  2242. for ipm in range(self.nPulseMoments):
  2243. self.DATADICT[pulse][ichan][ipm] = {}
  2244. self.DATADICT[pulse]["CURRENT"][ipm] = {}
  2245. for istack in procStacks:
  2246. self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3)
  2247. self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3)
  2248. ##############################################
  2249. # Read in binary data
  2250. iistack = 0
  2251. for istack in procStacks:
  2252. rawFile = open(base + "_" + str(istack) + ".lvm", 'rb')
  2253. for ipm in range(self.nPulseMoments):
  2254. N_chan = struct.unpack('>i', rawFile.read(4))[0]
  2255. N_samp = struct.unpack('>i', rawFile.read(4))[0]
  2256. T = N_samp * self.dt
  2257. TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ?
  2258. DATA = np.zeros([N_samp, N_chan+1])
  2259. for ichan in range(N_chan):
  2260. DATADUMP = rawFile.read(4*N_samp)
  2261. for irec in range(N_samp):
  2262. DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0]
  2263. if plot:
  2264. canvas.ax1.clear()
  2265. canvas.ax2.clear()
  2266. li = np.shape( DATA[:,4][nd2s:nd2s+nd2] )[0]
  2267. ######################################
  2268. # save into DATA cube
  2269. # TODO, changing iFID to 'Pulse 1' or 'Pulse 2'
  2270. for ichan in chan:
  2271. if FIDProc == "Pulse 1":
  2272. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2273. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2274. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain
  2275. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  2276. if plot:
  2277. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue')
  2278. canvas.ax2.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black')
  2279. elif FIDProc == "Pulse 2":
  2280. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] *invGain
  2281. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2282. self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] = DATA[:,1][nps2:nps2+np2] * invCGain
  2283. self.DATADICT["Pulse 2"]["PULSE_TIMES"] = TIMES[nps2:nps2+np2]
  2284. if plot:
  2285. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID data ch. "+str(ichan)) #, color='blue')
  2286. canvas.ax2.plot( self.DATADICT["Pulse 2"]["PULSE_TIMES"], self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack], color='black' )
  2287. else:
  2288. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2289. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain
  2290. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2291. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2292. self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain
  2293. self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul]
  2294. self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] = DATA[:,1][nps2:nps2+np2] * invCGain
  2295. self.DATADICT["Pulse 2"]["PULSE_TIMES"] = TIMES[nps2:nps2+np2]
  2296. if plot:
  2297. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue')
  2298. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID data ch. "+str(ichan)) #, color='blue')
  2299. canvas.ax2.plot( self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black' )
  2300. canvas.ax2.plot( self.DATADICT["Pulse 2"]["PULSE_TIMES"], self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] , color='black')
  2301. for ichan in rchan:
  2302. if FIDProc == "Pulse 1":
  2303. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2304. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2305. if plot:
  2306. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue')
  2307. elif FIDProc == "Pulse 2":
  2308. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain
  2309. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2310. if plot:
  2311. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID ref ch. "+str(ichan)) #, color='blue')
  2312. else:
  2313. self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain
  2314. self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain
  2315. self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1]
  2316. self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2]
  2317. if plot:
  2318. canvas.ax1.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue')
  2319. canvas.ax1.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID ref ch. "+str(ichan)) #, color='blue')
  2320. if plot:
  2321. canvas.ax1.legend(prop={'size':6})
  2322. canvas.ax1.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=8)
  2323. canvas.ax1.set_xlabel("time [s]", fontsize=8)
  2324. canvas.ax1.set_ylabel("RAW signal [V]", fontsize=8)
  2325. canvas.ax2.set_ylabel("Current [A]", fontsize=8)
  2326. canvas.ax2.tick_params(axis='both', which='major', labelsize=8)
  2327. canvas.ax2.tick_params(axis='both', which='minor', labelsize=6)
  2328. canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2329. canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
  2330. canvas.draw()
  2331. # update GUI of where we are
  2332. percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments)))
  2333. self.progressTrigger.emit(percent)
  2334. iistack += 1
  2335. self.enableDSP()
  2336. self.doneTrigger.emit()
  2337. if __name__ == "__main__":
  2338. if len(sys.argv) < 4:
  2339. print( "mrsurvey path/to/header <stack1> <stackN> ")
  2340. exit()
  2341. GMR = GMRDataProcessor()
  2342. GMR.readHeaderFile(sys.argv[1])
  2343. GMR.Print()
  2344. if GMR.pulseType == "FID":
  2345. GMR.loadFIDData(sys.argv[1], sys.argv[2], sys.argv[3], 5)
  2346. if GMR.pulseType == "4PhaseT1":
  2347. GMR.load4PhaseT1Data(sys.argv[1], sys.argv[2], sys.argv[3], 5)
  2348. pylab.show()